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Abstract 

Background:  Indoor residual spraying (IRS) is an effective method to control malaria-transmitting Anopheles mosqui-
toes and often complements insecticide-treated mosquito nets, the predominant malaria vector control intervention. 
With insufficient funds to cover every household, malaria control programs must balance the malaria risk to a par-
ticular human community against the financial cost of spraying that community. This study creates a framework for 
modelling the distance to households for targeting IRS implementation, and applies it to potential risk prioritization 
strategies in four provinces (Luapula, Muchinga, Eastern, and Northern) in Zambia.

Methods:  Optimal network models were used to assess the travel distance of routes between operations bases 
and human communities identified through remote sensing. Network travel distances were compared to Euclidean 
distances, to demonstrate the importance of accounting for road routes. The distance to reaching communities for 
different risk prioritization strategies were then compared assuming sufficient funds to spray 50% of households, 
using four underlying malarial risk maps: (a) predicted Plasmodium falciparum parasite rate in 2–10 years olds (PfPR), 
or (b) predicted probability of the presence of each of three main malaria transmitting anopheline vectors (Anopheles 
arabiensis, Anopheles funestus, Anopheles gambiae).

Results:  The estimated one-way network route distance to reach communities to deliver IRS ranged from 0.05 to 
115.69 km. Euclidean distance over and under-estimated these routes by − 101.21 to 41.79 km per trip, as compared 
to the network route method. There was little overlap between risk map prioritization strategies, both at a district-by-
district scale, and across all four provinces. At both scales, agreement for inclusion or exclusion from IRS across all four 
prioritization strategies occurred in less than 10% of houses. The distances to reaching prioritized communities were 
either lower, or not statistically different from non-prioritized communities, at both scales of strategy.

Conclusion:  Variation in distance to targeted communities differed depending on risk prioritization strategy used, 
and higher risk prioritization did not necessarily translate into greater distances in reaching a human community. 
These findings from Zambia suggest that areas with higher malaria burden may not necessarily be more remote than 
areas with lower malaria burden.
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Background
Indoor residual spray (IRS) is an effective method to con-
trol the Anopheles mosquitoes that transmit malaria [1]. 
The intervention has helped drive success in decreas-
ing malaria transmission across sub-Saharan Africa 
[2, 3]. IRS is often seen as complementary to the use of 
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insecticide-treated mosquito nets (ITN), which is the 
predominant vector control intervention to prevent 
malaria transmission [3, 4].

In contrast to ITNs, which in 2011 cost an estimated 
$2.20 per year of protection delivered, IRS was much 
more expensive [5]. Using the chemicals DDT, pyre-
throids, deltamethrin, and lambdacyhalothrin, the cost of 
IRS was $6.70 per year of protection per household, with 
the cost of insecticide ranging from 29 to 81% of the total 
cost and minimal economies of scale [5]. With second 
generation ITNs and the drive for lower insecticides for 
IRS these prices have changed somewhat over the past 
10  years. Pyrethroids have decreased in cost substan-
tially over the past 25 years [6], but widespread insecti-
cide resistance threatens the long-term viability of using 
pyrethroids for malaria control [7–9]. Currently no alter-
native insecticides for ITNs are available for use at scale, 
although novel chemicals and dual-chemical ITNs are in 
various stages of development. Alternative insecticides 
for IRS are available but come at a greater cost than those 
of DDT, pyrethroids, deltamethrin, and lambdacyhalo-
thrin. Indeed, IRS programmes funded by the organiza-
tions such as the US President’s Malaria Initiative (PMI) 
have seen reductions in coverage due to the increasing 
cost of insecticide [10].

Often countries are faced with the challenge of insuffi-
cient funds to cover every household in malaria endemic 
areas, and as such are forced to determine which houses 
receive the intervention. Zambia’s National Malaria Elim-
ination Centre (NMEC) has encountered this challenge; 
in at least some areas health facility malaria incidence is 
used to prioritize areas to receive IRS [11]. Recent work 
suggests that using vector probability maps has greater 
impact on malaria transmission than human case data 
[12]. Other approaches have also been used to prioritize 

which areas receive IRS, but whichever methodology is 
used, malaria programmes must balance the malaria risk 
of a particular human community with the financial cost 
of spraying a particular human community.

The use of network modelling for optimizing the dis-
tribution of goods along road networks is commonly 
used for market analyses [13, 14], and has been applied in 
the health arena to least-cost routing for hospital access 
[15–17] and delivery of vaccines [18, 19]. Several authors 
have noted that a primary limitation to application of 
network modelling in the developing world is the avail-
ability of accurately mapped road networks [20, 21]. This 
article creates a framework for modelling the cost of IRS 
implementation and applies that framework to potential 
intervention prioritization strategies in Zambia.

Methods
Study area
Zambia lies in southern Africa and has a range of malaria 
transmission intensity, from pre-elimination status 
in Southern and Lusaka provinces, to intense malaria 
transmission in Luapula Province. The modern history 
of indoor residual spray (IRS) in Zambia began in 2003 
when the Government of the Republic of Zambia (GRZ) 
began spraying to complement the private sector’s IRS 
campaigns. Zambia’s approach is to support as many 
districts as possible with IRS, and resources often do 
not allow for complete coverage of districts. This study 
focuses on four provinces in the eastern part of the coun-
try: Luapula, Northern, Muchinga, and Eastern provinces 
(Fig. 1). Malaria indicator surveys estimate Plasmodium 
falciparum parasite prevalence rate to be > 25% and 
household ownership of at least one ITN > 50% in these 
areas at the time of the study [22].

Fig. 1  The location of a Zambia in Africa, and b the four provinces in this study L: Luapula, N: Northern, M: Muchinga, E: Eastern
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Community data
Technicians in Lusaka, Zambia digitized structures in 
Eastern, Luapula, Muchinga, and Northern province vis-
ible in publicly available satellite imagery as part of the 
planning process of IRS campaigns in 2015 and 2016, as 
has been described elsewhere [23]. Digitized structures 
were spatially aggregated into communities based upon 
distance between structures (< 50  m), and communities 
with fewer than 25 houses were deemed too small for IRS 
[11], and not included in the modelling presented here. 
In this study, IRS operation bases were assumed to be 
located at city/village centres, taken as point locations 
from Google Map Maker (see next section for details), 
totaling 236 city centre locations across the four prov-
inces in this analysis.

Road network data
Road network data were made available to this analy-
sis via Google Map Maker. While Google Map Maker 
was an openly collaborative resource during the course 
of this study, it was retired in March, 2017 [24, 25], and 
approved contributions merged with Google Maps. 
Google Map Maker data were chosen for this study due 
to more complete road network mapping than Open-
StreetMap (OSM) [26], or any other digital road map 
resource available at the time. For the four provinces, the 
mapmaker (MM) road file used in this study contained a 
total of 13,762,691.86 m of roads, in 21,082 polyline seg-
ments (average segment length 653 m). While MM road 
attributes describe ‘primary’ and ‘local’ roads separately, 
the absence of descriptors beyond identification meant 
that all roads in the network were treated equally.

Network analysis
For each province, the road network was converted to 
a network database in ArcGIS 10.1’s Network Analysis 
toolbox, and impedance was set in metres. The Closest 
Facility analysis in ArcGIS is based on Dijkstra’s algo-
rithm [27] to find the shortest path between two speci-
fied nodes on a network, thus providing optimal routing. 
This algorithm calculates the distance between all nodes 
on a network, along all possible routes, and then for each 
node pair, reports the minimum of those distances. In 
this analysis, the shortest route between each community 
centroid and its nearest city centre was returned.

The centroid for each digitized community served as a 
destination node on the network. As many of these were 
not located directly on the road network, a tolerance of 
inclusion in the network of 5000 m was set, both for the 
city centre locations and for the community centroid 
locations. Since the communities were not all within 

5000 m of the available road network, the network analy-
sis was conducted on a subset of actual communities and 
city centres, as described in Additional file 1: Table S1.

In addition to the network modelled route distance, 
because a tolerance of 5,000  m was set, the Euclidean 
distance from each community centroid to the nearest 
point on the nearest road in the network was added, and 
the distance along the optimal route plus distance to the 
nearest road was calculated, to estimate the total distance 
to the community centroid.

To examine the impact of modelling distribution routes 
as optimal network routes, rather than simple Euclidean 
distance routes between communities and their nearest 
city centres, the simple Euclidean distances were calcu-
lated, and compared to the network distances.

Establishing spatial malarial risk prioritization strategies
The distance framework was applied to two separate 
prioritization strategies based on underlying risk maps, 
namely: Plasmodium falciparum prevalence rate among 
kids aged 2–10  years old (PfPR2-10) from the Malaria 
Atlas Project (MAP), estimated for 2010 [28]; and MAP 
vector suitability for Anopheles gambiae, Anopheles 
funestus, and Anopheles arabiensis [29]. MAP estimates 
of both PfPR2-10 and vector suitability estimates are avail-
able from the malariaAtlas package in R [30]. Mean esti-
mates were extracted from raster files to community 
polygons, and aggregated to average values, using the 
Raster package [31, 32] in R version 3.3.2 [33].

Analysis
Two separate modelling strategies were employed, the 
“within district prioritization” and the “across district pri-
oritization”. The 50% prioritization approach was based 
on an assumption of budget limitations, not a coverage 
target for a programme. For the first strategy, half of all 
households within each district of the four provinces 
were targeted for IRS, with prioritization of communi-
ties based on one of the underlying risk maps. Second, 
half of all households across the four provinces were tar-
geted for IRS with the same risk map prioritization. Since 
IRS is administered by community, but this study aimed 
to cover 50% of all households, prioritization was con-
ducted by ranking communities in order of risk (high to 
low), and summing household numbers (counts within 
communities) from the top-ranked down, until 50% was 
exhausted. t-tests were used to determine differences by 
prioritization strategy and Kappa test scores were used 
to estimate the agreement between prioritization strate-
gies. To generate a measure of overall agreement between 
the different prioritization strategies the arithmetic mean 
between pair statistics was taken [34]. Stata version 13.1 
was used for these analyses.
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Results
Mapping prioritized targets to a road network
The road network data used in this study represents only 
around a third of visible roads and tracks on the ground 
(Ryan, unpublished) and, therefore, should be consid-
ered a primary road network, rather than a full road 
network. Among the 18,448 communities created in the 
enumeration and digitization process, 11,146 (60.4%) 
were captured to the incomplete road network. Of these 
communities, 3198 (28.7%) had at least 25 houses, which 
would put them in consideration for IRS, and were 
included in further analysis. There was minimal differ-
ence in risk estimates between communities included 
and excluded from this study, based on PfPR, An. arabi-
ensis, and An. funestus, and included communities had 
somewhat higher estimates of risk based on An. gambiae 
(Table 1).

Road network versus Euclidean routing
The differences between Euclidean (“straight-line”) and 
optimal road network route distances for each prov-
ince are shown as histograms in Fig.  2a–d. These show 
that both over and underestimates arise under a simple 
Euclidean distance modelled view, generating an overall 
range of a maximum of 41.79  km (overestimate) and a 
minimum of − 101.21 (underestimate) of the distance of 
a one-way route to deliver spray to a community.

Within district prioritization
In the first strategy examined, district-by-district com-
munity ranked prioritization, allocated IRS to the top 
50% risk households based upon use of the MAP risk 
approaches. As seen in Table  2, few communities were 
excluded from any prioritization strategy (6.9%) and 
few were included within all prioritization strategies 
(7.4%), indicating low levels of agreement among MAP 
risk strategies. In pairwise strategy comparisons, agree-
ment was statistically better than chance between PfPR 
and An. funestus risk, but no agreement between other 

prioritization strategies was observed (Additional 
file  1: Table  S2). The overall Kappa statistic of agree-
ment between the different prioritization strategies was 
− 0.039.

The distance to communities from a city centre to 
deliver IRS ranged from 0 to 115 km, with 75% of com-
munities located within 25  km of a city centre. Differ-
ences in distances to reach communities were higher in 
prioritized communities compared to non-prioritized 
communities for PfPR and An. funestus risk, and dis-
tances were lower in prioritized communities when 
based on An. gambiae risk (Table 3).

Across‑province prioritization
When considering deploying IRS across the entire four-
province study area, using the same MAP risk prioritiza-
tion approach, large variations are seen in the number 
of communities included by strategy, within province 
(Table  4), leading to high district-level variation in the 
allocation of IRS by strategy (Fig. 3).

Similarly to the district-by-district approach, there was 
large disagreement in communities covered between 
the different risk prioritization strategies. As seen in 
Additional file  1: Table  S3, very few communities were 
excluded from any prioritization strategy (3.1%) and 
even fewer were included in all the prioritization strate-
gies (2.6%). Comparing pairwise strategy sets, agreement 
was statistically better than chance between PfPR and 
An. funestus, PfPR and An. gambiae, and An. arabiensis 
and An. funestus. The overall Kappa statistic of agree-
ment between the different prioritization strategies was 
− 0.103 (Additional file 1: Table S4).

The optimal route distance to communities ranged 
from 53 m to 116 km, with 75% of communities 25 km or 
less from a city centre. Distance to communities were no 
different between prioritized and non-prioritized com-
munities for An. gambiae and PfPR prioritization, while 
prioritized communities were statistically nearer to city 

Table 1  Differences in  risk estimates (PfPR, An. arabiensis, An. funestus, An. gambiae) between  communities captured 
to road networks (included) and those not captured to road networks (excluded)

a   log-transformed for effect estimate

Mean value in non-captured 
communities

Mean value in captured 
communities

Difference between non-
captured and captured 
communities

PfPR 0.275 0.267 − 0.098

An. arabiensis 0.524 0.498 − 0.125

An. funestus 0.657 0.639 − 0.082

An. gambiae 0.345 0.433 0.405

Number of housesa 103 125 0.090
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Fig. 2  The range of differences in distance, for the four provinces (a–d) between Euclidean distance and optimal network route distance from city 
centres to nearest target community

Table 2  Number of  communities to  receive IRS, 
under  the  four risk prioritization strategies (PfPR, An. 
arabiensis, An. funestus, An. gambiae) when  spraying half 
of all households within each district

Number 
of communities

Percent 
of communities 
(%)

Prioritized by zero strategies 216 6.8

Prioritized by one strategy 1150 36.0

Prioritized by two strategies 2031 63.5

Prioritized by three strategies 1139 35.6

Prioritized by four strategies 232 7.3

Table 3  Mean distance to  communities from  city centre 
for  prioritized (A) and  non-prioritized (B) communities 
by different strategies, within each district (t-tests on  log-
transformed values)

N = 3198 communities

Strategy A (km) B (km) t-test P-value

PfPR 20.1 17.4 − 2.71 0.0068

An. arabiensis 19.1 18.9 − 0.45 0.6499

An. funestus 19.2 18.8 1.72 0.0853

An. gambiae 16.4 21.5 5.77 < 0.001
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centres based on An. arabiensis and An. funestus risk 
(Table 5).

Discussion
In this paper, models of allocating IRS were examined, 
using a combination of optimal network distributions 
based on road network routing, and spatial prioriti-
zation using risk maps estimating under 5 PfPR, and 
suitability for the three major Anopheline vectors 
implicated in malaria transmission in Zambia. Dif-
ferences were observed in the cost to prioritize com-
munities with higher estimates of PfPR and Anopheles 
species’ vector capacity, whether strategizing IRS appli-
cation district-by-district, or across the four provinces 
in the study. In many cases, reaching communities pri-
oritized by risk strategies did not differ significantly in 
cost from reaching non-prioritized communities, and 
were in some cases cheaper. Prioritizing communi-
ties for intervention at the provincial level rather than 
equally allocating coverage across districts led to vari-
ation in the proportion of houses receiving IRS at the 
district level, as shown in Fig.  3. The findings of this 
study suggest areas with higher malaria burdens may 
not necessarily be more remote than with lower malaria 
burdens.

Additionally, a complete lack of agreement in IRS 
allocation between PfPR and vector prioritization strat-
egies presents a challenge to malaria programmes, 
requiring programmes to pick which measure of risk 
is most appropriate given their context. Risk maps are 
not often used when planning malaria interventions 
[35], and there is little literature to suggest which pri-
oritization strategy has the most impact on reducing 
malaria. Further, these analyses utilized global risk 
maps of malarial risk indicators rather than local risk 
maps. The use of global risk maps can be considered 
both a strength and a limitation, with data availability 
being one of the primary strengths. Two of the most 
recent malaria risk maps in Zambia were subnational, 

and even sub-provincial, and so would not be useful for 
national IRS campaigns [36, 37]. These risk maps need 
to be validated on a larger scale before they can be use-
ful for malaria control programs. It remains to be seen 
whether localized, more specific risk maps have better 
agreement in prioritizing communities to receive lim-
ited IRS resources.

It has been noted by several authors that availability 
of accurately mapped road networks greatly limits the 
application of optimizing network routing models in the 
developing world [20, 21]. This study demonstrated the 
differences in estimating route distances between using 
simple Euclidian distance mapping, and network rout-
ing, suggesting this is an important gap to fill for effec-
tive planning for distribution programs of many kinds. In 
this comparison between these two distance estimation 
methods, it was shown that while the overestimates given 
by Euclidian distance range a substantial amount, in this 
particular case, overestimation errs in a conservative 
direction for operational planning. However, the under-
estimates, if part of multiple round trips, could rapidly 
amount to large unanticipated costs for spray operations.

In this study, the best available data were used, but 
results must be interpreted with the data limitations 
in mind. Forty percent of the communities enumerated 
were not captured by the network analysis because they 
were not within 5000  m of the road network and were, 
therefore, removed from further analyses. It is likely that 
the road network data is incomplete, rather than that 
these communities are indeed more remote than their 
counterparts nearer to the available road data. Indeed, 
there was no difference in malaria risk between captured 
and non-captured communities by any of the four meas-
ures used herein. Investment into geospatial data such 
as road networks would improve predictive modelling 
and precision public health delivery [38] of interventions 
such as IRS.

Further, while this study developed a robust model, 
there is always notable variability in IRS operations; for 
example, team size and number and location of opera-
tional bases may differ across a country context, and even 
within a province or district. It may be that the degree 
of this variability differs in harder to reach areas. While 
this model does not fully capture that variability, it offers 
a basis of comparison across the prioritization strategies 
and creates a framework for adding such complexity in 
the future. A caveat to note is that these are findings from 
one country, Zambia, and that while the methods may 
prove practical to assess IRS distribution in other coun-
tries, the results may differ due to differing population 
density and distribution, as well as transmission patterns.

Table 4  Number of  communities (and percent) included 
for IRS by prioritization strategy (A PfPR, B An. arabiensis, 
C An. funestus, D An. gambiae) when  spraying half of  all 
households across all four provinces

Province/
Strategy

A (%) B (%) C (%) D (%)

Eastern 391 (38.3%) 741 (72.5%) 895 (87.6%) 156 (15.3%)

Luapula 543 (77.5%) 196 (30.0%) 276 (39.4%) 512 (73.0%)

Muchinga 181 (33.0%) 310 (56.6%) 257 (46.9%) 273 (49.8%)

Northern 560 (59.1%) 164 (17.3%) 266 (28.1%) 593 (62.6%)
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Fig. 3  Percentage of communities receiving IRS in each district by prioritization strategy (a PfPR, b An. arabiensis, c An. funestus, d An. gambiae) 
when spraying half of all households across all four provinces 
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Conclusions
Areas with greater malaria burden or risk of malaria trans-
mission are not necessarily more costly to reach for inter-
vention delivery. A lack of agreement between different risk 
maps may be challenging for malaria control programmes 
deciding how to prioritize where to spend resources.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1293​6-020-03398​-z.

Additional file 1: Table S1. Number of city centre points and communi-
ties, and number included in network analyses, for the four study prov-
inces in Zambia. Table S2. Kappa statistics for prioritizing communities 
(N = 3218) between pairs of prioritization strategies, within each district. 
Table S3. Number of communities to receive IRS, as prioritized under the 
four strategies (PfPR, An. arabiensis, An. funestus, An. gambiae) when spray-
ing half of all households across all four provinces. Table S4. Kappa statistic 
for prioritizing communities (N = 3218) between pairs of prioritization 
strategies, when spraying half of all houses across all four provinces.

Abbreviations
IRS: Indoor residual spraying; ITN: Insecticide-treated mosquito net.

Acknowledgements
Not applicable.

Authors’ contributions
SJR and DL conceived of the analytical framework; SJR, DAL, and BW con-
ducted analyses; SJR, DAL, BW, ACM, AW wrote and edited the manuscript. All 
authors read and approved the final manuscript.

Funding
This work was funded by the President’s Malaria Initiative through the Africa 
Indoor Residual Spray program.

Availability of data and materials
The satellite enumerations used in these analyses are proprietary data owned 
by the Zambian Ministry of Health, and request to access these enumerations 
can be made to the Zambian Ministry of Health. All other data used in these 
analyses are publicly available.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Both the United States President’s Malaria Initiative and the Zambian National 
Health Research Authority reviewed the article before approving submission 
to a scientific journal.

Competing interests
The authors declare they have no competing interests.

Author details
1 Quantitative Disease Ecology and Conservation (QDEC) Lab, Department 
of Geography, University of Florida, Gainesville, FL 32611, USA. 2 Emerging 
Pathogens Institute, University of Florida, Gainesville, FL 32610, USA. 3 Akros, 
Lusaka, Zambia. 4 Department of Public Health, Syracuse University, Syracuse, 
NY 13210, USA. 5 University of Montana School of Public and Community 
Health Science, Missoula, MT, USA. 

Received: 27 April 2020   Accepted: 30 August 2020

References
	1.	 Pluess B, Tanser FC, Lengeler C, Sharp BL. Indoor residual spraying for 

preventing malaria. Cochrane Database Syst Rev. 2010;4:CD006657.
	2.	 O’Meara WP, Mangeni JN, Steketee R, Greenwood B. Changes in the bur-

den of malaria in sub-Saharan Africa. Lancet Infect Dis. 2010;10:545–55.
	3.	 Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. 

The effect of malaria control on Plasmodium falciparum in Africa between 
2000 and 2015. Nature. 2015;526:07–11.

	4.	 Kilian A, Koenker H, Paintain L. Estimating population access to insecti-
cide-treated nets from administrative data: correction factor is needed. 
Malar J. 2013;12:259.

	5.	 White M, Conteh L, Cibulskis R, Ghani A. Costs and cost-effectiveness of 
malaria control interventions - a systematic review. Malar J. 2011;10:337.

	6.	 Walker K. Cost-comparison of DDT and alternative insecticides for malaria 
control. Med Vet Entomol. 2000;14:345–54.

	7.	 Mnzava AP, Knox TB, Temu EA, Trett A, Fornadel C, Hemingway J, et al. 
Implementation of the global plan for insecticide resistance manage-
ment in malaria vectors: progress, challenges and the way forward. Malar 
J. 2015;14:173.

	8.	 Hemingway J, Ranson H, Magill A, Kolaczinski J, Fornadel C, Gimnig J, 
et al. Averting a malaria disaster: will insecticide resistance derail malaria 
control? Lancet. 2016;387:1785–8.

	9.	 Ranson H, Lissenden N. Insecticide resistance in African Anopheles 
mosquitoes: a worsening situation that needs urgent action to maintain 
malaria control. Trends Parasitol. 2016;32:187–96.

	10.	 Oxborough RM. Trends in US President’s Malaria Initiative-funded indoor 
residual spray coverage and insecticide choice in sub-Saharan Africa 
(2008-2015): urgent need for affordable, long-lasting insecticides. Malar J. 
2016;15:146.

	11.	 Pinchoff J, Larsen DA, Renn S, Pollard D, Fornadel C, Maire M, et al. Target-
ing indoor residual spraying for malaria using epidemiological data: a 
case study of the Zambia experience. Malar J. 2016;15:11.

	12.	 Larsen DA, Martin A, Pollard D, Nielsen CF, Hamainza B, Burns M, et al. 
Leveraging risk maps of malaria vector abundance to guide control 
efforts reduces malaria incidence in Eastern Province, Zambia. Sci Rep. 
2020;10:10307.

	13.	 Keenan PB. Spatial decision support systems for vehicle routing. Decis 
Support Syst. 1998;22:65–71.

	14.	 Nagy G, Salhi S. Heuristic algorithms for single and multiple depot vehicle 
routing problems with pickups and deliveries. Eur J Operational Res. 
2005;162:126–41.

	15.	 Derekenaris G, Garofalakis J, Makris C, Prentzas J, Sioutas S, Tsakalidis A. 
Integrating GIS, GPS and GSM technologies for the effective manage-
ment of ambulances. Comput Environ Urban Syst. 2001;25:267–78.

	16.	 Jones SG, Ashby AJ, Momin SR, Naidoo A. Spatial implications associated 
with using Euclidean distance measurements and geographic centroid 
imputation in health care research. Health Serv Res. 2010;45:316–27.

	17.	 Brabyn L, Skelly C, Barnett R, Joseph A, Phillips D, Kohli K, et al. Modeling 
population access to New Zealand public hospitals. Int J Health Geogr. 
2002;1:3.

	18.	 Lee BY, Connor DL, Wateska AR, Norman BA, Rajgopal J, Cakouros BE, et al. 
Landscaping the structures of GAVI country vaccine supply chains and 
testing the effects of radical redesign. Vaccine. 2015;33:4451–8.

Table 5  Mean distance to  spraying communities 
from  city headquarters for  targeted (A) and  untargeted 
(B) communities by  different strategies, across all four 
provinces (t-test on log-transformed values)

N = 3198 communities

Strategy A (km) B (km) t-test P-value

PfPR 19.7 18.1 1.51 0.1299

An. arabiensis 16.6 21.1 3.62 < 0.001

An. funestus 17.3 21.2 3.44 < 0.001

An. gambiae 19.3 18.7 0.56 0.5722

https://doi.org/10.1186/s12936-020-03398-z
https://doi.org/10.1186/s12936-020-03398-z


Page 9 of 9Ryan et al. Malar J          (2020) 19:326 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ?  Choose BMC and benefit from: 

	19.	 Brown ST, Schreiber B, Cakouros BE, Wateska AR, Dicko HM, Connor DL, 
et al. The benefits of redesigning Benin’s vaccine supply chain. Vaccine. 
2014;32:4097–103.

	20.	 Metcalf CJE, Tatem A, Bjornstad ON, Lessler J, O’Reilly K, Takahashi S, et al. 
Transport networks and inequities in vaccination: remoteness shapes 
measles vaccine coverage and prospects for elimination across Africa. 
Epidemiol Infect. 2014;143:1457–66.

	21.	 Linard C, Gilbert M, Snow RRW, Noor AMA, Tatem AJA, Carruthers R, et al. 
Population distribution, settlement patterns and accessibility across 
Africa in 2010. PLoS ONE. 2012;7:e31743.

	22.	 Government of the Republic of Zambia, Ministry of Health. Zambia 
National Malaria Indicator Survey 2012. Lusaka, Zambia; 2012. 120 pp 
(https​://www.malar​iasur​veys.org/docum​ents/Zambi​a_MIS_2012.pdf, 
accessed May 10th, 2020).

	23.	 Kamanga A, Renn S, Pollard D, Bridges DJ, Chirwa B, Pinchoff J, et al. 
Open-source satellite enumeration to map households: planning and 
targeting indoor residual spraying for malaria. Malar J. 2015;14:345.

	24.	 Google Product Forums. Google Map Maker graduates to Google 
Maps. 2016 Nov. Available: https​://produ​ctfor​ums.googl​e.com/forum​
/#!forum​/map-maker​.

	25.	 Google Product Forums. Map Maker update [February 2017]. 2017. https​
://produ​ctfor​ums.googl​e.com/forum​/#!topic​/map-maker​/5m7xL​siEFB​0.

	26.	 OpenStreetMap. 2018. https​://www.opens​treet​map.org. Accessed 15 Dec 
2018.

	27.	 Dijkstra EW. A note on two problems in connexion with graphs. Numer 
Math. 1959;1:269–71.

	28.	 Gething PW, Patil AP, Smith DL, Guerra CA, Elyazar IRF, Johnston GL, et al. 
A new world malaria map: Plasmodium falciparum endemicity in 2010. 
Malar J. 2011;10:378.

	29.	 Wiebe A, Longbottom J, Gleave K, Shearer FM, Sinka ME, Massey NC, et al. 
Geographical distributions of African malaria vector sibling species and 
evidence for insecticide resistance. Malar J. 2017;16:85.

	30.	 Pfeffer DA, Lucas TC, May D, Harris J, Rozier J, Twohig KA, et al. malariaAt-
las: an R interface to global malariometric data hosted by the Malaria 
Atlas Project. Malar J. 2018;17:352.

	31.	 Hijmans RJ. Introduction to the’raster’package (version 2.0-08). 2012.
	32.	 Hijmans RJ, van Etten J. raster: Geographic analysis and modeling with 

raster data. 2012.
	33.	 R Core Development Team. R: A Language and Environment for Statistical 

Computing. HttpwwwR-Proj. 2010.
	34.	 Cohen J. Weighted kappa: nominal scale agreement with provision for 

scaled disagreement or partial credit. Psychol Bull. 1968;70:213–20.
	35.	 Omumbo JA, Noor AM, Fall IS, Snow RW. How well are malaria maps 

used to design and finance malaria control in Africa? PLoS ONE. 
2013;8:e0053198.

	36.	 Pinchoff J, Chaponda M, Shields T, Lupiya J, Kobayashi T, Mulenga M, et al. 
Predictive malaria risk and uncertainty mapping in Nchelenge District, 
Zambia: evidence of widespread, persistent risk and implications for 
targeted interventions. Am J Trop Med Hyg. 2015;93:1260–7.

	37.	 Nikolov M, Bever CA, Upfill-Brown A, Hamainza B, Miller JM, Eckhoff PA, 
et al. Malaria elimination campaigns in the Lake Kariba Region of Zambia: 
a spatial dynamical model. PLoS Comput Biol. 2016;12:e1005192.

	38.	 Dowell SF, Blazes D, Desmond-Hellmann S. Four steps to precision public 
health. Nat News. 2016;540:189.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://www.malariasurveys.org/documents/Zambia_MIS_2012.pdf
https://productforums.google.com/forum/#!forum/map-maker
https://productforums.google.com/forum/#!forum/map-maker
https://productforums.google.com/forum/#!topic/map-maker/5m7xLsiEFB0
https://productforums.google.com/forum/#!topic/map-maker/5m7xLsiEFB0
https://www.openstreetmap.org

	Comparing prioritization strategies for delivering indoor residual spray (IRS) implementation, using a network approach
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusion: 

	Background
	Methods
	Study area
	Community data
	Road network data
	Network analysis
	Establishing spatial malarial risk prioritization strategies
	Analysis

	Results
	Mapping prioritized targets to a road network
	Road network versus Euclidean routing
	Within district prioritization
	Across-province prioritization

	Discussion
	Conclusions
	Acknowledgements
	References




