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Abstract: We use Backward Chaining Rule Induction (BCRI), a novel data mining method for hypothesizing causative 
mechanisms, to mine lung cancer gene expression array data for mechanisms that could impact survival. Initially, a super-
vised learning system is used to generate a prediction model in the form of “IF <conditions> THEN <outcome>” style rules. 
Next, each antecedent (i.e. an IF condition) of a previously discovered rule becomes the outcome class for subsequent 
application of supervised rule induction. This step is repeated until a termination condition is satisfi ed. “Chains” of rules 
are created by working backward from an initial condition (e.g. survival status). Through this iterative process of “backward 
chaining,” BCRI searches for rules that describe plausible gene interactions for subsequent validation. Thus, BCRI is a 
semi-supervised approach that constrains the search through the vast space of plausible causal mechanisms by using a 
top-level outcome to kick-start the process. We demonstrate the general BCRI task sequence, how to implement it, the 
validation process, and how BCRI-rules discovered from lung cancer microarray data can be combined with prior knowledge 
to generate hypotheses about functional genomics.
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Introduction
Development of therapies to improve outcomes in lung cancer, the leading cause of death from cancer 
in this country, lags behind other cancers. Recent developments in therapies that have been designed 
to interfere with specifi c molecular targets, such as gefi tinib, an inhibitor of tyrosine kinases activated 
by the epidermal growth factor receptor (EGFR), or the p53 vaccine, have not had the impact on survival 
that was hoped for. A major problem for the success of a molecularly targeted therapy is the lack of 
knowledge about the myriad of gene interactions that lead to resistance. In fact, a recent publication 
(Ogino et al. 2005) describes evidence for the interactions of CDKN1A/p21 and p53 in conferring 
resistance to chemotherapy combined with gefi tinib in colon cancer patients . This discovery and others 
like it point to the need to identify the coupling of gene networks relevant to cancer progression. Gene 
expression array data, by virtue of its simultaneous measure of the expression of thousands of genes, 
has the potential to deliver the information that can identify the gene interactions that act to link active 
network.

Data analysis tools for microarray data have largely focused on methods to accurately classify an 
outcome with validation on a separate test cohort. Less attention has been given to identifying the gene 
interactions that operate within a patient class as defi ned by outcome. It is clear that the set of all combi-
nations of all possible gene interactions would be too large to explore. Our task is to devise a computer 
strategy that can explore a very large space of gene interactions, enriched for plausibility, and reduce 
them to a manageable set for human consideration (e.g. Huels et al. 2002).
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We stress here that accurate prediction of an 
outcome does not necessarily include information 
concerning the gene interactions that can occur in 
an aggressive tumor. These interactions may be 
only loosely tied, in a statistical sense, to the 
outcome. However, they can be very important in 
moderating the activity of a critical gene, or in 
conferring resistance to therapy once a critical gene 
target is removed. We illustrate here the use of 
Backward Chaining Rule Induction, recently 
described in a publication by Fisher et al. (2005), 
to address this paradigm and we discuss validation 
methods for this type of analysis. BCRI extends 
prior research into exploratory strategies (Evans 
and Fisher, 1994; Evans and Fisher, 2002; Waitman 
et al. 2003; Waitman et al. in press) based on rule 
induction. The analysis in this paper signifi cantly 
extends Fisher et al. (2005), where we fi rst intro-
duced BCRI to the computer science and data 
mining community as a strategy for mining gene 
expression array data.

Our approach is focused on hypothesis genera-
tion (and data mining generally), as opposed to 
hypothesis testing and classifi cation. Both the 
methodology of the data mining and the means of 
validating the results are different for pathway 
discovery relevant to a clinical outcome versus 
classifi cation of a clinical outcome. Backward 
Chaining Rule Induction as a strategy differs from 
the use of rule induction, or any method for that 
matter, to building a classifier to predict an 
outcome. Classifi ers are validated by evaluating 
their accuracy in predicting outcomes on a test set 
of patients. Gene interactions are validated against 
existing knowledge in pathways databases and 
published literature, or presented as hypotheses for 
further study at a basic science level.

Following our Introduction here (Section 1), we 
describe the Data and our rationale behind creating 
two survival classes in Section 2. We use published 
gene expression microarray data generated by Beer 
et al. (2002) as our source of microarray data. We 
describe the BCRI strategy and outline its imple-
mentation in this illustration in our Methods Section 
(Section 3). Finally, we survey two comprehensive 
pathways databases along with published literature 
for validation of the gene interactions discovered 
from the results generated by BCRI (Section 4). Of 
course, novel interactions learned from BCRI may 
not yet exist within these databases and we discuss 
the use of BCRI to generate hypotheses about these 
new interactions. In our Conclusions, (section 5) we 

discuss future work with BCRI that extend our ideas 
to the use of automating knowledge assessment for 
validation of the interactions learned from BCRI.

Data
We established two criteria for our selection of 
published gene expression microarray data in this 
illustration. Our criteria for the selection was that 
the data (1) be well characterized and (2) have 
already proven itself as a resource for identifying 
statistically signifi cant molecular correlates predic-
tive of lung cancer outcome.

In 2002, Beer et al. (2002) generated a set of 
gene expression profi les for 86 patients with resect-
able lung adenocarcinoma. All patients underwent 
surgery, did not receive neo-adjuvant therapy, and 
their survival intervals from the time of diagnosis 
were reported. Molecular correlates identifi ed by 
Beer and co-workers were used to separate statis-
tically signifi cant differences in survival data using 
microarray data generated by a separate cohort 
(Bhattacharjee et al. 2001). Using the same data, 
a classifi er for nodal involvement was found to be 
accurate in predicting node positive patients but 
not node negative patients. Interestingly, the node 
negative patients that were misclassifi ed had a 
statistically signifi cant worse outcome, suggesting 
the possibility of occult metastases (Xi et al. 2005). 
Thus, this data met our criteria.

We used the data as processed and normalized 
by the original authors. They determined transcript 
abundance using a customized algorithm. They 
fi ltered the data to exclude genes if the measure of 
their 75th percentile value was less than 100. Their 
fi nal set consisted of 4996 genes. We used this 
expression set along with eleven clinical attributes 
that they published. The clinical attributes were 
age, gender, T and N status (as described above), 
stage of disease as per the current American Joint 
Commission on Cancer specifi ed algorithm based 
on T, N, and M, histopathological subtype of 
adenocarcinoma, histopathological grade of the 
tumor, smoking history, survival, p53 mutation 
status, and K-ras mutation status. Overall, the vast 
majority of attributes are continuous with very few 
nominal attributes.

Optimal split point determination
We divided the patients into a high risk group that 
died within 30.1 months of diagnosis, and a low-
risk group that lived beyond this time interval. The 



Cancer Informatics 2007:3 95

Poor Prognosis in Lung Cancer Via Backward-Chaining Rule Induction

BCRI strategy itself is independent of the method 
used to determine the optimal split point to divide 
the high and low risk survival classes. But because 
backward-chaining is initiated using the classes 
defi ned by the split point, the relevance of the BCRI 
results is expected to be a function of how accurate 
the prediction model is at that split point (i.e. how 
well that split point corresponds to different under-
lying disease mechanisms). Therefore, we 
completed an exhaustive study of the leave-one-
out-cross-validation prediction error calculated at 
all possible split points. The approach to such a 
study and the analyses required to insure against a 
false discovery or the bias introduced by the ratio 
of class membership has been addressed in detail 
in our laboratory. We briefl y describe it here.

 Figure 1 below is used to illustrate the procedure 
of testing split points for the two survival classes 
(note that each of the 60 split points in not actually 
depicted in this schematic). Each open circle in 
Figure 1 represents the survival time of a patient in 
months, and these are sorted into ascending order. 
The median between each two adjacent open circles 
is a candidate split point, and is designated by a 
vertical line. For the 61 records retained in our 
study, we considered 60 candidate split points. We 
label three of these lines in Figure 1 for purposes 
of later illustration as S1, the fi rst candidate split 
point, Sk, the k-th candidate split point, and S60, the 
60th or fi nal candidate split point.

Again, our task was to select the “best” split 
point for distinguishing high and low risk patients. 
Thus, for each candidate split point,
1) We divided the data into two sets, one with 

survival time less than (to the left of) the split 
point, and one set with survival time greater 
than (to the right of) the split point. The data to 
the left was labeled “high risk” and the data to 
the right was labeled “low risk.”

2) We determined the LOOCV prediction error 
rate using the C4.5 system for learning decision 
trees. (We describe the C4.5 algorithm in more 

detail in the Methods Section and in Appendix 
A,) Intuitively, we assume that the split point 
that separates the data into biologically mean-
ingful groups will lead to ideal predictive per-
formance. It would be tempting to use that split 
point for which C4.5 LOOCV error rate was 
minimized, but we insured that the minimum 
in the predicted error was not simply a function 
of the bias introduced by the proportional sizes 
of the classes at that particular split point. This 
is an important consideration because in the 
extreme, a split point that placed 60/61 samples 
in one class and 1/61 (e.g. S1 or S60) in an-
other class would lead to what appeared to be 
a highly accurate classifi er using even the most 
trivial prediction rule (e.g. predict the most 
common class). However, such a split point 
would have no biological relevance. Thus, for 
each candidate split point,

3) We computed the prediction error obtained if 
we simply predicted the most common class. 
Rather than selecting the split point that mini-
mized C4.5 LOOCV error rate, we selected that 
split point for which the C4.5 LOOCV error rate 
was maximally less than the most-common-
class error rate for that split point. This occurred 
at 30.1 months, which had a C4.5 LOOCV error 
rate of 8.2% and a most-common class error 
rate of approximately 35%.

False discovery rate
As further evidence that this split results in mean-
ingful class distinctions, we estimated the false 
discovery rate at the 30.1 month split point. In 
particular, we created classes of 19 and 42 members 
(i.e. the proportions of High and Low risk patients, 
respectively, with the 30.1 split point), by randomly 
drawing patients from the total set without replace-
ment and assigning them arbitrarily to “high” and 
“low” risk classes. We applied C4.5 to an using a 
LOOCV design to discriminate these arbitrary 

Survival Months

S1 SK S60

Figure 1. candidate split points.
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classes. We performed this experiment 20 times. 
The mean error across these 20 trials was approx-
imately 40%. The lowest error rate among the 20 
trials was approximately 24%, well above the true-
data C4.5 LOOCV error rate of 8.2%.

Data summary
In summary, our fi nal selection of data consisted 
of 19 (31%) high risk patients and 42 (69%) low-
risk patients. The total number of patients was 61. 
Forty-eight (78%) patients had Stage I disease and 
thirteen (22%) patients had Stage III disease at 
diagnosis. Of the patients with Stage I disease, 
eight were high risk and 40 were low risk. Of the 
Stage III patients, two were low risk and eleven 
were high risk. The LOOCV prediction error with 
the 30.1 month split point was 8.2% using the C4.5 
decision tree algorithm to build prediction models. 
As stated above, this summary is expanded in a 
technical paper that is in preparation, and this result 
has limited relevance to the current discussion: if 
we identify a split point that minimizes error and 
possibly corresponds to different disease mecha-
nisms, then the more likely the relevance and 
interestingness of genomic interactions suggested 
by BCRI.

Methods
Rule induction algorithms have been used in 
multiple studies to analyze gene expression array 
data. Virtually all of these studies have used super-
vised rule induction (e.g. Cho et al. 2001). 
However, since supervised approaches exclude 
rules that do not directly predict the outcome of 
interest, they omit mechanisms that are loosely tied 
to an outcome, but are relevant in terms of the 
potential to confer resistance. Given that the 
Knudsen “two-hit” model of cancer describes a 
sequence of events, the later ones modifying the 
former, we can expect that some very relevant 
mechanisms of interest will be common to all 
outcomes, and therefore would not be discovered 
using a supervised approach.

On the other hand, the problem with using 
purely unsupervised rule induction to hypothesize 
gene interactions and networks is that the space of 

all possible gene interactions that can occur is too 
vast to effectively search. The resulting set may 
not be manageable for examination by experts and 
assignment of clinical relevance, or discovered 
rules may not be clinically relevant at all. To be 
practical, the search for plausible gene interactions 
must be focused.

Our goal is to embed rule induction in a semi-
supervised approach. We have introduced the 
strategy of Backward Chaining Rule Induction 
(BCRI) to that effect (Fisher et al. 2005). BCRI 
initially applies a rule induction algorithm to 
discover the conditions that predict a clinical 
outcome—long versus short survival periods for 
lung cancer patients in the case of the research 
reported here. This produces a set of human read-
able rules of the form “IF <conditions> THEN 
<outcome>,” as described above. This type of rule, 
which implies an interaction, is of particular 
interest because it can be translated into hypo-
thetical mechanisms for subsequent validation. For 
example, the rule

IF < (A-kinase anchoring protein expression is 
greater than 496) 
AND (urea transporter expression is less than 
or equal to 397) > 
THEN < Annexin V, a phospholipase inhibitor, 
expression levels are greater than 750 >.

can be translated into a hypothesis stated as up-
regulation of A-kinase in combination with down-
regulation of the urea transporter causes the 
phospholipase inhibitor Annexin V to be down 
regulated.1

In BCRI, rule induction is used recursively to 
generate a prediction model for the antecedents (IF 
conditions) of rules from the previous model. This 
backward chaining step is repeated, treating ante-
cedents from earlier steps as outcomes until a 
termination condition is satisfi ed (e.g. the number 
of samples remaining to classify or the accuracy 
of the classifi er is below a user defi ned minimum). 
The intent of backward-chaining rule induction is 
to better focus the search (than it is through strictly 
unsupervised means) for causal mechanisms by 
using outcome (e.g. survival) to kick-start the 
process. Thus BCRI is intermediate between 
supervised rule induction and unsupervised rule 

1A rule induction engine of the type that we will describe in the Methods Section and Appendix A learned the example rule above, including the choice 
of thresholds for continuous attributes.
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induction. Rather than a relatively unconstrained 
exploration of the space of associations between 
variables, as would occur in unsupervised rule 
learning, only the associations that are traceable to 
a top-level class are examined.

Antecedent conditions found in the rules that 
predict outcome then become “sub-goals,” and rule 
induction is repeated on the data using these sub-
goals as classes. The process of backward-chaining 
on rule antecedent conditions is repeated until a 
termination condition is satisfi ed.

Once we have generated a set of rules, we analyze 
these for AND based rules that imply a potential 
interaction between two genes. We also examine the 
relationship between the gene(s) specifi ed in the 
antecedent condition and the consequent. The OR 
conditions would be considered to be independent 
pathways that results in the same consequent. In this 
introduction of BCRI, we use well characterized 
interactions learned from PubMed and GeneCards 
along with chromosomal location learned from 
LocusLink as established domain knowledge with 
which to compare the interactions hypothesized 
from BCRI. A more detailed projection of the inter-
actions hypothesized by BCRI superimposed on 
known pathways using MetaCore™ (Nikolsky 

et al. 2005) and Pathway Assist™ (Nikitin et al. 
2003) is discussed in the context of validation and 
generating new hypotheses.

C45W-BCRI: An implementation 
of BCRI
We distinguish the general BCRI strategy from the 
possible implementations of this strategy. This paper 
describes the general BCRI strategy as well as a 
particular implementation of that strategy which we 
call C45W-BCRI. Other possible implementations 
are briefl y discussed at the end of the paper. BCRI 
has also been described in a recent publication by 
our group (Fisher et al. 2005).

Our initial approach implements BCRI as a 
“wrapper” around a rule-induction engine This 
design, while not the most effi cient from a compu-
tational point of view, makes sense in early system 
development because it allows us to plug in and 
experiment with different rule-induction algo-
rithms. We anticipate that in the future, at a later 
stage of BCRI’s evolution, more tightly coupling 
the rule induction algorithm with other compo-
nents of BCRI will lead to more efficient 
implementations.

Table 1. Pseudocode for BCRI. Data is a data set such as the Beer et al. data set. Classes is a set of class 
labels that are included in and used to classify Data. RuleInducer is a function of two parameters (i.e. a super-
vised rule induction system) that learns if-then rules to predict a TargetCond from a DataSet. PriorityFn is a 
function that takes an if-then rule a returns a fl oating point priority value associated with the rule. This priority 
value is used to order the rule on a priority queue, and this priority queue is used to guide the exploration of rules 
to which backward chaining is applied. TerminateFn is a function that decides whether a given rule should be 
backward chained.

Function Wrapper-BCRI
Returns a RuleSet
With parameters DataSet Data
 TargetSet Classes 
 RuleSet Function RuleInducer (DataSet, TargetCond)
 fl oat Function PriorityFn (Rule),
 bool Function TerminateFn (Rule) {
 PQ = InitializePriorityQueue(PriorityFn);
 FOR each class in Classes, Enqueue(PQ, [class → ___ ]); 
 WHILE (NOT Empty(PQ)) {
 R = Dequeue(PQ);   /* and place R in Results SET*/
 IF (NOT TerminateFn(R) {
 FOR each a IN ANTECEDENTS(R) {
 Children =  RuleInducer (Data, a); 
 FOR each c IN Children Enqueue(PQ, c) 
 }
 }
 } /* end WHILE */
 } /* end BCRI */
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In the wrapper-based prototype, BCRI is 
passed the labeled gene expression data, a set of 
the target classes used to label the data, and three 
functions: RuleInducer, PriorityFn, and Termi-
nateFn. We have included pseudocode (the C 
code with local variable declarations excluded) 
in Table1 for those interested in a technical 
description of the code.

RuleInducer is used to designate the rule 
induction engine that generate the rules to predict 
the classes that were passed to it, called Target-
Conditions. PriorityFn creates a priority queue 
of rules generated in RuleInducer that should be 
used to generate the next set of TargetConditions. 
The loop is terminated by TerminateFn, which 
uses a condition, in this case the rule depth, to 
determine whether to continue to create new 
classes (TargetConditions) to pass to RuleInducer 
or stop.

RuleInducer can, in principle, be any super-
vised rule discovery system that, given a class, 
will return rules that predict that class. Our current 
implementation adapts a well-known system, 
C4.5 (release 8), developed by Quinlan (1993) 
for RuleInducer. We point out some of the impli-
cations of this choice and other possible options 
for rule induction engines in the Discussion 
Section.

C4.5 is a supervised method for learning deci-
sion trees, from which if-then rules of the type 
already illustrated can be extracted. One of our 
motivations in using C4.5 for our fi rst implemen-
tation of BCRI is because of its inherent ability to 
utilize both discrete and continuous variables. The 
algorithm is well known and we refer the interested 
reader to Quinlan’s textbook for a more detailed 
description. In brief, C4.5 is a recursive, greedy 
algorithm for building a decision tree from the top 
down. Starting with the empty decision tree and 
the set of training data, C4.5 fi rst selects the attri-
bute that “best” predicts class with respect to the 
training data. It measures the decrease in the infor-
mation-theoretic measure of entropy (i.e. informa-
tion gain ratio) as the basis, of this selection. C4.5 
continues to recursively examine the ability of 
every attribute to partition the remaining data until 
there are no data left or until the attribute value 
selected to partition the data covers an insuffi cient 
number of samples in the training set.

Using an information theoretic measure to 
assess continuous attributes requires special 
consideration. C4.5 sorts the values of any contin-

uous variable, and considers the median between 
two consecutive values as a possible threshold to 
separate continuous variables into two values.

As described in Section 2. on Data, we fi rst 
create a binary scheme of classifi cation based upon 
survival above or below a certain threshold. This 
is the “zero-th” level TargetCondition. In RuleIn-
ducer we employ C4.5 (release 8) to output a set 
of if-then rules that predict TargetCondition using 
its default settings. We wrote a small portion of 
code to parse the C4.5 output and convert the deci-
sion trees into if-then rules with associated 
coverage (i.e. the number of instances in the data 
that satisfy the rule’s antecedent) of the rule for 
subsequent analysis by PriorityFn. We use the 
abbreviation COV to designate coverage in our 
presentation of the results in the next section.

PriorityFn is applied to a rule and returns a 
score. This score is used to store the rule on a 
priority queue of other scored rules. In our current 
implementation, the coverage (COV) of the rule, 
is used to organize the priority queue. Other 
possibilities include the rule’s accuracy or the 
like. Our choice of coverage, versus accuracy or 
a like measure, is motivated by the observation 
that rule-learning systems will tend to produce 
accurate rules (relative to a data specifi c upper 
bound), but that these rules will vary signifi cantly 
in coverage. We prefer to favor rules that cover a 
large proportion of data.

At each iteration of RuleInducer, a new binary 
scheme for TargetCondition is defi ned based upon 
the rules. A decision tree is generated to predict 
these TargetConditions. In the case of discrete 
attributes in rules, we consider the next generation 
Class 1 as the instances for which the data satis-
fi es the rule and Class 2 as all other instances for 
which the data is not covered by that rule. For 
example, Stage I is the root level attribute selected 
to classify patients into high and low risk survival 
classes. In the next iteration, the TargetConditions 
are the Stage I patients as one class and all of the 
patients who are not Stage I as the other class. If 
the antecedent condition of a rule is based upon 
a continuous threshold, then that threshold value 
is used to divide the data into two classes. In the 
case of an antecedent rule that involves the 
conjunction of two conditions, then each condi-
tion is considered separately in the next iteration 
(and prioritized by its coverage). Consider the 
antecedent condition for the rule given as an 
example earlier in this section
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IF < (A-kinase anchoring protein expression is 
greater than 496) AND (urea transporter expres-
sion is less than or equal to 397)> 

There would be a set of TargetConditions defi ned 
according to whether or not the A-kinase anchoring 
protein expression value was greater than 496 or 
not, and a separate set of TargetConditions defi ned 
according to whether the urea transporter expres-
sion was above the value of 397 or not. Each of 
these two separate sets of binary TargetConditions 
would be assigned a priority depending upon their 
coverage, and separately submitted to RuleInducer 
to generate a decision tree at the next depth.

We continue the iteration until TerminateFn, 
which indicates whether a rule should be further 
expanded (ie, continued backward chaining on its 
antecedents), returns a value of false. In this imple-
mentation we use a depth bound of three to termi-
nate BCRI (with the fi rst rule to predict high and 
low risk for survival classes as the zero-th level 
class). Other strategies that could be considered 
would include specifying a minimal coverage or 
confi dence bound.

Results
C45W-BCRI is our wrapper-based implementation 
of BCRI with C4.5 playing the role of RuleIn-
ducer, and with PriorityFn and TerminateFn as 
specifi ed immediately above. All rules given in this 
paper were produced by C45W-BCRI. The defi ni-
tions for the gene abbreviations used in these rules 
generated by C45W-BCRI are in Table 2. Rule 
Depth is defi ned as the iteration number used to 
generate the rule. For example, the top most rule 
for the classifi er for outcomes is depth zero (0). In 
Figure 2, depth zero is Stage I for low risk patients 
and stage III (or 3 as it is depicted in the fi gure) 
for high risk patients. The fi rst set of rules that 
predict Stage are depth one. BCRI was terminated 
at a rule depth of three.

Except where noted, the abbreviations in Table 
2 are accepted as HUGO nomenclature. Where 
noted by an asterisk, we have used common 
names supplied from Affymetrix™ for the rele-
vant probe, and we have added the HUGO 
approved nomenclature in parentheses. We will 
discuss their function and potential role in lung 

Figure 2. C45W-BCRI rules expressed as an AND/OR graph.

*The rule to predict MRPL19 < 161.4 in the Low Risk trace will also predict MRPL19 < 161.4 in the High Risk trace.  It is not shown again 
in the High Risk trace.
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Table 2. Gene Names, Locus, Function, and Rule Depth. The genes are grouped according to their gene 
locus. Rule depth, described in the text, is given to indicate the closeness of the terms in the rules. Note that 
many genes appear at the same rule depth for both high and low risk classes. Gene transcripts located on the 
same chromosome arm are shown in bold if their rules are within a single depth unit of one another, suggestive 
of related transcription control. Abbreviations are HUGO compliant except where noted by an asterisk. Locus is 
based on the LocusLink information and Function is based on the Gene Ontology information as reported in 
Genecards.

Gene Symbol Name Locus Function Rule Depth for 
    Low   High
    Risk   Risk

IDS Iduronate Xq28 metabolism 3 3
 2-sulfatase precursor
MRPL19 60S ribosomal 2q11.1–11.2 protein biosynthesis 2 2
 protein L19,
 mitochondrial precursor
TRIP12 Thyroid receptor 2q36.3 ubiquitin-protein ligase 3 3
 interacting protein 12  activity
ANXA5 Annexin V 4q28–q32 phospholipase inhibitor  2
   activity
SC4MOL Sterol C-4 methyl 4q32–q34 steroid metabolism  3
 oxidase-like
H3FD H3 histone family, 6p21.3 chromosome organization  2
*(HIST1H3E) member D (H3FD)
KIAA01618* Nuclear envelope pore 7q11.23 transport  3
(POM121) membrane protein
 (POM121)
FRDA Frataxin, mitochondrial 9q13–q21.1 inositol/phosphatidylinositol 3
 precursor  kinase activity
EIF2S1 Eukaryotic translation 14q23.3 protein biosynthesis 3
 initiation factor 2
 subunit 1
SERPINA1 Alpha-1-antitrypsin 14q32.1   1
 precursor
AKAP13* A-kinase anchoring 15q24–25 intracellular signaling  3
(LBC) protein  cascade
CTRL Chymotrypsin-like 16q22.1 proteolysis and 3 3
 protease CTRL-1  peptidolysis
 precursor
KRT13 Keratin, type I 17q12–q21.2 structural constituent of  3
 cytoskeletal 13  cytoskeleton
DDX5 Probable  17q21 ATP-dependent helicase   2
 RNA-dependent  activity
 helicase p68
KRT15 Keratin, type I 17q21.2 structural constituent of  3
 cytoskeletal 15  cytoskeleton
NAPG N-ethylmaleimide- 18p11.21 Intracellular transporter 3 3
 sensitive factor   activity
 attachment protein, beta
SLC14A2 Urea 18q12.1–q21.1 urea transport   3
 transporter, kidney
ELA2 Leukocyte 19p13.3 proteolysis and 1 1
 elastase precursor  peptidolysis
PLAB *Growth differentiation 19p31.1–13.2 signal transduction  2
(GDF15) factor 15  (TGF-β)
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cancer in our Discussion section, following a brief 
description here of an example trace of the BCRI 
procedure.

Application of C45W-BCRI in the 
domain of lung cancer
Using High and Low Risk as the top-level classi-
fi cation, C45W-BCRI begins with (Risk = Low) 
(cov: 42/61) and (Risk = High) (cov: 19/61) placed 
on the priority queue (i.e. passed as Classes to 
C45W-BCRI). The term “cov” is an abbreviation 
for data coverage, or the number of patients out of 
the total number of patients that belong to the 
specifi c class (described above in RuleInducer) 
for the condition just described.

(Risk = Low) is dequeued. Application of 
RuleInducer in the C45W-BCRI implementation 
yields a single rule, which is placed on the queue:

[(Stage = 1) → (Risk = Low) (cov: 48/61) 
|| (Risk = High) → (cov: 19/61)].

(Stage = 1) → (Risk = Low) is dequeued and 
RuleInducer yields a rule, which is added to the 
queue:

[(ELA2 > 163.3) → (Stage 1) (cov: 46/61) || 
(Risk = High → (cov: 19/61) ]

The fi rst of these rules is dequeued. A new rule 
is learned:

(MRPL19 <= 161.4) & (EIF2S1 > 52) 
& (KRT15 <= 616.8) → (ELA2 >163.3) 

(cov: 45/61)
This rule is queued, resulting in the following 

priority queue:
[(MRPL19<= 161.4) & … → (ELA2 >163.3) 
(cov: 45/61) || (Risk = High → (cov: 19/61)]

Having the highest priority (coverage), this same 
rule is immediately dequeued. Each individual 
antecedent serves in turn as a class and rules. A 
simple depth bound of three is used to terminate 
backward chaining, and these labeled rules are 
terminal. 

Table 3 shows the 19 rules learned from the lung 
cancer data by backward chaining to depth of three, 
beginning with an initial queue of

[(Risk = Low) → || (Risk = High) → ]
Gene defi nitions have been given already in 

Table 2. Coverage (“cov”) has already been 

defi ned; “acc” denotes accuracy, which is obtained 
using the error estimate for each node that is 
calculated by C4.5. As Figure 2 illustrates, the 
network of rules learned by BCRI is an AND/OR 
graph, much like the rule bases of expert systems 
such as Mycin (Shortliffe et al. 1975). We discuss 
the inference possibilities of such networks in the 
Summary section at the end of the paper. Our 
primary goal here is a limited, focused exploration 
of the associations between variables, which is 
directly (initially) or indirectly (as backward 
chaining proceeds) tied to top-level class(es).

Discussion

Gene interactions learned from BCRI: 
cancer and lung cancer relevance 
Our hypothesis is that BCRI will generate a set of rules 
that are densely populated by “interesting” rules when 
initiated by top-level classes of interest. We expect 
BCRI to generate interactions that are already well-
known, interactions that are partially supported, and 
novel interactions that can be used to generate hypoth-
eses about networks relevant to lung cancer. We have 
evaluated the C45W-BCRI rules using PubMED, 
LocusLink (Pruitt et al. 2000; Pruitt and Maglott, 
2001), and GeneCards (Rebhan et al. 1997) as sources 
for peer-reviewed literature, chromosomal location, 
and functional annotation, respectively.

Excluding the selection of Stage in the two top-
most level rules, 17 rules were generated with 19 
molecular species. Of the 19 molecular species 
selected in the rules, 12 have been associated with 
neoplasia in general and fi ve specifi cally with lung 
cancer (see Table 4 and discussion below). Using 
MetaCore™ (Nikolsky et al. 2005), a pathway 
database tool, we fi nd that ten of the species are 
connected by known pathways within a distance 
of 3 nodes. Of the 17 rules with gene interactions 
discovered in the C45W-BCRI session, 12 are 
evaluated as plausible in terms of our knowledge 
base today. Of these, six of the interactions have 
been specifi ed previously in the literature related 
to lung cancer, and six are new association with 
lung cancer.

The evaluation for the inferences made from the 
rules is discussed below and summarized in Table 5. 
The interesting rules with plausible associations are 
labeled (i) in Table 3. The rule discussion and evalu-
ation is based on domain knowledge from PubMed, 
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Table 3. Rules induced by backward chaining of Risk top-level categories. The ordering of rules is not 
strictly indicative of the order in which they were discovered. Rule number is given with its associated depth in 
the backward chaining process. Indentation indicates a parent child relationship. “acc” denotes accuracy of 
prediction and “cov” denotes the number of cases covered by the IF condition over the total number of samples. 
A notation of (i) indicates that this rule is interesting either because of an established association in the literature 
or because of a plausible hypotheses that can be inferred from the rule.

 (Risk = Low) 
Rule # /Depth

1./0  (Stage = 1)  (Risk = Low)

2./1 (ELA2 > 163.3)  (Stage = 1) (i)
 [acc: 94.4% cov: 46/61]

3./2 (MRPL19 ≤ 161.4) & (EIF2S1 > 52) & (KRT15 ≤ 616.8) (i)
  (ELA2 > 163.3) 
 [acc: 97.0% cov: 45/61]

4./3 (TRIP12 ≤ 1176) & (NAPG ≤= 243)  (MRPL19 ≤ 161.4) (i)
 [acc: 97.4% cov: 53/61]

5./3 (FRDA > 37.8)  (EIF2S1 >52) 
 [acc: 97.6% cov: 57/61]

6./3 (CTRL > 194.4) & ( IDS ≤ 163.3)  (KRT15 ≤ = 616.8) (i)
 [acc: 97.5% cov: 54/61]
 (Risk = High) 

7./0 (Stage = 3)  (Risk = High)

8./1 (ELA2 ≤ 163.3) & (SERPINA1 > 65)  (Stage = 3) (i)
 [acc: 89.1% cov: 12/61]

9./2 (MRPL19 > 161.4)  (ELA2 ≤ 163.3)
 [acc: 84.1% cov: 8/61]

10./3 (TRIP12 > 1176)  (MRPL19 > 161.4) (i)
 [acc: 75.8% cov: 5/61]

11./3 (TRIP12 ≤ 1176) & (NAPG >= 243)  (MRPL19 > 161.4)
 [acc: 70.7% cov: 3/61]

12./2 (MRPL19 ≤ 161.4) & (KRT15 > 616.8)  (ELA2 ≤ 163.3) (i)
 [acc: 79.4% cov: 5/61]

13./3 (CTRL ≤ 194.4)  (KRT15 > 616.8)
 [acc: 70.7% cov: 4/61]

14./3 (CTRL > 194.4) & (IDS > 163.3)  (KRT15 > 616.8)
 [acc: 45.3% cov: 3/61]

15./2 (PLAB ≤ 3703.9) & (H3FD ≤ 167.6) & (ANXA5 > 750)  (DDX5 ≤ 2804.7)
  (SERPINA1 > 65) (i)
 [acc: 96.9% cov: 44/61]

16./3 (KIAA0618 > 27.2)  (PLAB ≤ 3703.9) (i)
 [acc: 95.5% Data cov: 57/61]

17./3 (SC4MOL > 32)  (H3FD ≤ 167.6)
 [acc: 97.5% cov: 54/61]

18./3 (AKAP13/LBC > 496) & (SLC14A2 ≤ 397.1)  (ANXA5 > 750) (i)
 [acc: 97.4% cov: 53/61]

19./3 (KRT13 ≤ 262.9)  (DDX5 ≤ 2804.7) (i)
 [acc: 97.6% cov: 57/61]
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LocusLink and GeneCards. The label was based on 
whether the interaction had been reported in the 
literature, if any of the genes involved has been asso-
ciated with cancer or lung cancer; or if the gene loci 
have a close spatial relationship.

ELA2 and SERPINA1
The fi rst rules that we will examine are those that 
predict the top most level, Stage I and Stage III. In 
these rules we fi nd a role for elastase in low risk 
tumors, and for its association with alpha-1-
antitrypsin (SERPINA1) in high risk tumors. 
Within the rules Stage, although usually expressed 
in Roman numerals, will be assigned Arabic 
numbers for simplicity.
Rule # 2./ Depth 1 

(ELA2 > 163.3)  (Stage = 1)
[acc: 94.4% cov: 46/61]

Rule # 8./Depth 1
(ELA2 ≤= 163.3) & (SERPINA1 > 65)  

(Stage = 3)
[acc: 89.1% cov: 12/61]

The association of the gene products for these 
two transcripts is well known as alpha-1-antitrypsin 
(SERPINA1) inhibits elastase (ELA2). An imbal-
ance in activity between these enzymes in favor of 
elastase has been considered to play a role in the 
development of emphysema in smokers and in 
patients with alpha-1-antitrypsin defi ciency. The 
source of elastase in the etiology of emphysema is 
from neutrophils and not from “native” lung cells. 
Elastase is synthesized during neutrophil develop-
ment in the bone marrow, and packaged for release 
at sites of cellular injury. Given that the half-life 
of mRNA is orders of magnitude less than that for 
a neutrophil, the source of elastase transcript 
cannot be attributed to neutrophils in this data.

There have been a number of publications over 
the last decade suggesting a role for both elastase 
and alpha-1-antitrypsin separately in lung cancer. 
There have been minimal or no experiments 
focused on their association as it relates to lung 
cancer. Thus, the association discovered here is all 
the more interesting since both gene products have 
been implicated separately in lung cancer research. 
The next step is to identify whether a plausible 
model based on the association is compatible with 
previously published results. The publications have 
been suffi ciently sparse that a putative role in 
cancer is not described in the GeneCards reference 
for either the elastase or alpha-1-antitrypsin gene. 

Elastase has been proposed as a tumor promotor 
based on constitutive production of elastase in 
animal models of lung cancer and in lung cancer 
cell lines (Kamohara et al. 1997; Inada et al. 1997; 
Inada et al. 1998; Doi et al. 2002). High levels of 
elastase protein in lung tumor tissue have been 
correlated with higher stage tumors and poor 
survival in patients with lung cancer (Yamashita 
et al. 1996; Yamashita et al. 1997). In an epide-
miological study, Taniguchi et al. (2002) demon-
strated that single nucleotide polymorphisms in the 
promotor region for elastase are associated with a 
higher relative risk of having lung cancer.

In a 1992 study of adenocarcinomas, high levels 
of alpha-1-antitrypsin protein product were also 
found to be associated with higher stage disease 
(Higashiyama et al. 1992). Rule # 8, learned from 
C45W-BCRI, predicts that higher stage lung cancer 
results from lower levels of elastase transcript, and 
might at first appear to contradict the results 
published by Yamashita et al. (1997). However, 
the decrease in elastase transcript in our rule may 
be secondary to negative feedback in the setting 

Table 4. Density of References for Molecular Spe-
cies (Gene or Gene Product) in Rules. To be consid-
ered a positive fi nding (+), a reference linking the gene 
specifi ed in the row with either lung cancer (column 2) 
or with cancer in general (column 3) must have been 
identifi ed in a PubMed search. Otherwise, there is no 
known correlation (–).

Gene Name Lung Cancer Other Cancer
 References References
ELA2 + +
SERPINA1 + +
MRPL19 – –
EIF2S1 + +
KRT15 – +
TRIP12 – +
NAPG – –
FRDA – +
CTRL – +
IDS – –
ANXA5 + +
PLAB*(GDF15) + +
H3FD*(HIST1H3E) + +
DDX5 – +
AKAP13 + +
SLC14A2 – –
KIAA01618* – +
(POM121)
SC4MOL – +
KRT13 – –
19 6 12
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of a high concentration of elastase product. The 
increase in transcribed alpha-1-antitrypsin may 
also be in response to the elevated elastase product 
or activity. As a result of this rule discovery, 
increased elastase activity or increased survival of 
the translated protein could be hypothesized as a 
mechanism for the higher levels of both active 
elastase product and of alpha-1-antitrypsin associ-
ated with Stage III lung cancer, and with poor 
survival. It has been postulated that increased 
elastase and similar proteinases destroy the barrier 
between tumor and the local circulatory system, 
either lymphatic or hematogenous, and result in at 
least loco-regional metastases. The increase in 
alpha-1-antitrypsin may have a role in promoting 
aggressive behavior in addition to that of elastase, 
or it may simply correlate with aggressive tumor 
behavior because of its up-regulation secondary to 
elastase activity.

Using the same logic for transcript production, 
Stage 1 tumors may have low levels of active 
elastase. If removal of elastase by normal cell 
mechanisms is suffi ciently effi cient, then disrup-

tion of local barriers to circulation may not occur. 
There may as yet be a mechanism by which 
increased transcription of elastase promotes tumor 
formation but not tumor progression, as suggested 
by the animal models described above.

In a recent review of the roles of elastase in lung 
cancer, Sun and Yang (2004) posed the question 
of “why there are more neutrophils or released 
neutrophil elastase in aggressive or late-stage 
tumours compared with less aggressive or early 
stage tumours?” They also pointed to the fact that the 
interplay between elastase and alpha-1-antitrypsin, 
rather than each one individually, needs to be 
addressed. Based on our data analysis, we would 
modify their question and ask why is increased 
elastase production by lung tumor cells associated 
with tumorigenesis at all? And what is the role of 
alpha-1-antitrypsin if any? 

Here, C45W-BCRI supports a previously 
hypothesized role for elastase in lung cancer, and 
is compatible with previously reported data for both 
elastase and for aplpha-1-antitrypsin. C45W-BCRI 
discovers rules that are used to construct a unifying 

Table 5. Knowledge Introduced by Rule. The integer 1 is used to indicate a positive result in response to the 
question presented at the head of the column and 0 is used to indicate a null result.

Rule # Corresponds to  Supports, Suggests a Has a  Coverage
 to a previously specializes, new plausible
 established or contradicts question? hypothesis 
 or hypothesized a previously  for a 
 interaction for forwarded   mechanism
 lung cancer interaction?  requiring
 or cancer in   further 
 general?   study?
2 1 1 0 1 46/61
3 1 1 0 1 45/61
4 0 0 1 1 53/61
5 0 0 1 0 57/61
6 0 0 1 1 54/61
8 1 1 0 1 12/61
9 0 0 1 0 8/61
10 0 0 1 1 5/61
11 0 0 0 0 3/61
12 1 1 0 1 5/61
13 0 0 1 0 4/61
14 0 0 1 0 3/61
15 1 1 1 2 44/61
16 0 0 1 1 57/61
17 0 0 1 0 54/61
18 0 0 1 1 53/61
19 0 0 1 1 57/61
17Rules 5 5 12 12
 Previously Specialization New Plausible
 Hypothesized of Hypothesis Associations Associations
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model that explains several separate publications 
on both elastase and alpha-1-antitrypsin.

MRPL19, EIF2S1, and KRT15
In the next level of rules learned from C45W-
BCRI, we fi nd that the mitochondrial precursor of 
60S ribosomal protein L19 (MRPL19) predicts 
decreased elastase transcription. It associates with 
eukaryotic translation initiation factor 2 subunit 1 
(EIF2S1) and cytoskeletal keratin (KRT15) to 
predict high levels of elastase transcript. Either 
higher transcription levels of MRPL19 predict low 
levels of transcription of ELA2 in the “high risk” 
lineage of the model,
Rule # 3./Depth 2

(MRPL19 ≤ 161.4) & (EIF2S1 > 52) 
& (KRT15 ≤ 616.8)  (ELA2 > 163.3)
[acc 97.0% cov: 45/61] 

Rule # 9./Depth 2
(MRPL19 > 161.4)  (ELA2 ≤ 163.3) 
[acc: 84.1% cov: 8/61] 

Rule # 12./Depth 2
(MRPL19 ≤ 161.4) & (KRT15 > 616.8) 
(ELA2 ≤ 163.3) 
[acc: 79.4% cov: 5/61] 

Of these genes and their products, the 60S 
ribosomal protein L19, mitochondrial precursor 
(MRPL19) is the only one that lacks any refer-
ences associated with any neoplastic behavior. 
Increased expression of eukaryotic transcription 
factor 2 subunit 1 (EIF2S1 or EIF2A1), a member 
of the complex required to translate from tran-
script to protein, has been associated with several 
tumor types, with c-myc, an oncogene important 
in lung tumorigenesis, and with specifi c subtypes 
of lung cancer (e.g. Rosenwald et al. 1993; Lobo 
et al. 2000; Koessler et al. 2003; Clemens, 2004; 
Rosenwald, 2004). Its activity is modulated by 
phosphorylation at a specifi c site that prevents 
guanine nucleotide conversion from the di- to the 
tri-phosphorylated state and thus impairs recy-
cling of this translation initiation factor (Datta et 
al. 2003). 

It has been postulated that adherence to rigid 
structures, e.g. microtubules, in the cell is impor-
tant to the assembly of the protein translation 
complex. In bladder and breast cancer, the cyto-
skeletal framework (which utilizes keratins) has 
been demonstrated to provide support for this 

translation complex (Heuijerians et al. 1989). It 
is interesting to note that reduced expression of 
keratin 15 (KRT15) is associated with increased 
expression of the translation factor EIF2S1 in the 
prediction model for increased elastase, which in 
turn predicts a lower stage tumor. This rule can 
be used to construct a mechanism for reduced 
keratin production to reduce elastase protein 
synthesis in spite of increased transcription of 
elastase, and vice verse. Of note, higher levels of 
cytokeratin 15 are expressed in other forms of 
neoplasia (Jih et al. 1999).

The role for the mitochondrial ribosomal 
precursor is not clear, although decreased expres-
sion might imply a lesser rate of metabolism within 
the mitochondria. It is interesting to note that over-
expression of MRPL19 does not associate with 
other molecular species to predict low levels of 
elastase, which in turn predicts a higher stage 
tumor.

TRIP12 and NAPG
Rule # 4./Depth 3

(TRIP12 ≤ 1176) & (NAPG ≤ 243)
 (MRPL19 ≤ 161.4) 

[acc: 97.4% cov: 53/61]
Rule # 10./Depth 3

(TRIP12 > 1176)  (MRPL19 > 161.4)
[acc: 75.8% cov: 5/61]

Rule # 11./Depth 3
(TRIP12 ≤ 1176) & (NAPG > 243)  
(MRPL19 > 161.4)
[acc: 70.7% cov: 3/61]
The thyroid receptor interacting protein 12 

(TRIP) is a component of PA700, an ATP-depen-
dent multi-subunit protein that activates proteolytic 
activities. It interacts with the ligand binding 
domain of the thyroid hormone receptor (in a 
thyroid hormone T3-independent manner) and with 
retinoid X receptor (RXR). The activator for the 
thyroid and retinoic acid receptor is over-expressed 
in approximately 60% of breast cancers and it has 
been reported to “cooperate” with her-2-neu, a 
breast oncogene associated with aggressive tumor, 
in dysregulation of transcription factor ER81 (Goel 
and Janknecht, 2004).

N-ethylmaleimide-sensitive factor attachment 
protein, gamma (NAPG) is required for vesicular 
transport between the endoplasmic reticulum and 
the Golgi apparatus. A relationship between a 
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protein that interacts with a membrane bound 
receptor (i.e. TRIP12) and transport from the endo-
plasmic reticulum and the Golgi apparatus, and 
from there to the membrane surface, is plausible. 
It is not clear how this actually down-regulates 
expression of MRPL1. It is interesting to note that 
TRIP12 and MRPL19 are located on the same arm 
of chromosome 2 (see Table 2). It is possible that 
TRIP12 and MRPL19 share a regulatory mecha-
nism based on the proximity of their genes on 
chromosome 2.

FRDA
Rule # 5./Depth 3

(FRDA > 37.8)  (EIF2S1 > 52)
[acc: 97.6% cov: 57/61]
Frataxin in its mutated form causes the neuro-

degenerative disease Friedrich’s ataxia. Up-regula-
tion of the mitochondrial precursor to frataxin 
(FRDA) predicts increased expression of EIF2S1. 
There have been scattered reports implying an 
association between frataxin and neoplastic 
disease. In one report, over-expression of frataxin 
was associated with resistance to cis-platinum in 
ovarian carcinoma cell lines (Ghazizadeh, 2003). 
This was attributed to increased de-toxifi cation of 
therapy by frataxin. The patients in this study did 
not receive chemotherapy prior to surgery. FRDA 
only appears in the rules for low risk disease.

CTRL and IDS
Rule # 6./Depth 3

(CTRL > 194.4) & ( IDS ≤ 163.3) 
 (KRT15 <= 616.8)

[acc: 97.5% cov: 54/61]
Rule # 13./Depth 3

(CTRL ≤ 194.4)  (KRT15 > 616.8)
[acc: 70.7% cov: 4/61]

Rule # 14./Depth 3
(CTRL ≤ 194.4) & (IDS > 163.3) 
(KRT15 > 616.8)
[acc: 45.3% cov: 3/61]
Chymotrypsin like protease precursor (CTRL) is 

associated with cancer cachexia (e.g. Wyke 
et al. 2004). There is no known association with 
iduronate 2-sulfatase precursor in cancer research. 
IDS is important in the degradation of heparan 
sulfates, which in turn are believed to inhibit 

proliferation in fi broblasts but not in tumor cells 
(Cheng et al. 2001). It is interesting to note that CTRL 
and IDS share a general function: catabolism. The 
glycose aminoglycans, of which heparin sulfate is one, 
are biopolymers with lubricant qualities. The related 
metabolic function of the two transcripts is intriguing 
and gives this association a plausible status.

PLAB, H3FD, ANXA5 and DDX5
This rule that predicts up-regulation of alpha-1-
antitrypsin is discovered in backward chaining of 
the high risk group. However, it is interesting to 
see that the coverage for the conditions for rule 
#15 at 44 of 61 patients is higher than the number 
of high risk patients (19) or the number of patients 
with Stage III lung cancer (13). This is, of course, 
explained by the fact that alpha-1-antitrypsin alone 
does not predict stage III or high risk disease.

Rule # 15./Depth 2
(PLAB ≤ 3703.9) & (H3FD ≤ 167.6)
& (ANXA5 > 750) & (DDX5 < 2804.7) 
(SERPINA 1 > 65)
[acc: 96.9% cov : 44/61]

This rule is interesting because nearly every 
one of its constituents has been associated with 
some sort of neoplastic behavior. Growth differ-
entiation factor 15 (PLAB) is part of the TGF-β 
signaling family of proteins. It has been reported 
in association with several cancer types, including 
lung cancer (Kannan et al. 2000) and prostate 
cancer (Lindmark et al. 2004). In this case low 
levels of PLAB and member D of the H3 histone 
family (H3FD) combine with high levels of 
annexin V and an RNA-dependent helicase (p68) 
to result in up-regulation of alpha-1-antitrypsin. 
A high level of helix unwinding protein combined 
with a low level of histones would be most consis-
tent in a cell with active transcription and replica-
tion.

The H3 histone family proteins are functionally 
associated with cancer, and more specifi cally lung 
cancer (Suh et al. 2002; Koesller et al. 2003; Tani 
et al. 2004). De-acetylation of histones leads to 
gene silencing by formation of nucleosomes. 
Inhibitors of histone deacetlyation (inhibitors of 
gene silencing) lead to apoptosis in some tumor 
cell lines (Zhu et al. 2001). The association of low 
transcript in rule #15 may either refl ect high levels 
of H3 histone family, member D (H3FD) in 
response to high levels of de-acetylation, causing 
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repression of transcription. Alternatively, if it truly 
refl ects low levels of histone family 3, the higher 
transcription rates are also plausible in predicting 
higher levels of alpha-1-antitrypsin transcripts. The 
association of lower levels of helicase transcript 
(DDX5) with low levels of H3D transcript implies 
that overall the transcription rates could be 
decreased. Again, negative feedback on DDX5 
from excessive helicase would result in low tran-
script levels and a paradoxical result of increased 
cellular transcription. Overexpression of some 
helicase genes has been observed with some 
sarcoma related cell lines (Bai et al. 2000). In a 
comparison of cell lines, RNA helicase A was 
shown to be more highly expressed in small cell 
lung cancer compared to non-small cell lung 
cancer, which may also be refl ected in the relatively 
low transcription level in rule #15 (Wei et al. 2004). 
In a separate study focused on p68 (DDX5), colon 
cancer cell lines with decreased p68 expression 
were less well differentiated (Singh et al. 1995). 
This data would also support the extended lineage 
of association of increased alpha-1-antitrypsin 
expression with high risk disease.

Annexin V has been studied in the context of 
apoptosis (Ravassa et al. 2004). A key step in lung 
tumor progression is escape from apoptosis. 
Annexin V expression is associated with apoptosis 
secondary to therapy in small cell lung cancer cell 
lines (Bjorkhem-Bergman et al. 2004). Again, in 
this case the higher level of transcript may refl ect 
a low level of protein, and therefore resistance to 
apoptosis. The association of annexin V and 
histones in rule #15 is also interesting because of 
the observed increase in apoptosis secondary to 
inhibition of gene silencing by histone (Zhu et al. 
2001).

This rule has been assigned a score of 2 for 
interesting associations because of the related 
functions of histones, helicase, and growth 
d i f f e r en t i a t i on  f ac to r s  i n  modu la t i ng 
transcription. 

POM121 and PLAB

Rule # 16./Depth 3
(KIAA0618 > 27.2)  (PLAB ≤ 3703.9) 
[acc: 95.5% Data cov: 54/61]
While there are no reports of POM121 specifi -

cally associated with lung cancer or a neoplastic 
process of any kind, there are reports of increased 

expression of nuclear pore proteins in some cancer 
(e.g. Slape and Aplan, 2004).

SC4MOL and H3D

Rule # 17./Depth 3
(SC4MOL > 32)  (H3FD ≤ 167.6)
[acc: 97.5% cov: 54/61] 
The sterol methyl oxidase-like gene SC4MOL 

does not have any specifi c references in connec-
tion with lung cancer or neoplasia in general. 
However, steroid metabolism is important consid-
ering the effect of steroid signals associated with 
neoplasia (e.g. estrogen, progesterone). The up-
regulation of a steroid predicting the down regu-
lation of histones could refl ect a change in tran-
scription activity.

AKAP13, SCL14A2 and ANXA5
Rule # 18./Depth 3

(AKAP > 496) & (SLC14A2 ≤ 397.1)
 (ANXA5 >750)

[acc: 97.4% cov: 53/61]

There are several publications relating the 
A-kinase anchoring protein AKAP13 and cancer 
(e.g. Sterpetti et al. 1999). It is in fact very inter-
esting that a signal transduction molecule (AKAP13) 
predicts phospholipase transcription as phospho-
lipases also function in signaling. The role of a urea 
transport protein likely refl ects underlying amino 
acid use. As an example, arginine has numerous 
roles in cellular metabolism, including the urea 
cycle, nitric oxide synthesis, and cell growth and 
healing processes, all important in functions that 
promote cancer (Lind, 2004).

KRT13 and DDX5

Rule # 19./Depth 3
(KRT13 ≤ 262.9)  (DDX5 ≤ 2804.7)
[acc: 97.6% cov: 57/61]

It has been postulated that proximity in gene 
loci for two or more genes in instances of similar 
expression patterns suggests related transcription 
control mechanisms. A change in the expression 
pattern of one gene then predicts the same direction 
of change in the other. Embedded in the rules that 
predict Stage 3 disease is a rule that predicts DDX5 
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to be below some threshold value when KRT13 is 
below some threshold value.

KRT13 is keratin 13, a cytoskeletal protein that 
functions in maintaining the integrity of the cell 
shape and may also function as a support in transla-
tion; DDX5 is a DNA unwinding protein that func-
tions in DNA replication. KRT13 is located at 17q12 
to 17q21.2, while DDX is located at 17q21. This 
suggests that the transcription of DDX5 is associated 
with transcription of KRT13. One could further 
postulate that the two are controlled together because 
the skeletal framework is expanded when a cell is 
preparing to undergo mitosis (cell division), which 
also requires DNA replication. Higher mitotic rates 
would lead to a larger tumor mass, and therefore a 
Stage III tumor. Interestingly, Massion and Carbone 
(2003) describe amplifi cations (increased numbers 
of copies of genes) in the 17q region of the genome 
(chromosome 17) associated with non-small cell 
lung cancer. This discovery using C45W-BCRI 
supports that association.

Further Steps Towards 
(Semi-) Automating Hypothesis 
Generation on Gene Pathways
We have illustrated in the previous section how 
induced rules and literature review combine to create 
hypotheses about gene interactions. Our longer term 
goals are to (semi-)automate this time-consuming 
process by interfacing BCRI rule discovery with prior 
knowledge in the form of pathway software tools.

We will focus here on C45W-BCRI rules that 
are refl ected in pathways based on existing knowl-
edge. We used both Metacore (Nikolsky et al. 
2005) Pathway Assist™ (Nikitin et al. 2003) to 
build the shortest pathways using gene expression 
attributes of the rules induced with C45W-BCRI 
as nodes. Using Pathway Assist™, which provides 
machine readable output, we identifi ed nodes in 
the pathways where we can automate hypothesis 
generation using this combination of induced and 
existing knowledge. We start here with an example 
in which there is evidence for a rule induced from 
C45W-BCRI using Pathway Assist™.

Example 1: In our C45W-BCRI Rule 8./1, we 
have

 8./1(ELA2 ≤ 163.3) & (SERPINA1 > 65) 
 (Stage = 3) [acc: 89.1% cov: 12/61] 

From C45W-BCRI we have induced that ELA2 
and SERPINA1 interact in a negative fashion to 

predict a Stage 3 presentation. Pathway Assist™ 
shows that ELA2 and SERPINA1 are tightly 
coupled nodes in which the protein products of 
these genes both bind together and also act to 
down-regulate one another’s gene expression (see 
Figure 3). Table 6 summarizes the pathway data 
in a machine readable format.

Our point here is that a semi-automated exam-
ination of the pathway relationship for the attri-
butes selected by BCRI would have identifi ed this 
rule as consistent with existing information. We 
present this example as a template upon which to 
build an automated conjunction of the BCRI output 
with a structured database such as Pathway Assist. 
The identifi cation of the actual nature of the rela-
tionship provides more information than simply 
an ontology look-up for each of the genes, which 
has been one of the preferred methods of inferring 
pathway information as a part of the analysis of 
gene expression array data. Once an interaction is 
identifi ed as already existing in the pathway data-
base, it can be automatically selected as a plausible 
hypothesis, that is that the interaction of these two 
genes plays a role in the outcome of interest.

Example 2: As a second example, consider Rule 
5./3,
 5./3 (FXN > 37.8)  (EIF2S1 > 52) 
 [acc: 97.6% cov: 57/61] 

Pathway Assist™ shows that FXN has an “unknown” 
effect on the molecular synthesis of heme, the 

SERPINA1 ELA2

Figure 3. Pathway Assist™ diagram showing SERPINA1 and ELA2 
relationships of Example 1. The protein products are indicated by 
the large ovals, a binding interaction is indicated by the purple dot 
relationship between the ovals, and gene expression regulation is 
indicated by a square along a dotted line.

Table 6. Details of Example 1 relationships given by 
Pathway Assist™.

Type Nodes Effect
Binding ELA2 ---- SERPINA1 
Regulation ELA2 ---| SERPINA1 negative
Regulation SERPINA1 ---| ELA2 negative
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interaction represented as a solid line with a square 
in Figure 4, and that heme, a small molecule 
depicted by the small, central oval, inhibits the 
gene expression of EIFS2. The interaction is 
summarized in Table 7.

From our C45W-BCRI rule, if we accept that 
elevated gene expression of FXN leads to elevated 
levels of its protein product frataxin, then we can 
infer that frataxin blocks the molecular synthesis 
of heme to results in elevated expression of EIFS2. 
Thus, the inductively derived rule, which might be 
tentatively abstracted as (FXN  EIF2S1, effect 
positive), together with (heme—|EIF2S1, effect 
negative) from prior knowledge, suggests that 
(FXN  heme, effect negative, in place of 
unknown). This example illustrates where induc-
tion can suggest fi llers for gaps in background 
knowledge.

Example 3: In Rule 19./3, 23 have from C45W-
BCRI

 19./3 (KRT13 ≤ 262.9)  (DDX5 ≤ 2804.7) 
 [acc: 97.6% cov: 57/61] 

KRT13 DDX5

assembl
e

and from Pathway Assist™ we have the diagram 
of Figure 5 and description of interactions in 
Table 8. The square labeled “assemble” represents 
a cell function of assembly, for example assembling 
a scaffold of fi lamentous proteins either into a 
structure for cell shape, or a scaffold upon which 
catalyzed reactions can take place.

We have already discussed that this rule is 
interesting from the perspective of the proximity 
of these two genes on chromosome 17. Taking a 
different approach and using Pathway Assist™, 
we see that both the protein product of KRT13 and 
of DDX5 have an unknown role in assembly. From 
the BCRI rule we see that low expression of KRT13 
predicts low expression of DDX5. Thus, we can 
hypothesize that there is a more tightly coupled 
relationship in the effect of KRT13 and DDX5 on 
assembly.

Summary
Knowledge discovery from data includes hypoth-
esis generation and hypothesis testing. There is a 
paucity of formal, (semi-) automated methods for 
hypothesis generation about gene interactions 
(e.g. Quackenbush, 2005). Gene expression 
microarray data, where hindered by the sparse 

Figure 5. Pathway Assist™ diagram of KRT13 and DDX5 relation-
ships of Example 3.

FXN

EIF2S1

hem
e

Figure 4. Pathway Assist™ diagram illustrating FXN and EIF2S1 
relationships of Example 2.

Table 7. Details of Example 2 relationships given by 
Pathway Assist™.

Type Nodes Effect
Regulation heme ---| EIF2S1 negative 
MolSynthesis FXN ---> heme unknown

Table 8. Details of relationships of Example 3 given by 
Pathway Assist™.

Type Nodes Effect
Regulation KRT13 ---> assemble unknown
Regulation DDX5 ---> assemble unknown
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number of samples, may lend itself better to 
hypothesis generation than prediction model 
building (e.g. Hoos and Cordon-Cardo, 2001; 
Anzick and Trent, 2002). We have investigated 
backward chaining rule induction as a strategy 
for limiting the search for associations to a 
manageable set of relationships to postulate 
governing gene networks in the context of lung 
cancer survival.

BCRI can be applied in other domains as well, 
by initiating the process with different top level 
goals/classes. Regardless of the context, the goal 
of BCRI is to limit hypothesis generation to a 
manageable set of relationships for expert scrutiny. 
Experts can then assess the plausibility of rules 
(uncovering mechanisms) and the utility of rules 
(discovering clinical applications).

Thus far, this is an exploratory study of one 
implementation of the BCRI paradigm. An evalu-
ation of the rules discovered suggests that condi-
tioning the space of associations that is searched 
on some meaningful, overriding task/classifi cation 
may better yield a rule set that is densely-populated 
with mechanistically plausible rules. Our prototype 
implementation of BCRI is not optimal from a 
time-cost standpoint. Furthermore, our current 
implementation using C4.5 appears to rarely fi nd 
what amounts to OR-nodes in a rule network. A 
non-greedy system such as Brute (Riddle et al. 
1994), could be used as RuleInducer, which would 
more liberally introduce OR nodes into the rule 
base, and thus would correspond to alternative, 
hypothesized pathways. Future work will look at 
other rule discovery systems as the core of BCRI, 
as well as more tightly couple the wrapper and core 
method to improve effi ciency.

Our evaluation strategy compares BCRI-induced 
interactions against prior knowledge. Future work 
will focus on exploiting prior knowledge (e.g. signal 
transduction and regulatory networks). We plan to 
map BCRI induced interactions onto known 
composites of signaling and regulatory networks, 
as described above in the Discussion but in a more 
(semi-)automated fashion.

We can also use this mapping to bias induction 
(Evans and Fisher, 2002; Ortega and Fisher, 1995) 
and supplement or revise, as needed, existing 
knowledge from induced knowledge (Mooney, 
1993) in a “systems biology” approach. To this 
effect, we have recently completed work using an 
iterative approach that uses the networks learned 
from BCRI combined with existing knowledge to 

discover modifi ers to known signaling networks 
that qualify their relevance to outcome in lung 
cancer patients (Frey et al. 2005). This approach 
could be especially effective in understanding the 
effectiveness of molecularly targeted therapies for 
lung cancer.

Finally, we will evaluate BCRI using other 
criteria. We realize that BCRI’s search through 
rule space will miss many associations. However, 
our goal is not to discover all the plausible rules 
that govern gene interactions, but to reduce them 
to a manageable number that is enriched for 
relevance to survival. Thus, we expect to have a 
high density of relevant rules using BCRI. One 
relevant comparison is against unsupervised 
association rule learners (Mannila, 2002) in terms 
of the number of rules learned, and the density of 
“interesting” rules, though this latter criterion may 
be diffi cult to formalize in a comparative study. 
We are also interested in comparing prediction 
accuracy of the rule network learned by BCRI 
against standard rule induction engines. To exploit 
the inference procedures of rule-based expert 
systems will require that we modify BCRI to 
produce rules that incorporate uncertainty (e.g. 
variance in antecedent thresholds, variance 
around accuracy point estimates of rules). Recent 
work by Waitman et al. (2003) provides guidance 
on how this can be done. Waitman et al (2006) 
also show how similarity between rules can be 
computed, and rules can be visualized in terms 
of this similarity metric using multidimensional 
scaling. The identifi cation of clusters in this visu-
alization may provide additional information to 
fi lter rules for expert scrutiny.

In summary, the inference possibilities of a rule 
network constructed through backward-chaining 
rule induction are intriguing. We emphasize that 
it is not our goal in this paper to evaluate the 
accuracy of BCRI-induced rule networks for 
predicting clinical outcome. As described in the 
Introduction to this paper, we address here the 
paradigm of discovering gene interactions that are 
operational within a survival class, and therefore 
are relevant to therapies targeted for that class. Our 
primary goal is a limited, focused exploration of 
the associations between variables. Hypothesis 
generation in high density data with an effectively 
infinite number of combinations to examine 
requires an automated, computer tool for searching 
the plethora of possible interactions, and presenting 
selected possibilities (e.g. selected by heuristics 
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involving accuracy and coverage, and heuristics 
relating to top-level outcomes of interest) to an 
expert analyst for comment and scrutiny.

As we stated at the start of this section, gene 
expression microarray data may lend itself better 
to hypothesis generation than prediction model 
building (e.g. Hoos and Cordon-Cardo, 2001; 
Anzick and Trent, 2002). BCRI as a data mining 
strategy has been developed in response to this 
paradigm, and not as a classifi er method. Validation 
of BCRI results comes from previous knowledge 
in the published literature and curated pathways 
databases, or from future bench level research. 
BCRI is not a tool for building a classifi er and 
therefore is not validated by testing its outcome on 
a separate test set. An interaction that has been 
previously described in the context of lung cancer 
survival can be considered as validated, if that 
knowledge support does exist. In most cases, the 
literature support is partial, and in other cases not 
existent at all. Thus, there is an ordering of the 
hypotheses generated from BCRI from those fully 
validated through partially validated to completely 
novel. With BCRI, we achieve our goal to devise 
a computer strategy that can explore a very large 
space of gene interactions, enriched for plausibility, 
and reduce them to a manageable set for human 
consideration and subsequent study.
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Appendix A

Adaptation of C4.5 for BCRI 
C4.5 is a well-known machine learning system for 
building a classifi er of if-then rules. An adaptation 
of C4.5 was used in the role of RuleInducer for 
our implementation of BCRI.

In particular, C4.5 builds a decision tree, illus-
trated in Figure 6, where each path of the decision 
tree corresponds to an if-then rule. For example, the 
rightmost path corresponds to the rule: IF (A = a3) 
AND (C > t) THEN Class = 1. A decision tree is a 
classifi er, meaning that every possible datum is 
classifi ed by (matches) one and only one path/rule. 
At the end of this section we will discuss how a 
C4.5-generated decision tree is adapted to the 
specifi cation of RuleInducer, but for now we focus 
on how C4.5 builds a decision tree from data.

C4.5 Overview
C4.5 is a recursive, greedy algorithm for building 
a decision tree from the top down. Starting with 
the empty decision tree and the set of training data, 
C4.5 must fi rst select the attribute that will be tested 
at the root of the fi nal decision tree. It selects that 
attribute with values that “best” predicts class with 
respect to the training data. For example, let’s 
assume that there are 100 training examples that 
were used to construct the tree of Figure 6. Further 
assume that these 100 examples are distributed 
jointly with respect to attribute A and Class as 
shown in Figure 7. Figure 7 shows, for example, 
that 40 examples total have value a1 for attribute 

A, and of these 40 examples, 30 are members of 
class 1 and 10 are members of class 2. Each value 
of attribute A predicts one class over another with 
varying degrees of certainty as assessed using the 
training data. 

In C4.5 the measure of “best” is based on an 
information-theoretic measure of entropy, which 
is minimized ideally. We will not detail this 
measure here, but we appeal to intuition that attri-
bute A scores well (small) in terms of entropy: each 
value of attribute A is associated with a class that 
dominates to varying degrees. In the very best case, 
entropy is minimal when each and every value of 
attribute is associated with members of one class 
only (e.g. as value a2 is in Figure 7).  In the worst 
case, entropy is maximal when each and every 
attribute is associated with equal numbers of 
members from each possible class (i.e. the attribute 
has no predictive value). 

In selecting the root attribute, the entropy of all 
attributes are measured and the one that minimizes 
C4.5’s entropy-based measure is selected. In our 
example, this is attribute A. Since attribute A has 
three values, the training data is partitioned by 
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Figure 7. Joint distribution of attribute A and Class
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Figure 6. A decision tree.
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these three different values, and for each subset, a 
recursive call is made to C4.5. For example in the 
leftmost branch, over the subset of data having 
A=a1, B is selected as the attribute that best predicts 
class within this subset. Note that B is a binary-
valued attribute, which is a special case of a 
nominal attribute (e.g. A), and entropy is computed 
in the same manner as with any other nominal 
attribute.

Assessing continuous attributes
Assessing continuous attributes requires special 
consideration in C4.5. In our example of Figure 6 
we show that attribute C is selected as the best 
attribute for the training data subset corresponding 
to A = a3. Attribute C is continuous and C4.5 selects 
a threshold, t, to divide the values of C. In partic-
ular, C4.5 sorts the values of C, and considers each 
median between two consecutive values as a 
possible threshold as illustrated in Figure 8. 

For each possible threshold the entropy is 
computed, and the threshold with the minimal 
entropy is selected. The entropy for this best 
threshold then serves as the entropy of the attribute, 
and is used in comparisons against the entropies 
of other candidate attributes. In our example of 
Figure 6, presumably attribute C thresholded at t 
had smaller entropy than any other attribute.

Terminating recursion
On each recursive call to C4.5, the best attribute 
for an increasingly small training data subset is 
selected until one or more termination conditions 
is satisfi ed. One termination condition is if all 

training data are members of the same class, as is 
the case with a2. Another termination condition is 
if the data subset currently being considered is less 
than a specifi ed number (e.g. 5). 

When a termination condition is satisfi ed, a leaf 
in the decision tree is created, which gives the class 
that dominates in the current subset of training 
data.

C4.5 Miscellany
C4.5 builds a decision tree as described above. It 
has a number of parameters available. In all cases 
we used default settings for these. In the option of 
the C4.5 package that we use, C4.5-rules, each path 
of the decision tree is then translated straightfor-
wardly into an if-then rule. There can be some 
additional massaging of these rules (e.g., a 
“pruning” operation), but we do not detail that 
process here. 

Importantly, the set of if-then rules that results 
contains rules with consequents across the possible 
classes. That is, there will be rules that predict both 
Class 1 and rules that predict Class 2 is the example 
of Figure 6. To satisfy the specifi cation of RuleIn-
ducer, only rules predicting TargetCondition are 
retained. The nonoptimality of the wrapper design 
that we are using currently stems from the need to 
call C4.5 multiple times, once to get the rules for 
Class 1 and once to get the rules for Class 2, even 
though these rules are both obtainable on one call. 
Again, the wrapper design choice stems from a 
desire to easily substitute in other rule induction 
systems, such as Brute, which learn rules specifi c 
to a TargetCondition and no others.

Values of C
C1 C25

t

Figure 8. Possible threshold values for a continuous attribute, C
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