
sensors

Article

Memory-Replay Knowledge Distillation

Jiyue Wang 1,*, Pei Zhang 2 and Yanxiong Li 1

����������
�������

Citation: Wang, J.; Zhang, P.; Li, Y.

Memory-Replay Knowledge

Distillation. Sensors 2021, 21, 2792.

https://doi.org/10.3390/s21082792

Academic Editor: Marcin Wozniak

Received: 8 March 2021

Accepted: 9 April 2021

Published: 15 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Electronic and Information Engineering, South China University of Technology,
Guangzhou 510641, China; eeyxli@scut.edu.cn

2 School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China;
cszhangpei@mail.nwpu.edu.cn

* Correspondence: wang.jiyue@mail.scut.edu.cn

Abstract: Knowledge Distillation (KD), which transfers the knowledge from a teacher to a student
network by penalizing their Kullback–Leibler (KL) divergence, is a widely used tool for Deep Neural
Network (DNN) compression in intelligent sensor systems. Traditional KD uses pre-trained teacher,
while self-KD distills its own knowledge to achieve better performance. The role of the teacher in
self-KD is usually played by multi-branch peers or the identical sample with different augmentation.
However, the mentioned self-KD methods above have their limitation for widespread use. The
former needs to redesign the DNN for different tasks, and the latter relies on the effectiveness
of the augmentation method. To avoid the limitation above, we propose a new self-KD method,
Memory-replay Knowledge Distillation (MrKD), that uses the historical models as teachers. Firstly,
we propose a novel self-KD training method that penalizes the KD loss between the current model’s
output distributions and its backup outputs on the training trajectory. This strategy can regularize
the model with its historical output distribution space to stabilize the learning. Secondly, a simple
Fully Connected Network (FCN) is applied to ensemble the historical teacher’s output for a better
guidance. Finally, to ensure the teacher outputs offer the right class as ground truth, we correct the
teacher logit output by the Knowledge Adjustment (KA) method. Experiments on the image (dataset
CIFAR-100, CIFAR-10, and CINIC-10) and audio (dataset DCASE) classification tasks show that
MrKD improves single model training and working efficiently across different datasets. In contrast
to the existing fancy self-KD methods with various external knowledge, the effectiveness of MrKD
sheds light on the usually abandoned historical models during the training trajectory.

Keywords: Deep Neural Network; self-knowledge distillation; training trajectory; Knowledge
Adjustment; Fully Connected Network; image classification; audio classification

1. Introduction

Despite the appealing performance of the Deep Neural Networks (DNNs), as their
parameter size grows dramatically and consumes enormous computational resources [1–3],
there is a trend to use light but powerful models [4–7] to match the low-performance sensor
devices. With a carefully designed supernet space and model searching strategy, Neural
Architecture Search(NAS) techniques [8,9] can find proper models to fit various hardware
and sensor requirements (flops, memory).

Knowledge Distillation (KD) [10] is also a popular technique that has been investigated
quite intensively for model compression recently. KD compressed the knowledge from
the teacher model, which is a larger model or a set of multiple models, to a single small
student model. The teacher model is trained stand-alone beforehand. In the procedure of
student training, the teacher model’s parameters are frozen, and the Kullback–Leibler (KL)
divergence loss between their output probabilities is penalized. KD is applied to various
tasks. Cho et al. [11] used group sparsity regularization to improve student learning.
Park et al. [12] introduced channel and spatial correlation loss and the adaptive Cross-
Entropy (CE) loss for applying KD to semantic segmentation problem. Choi et al. [13]

Sensors 2021, 21, 2792. https://doi.org/10.3390/s21082792 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6372-5653
https://doi.org/10.3390/s21082792
https://doi.org/10.3390/s21082792
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21082792
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21082792?type=check_update&version=2

Sensors 2021, 21, 2792 2 of 20

investigated KD on serial number recognition task and applied the Bayesian optimization
method to automatically tune KD’s hyper-parameters. Chechlinski et al. [14] develop a
light system for weeds and crops identification with KD.

Besides model compression, KD can also improve network training, such as multiple
models collaborative learning [15–17], and single model self-KD [18–21]. Zhang et al. [18]
proposed a self-KD method that divides a single network into several sections and the
knowledge in the deepest classifier of the network is squeezed into the shallower ones.
Xu et al. [20] designed a more elegant self-KD mechanism to transfer knowledge between
different augmented versions of identical training data. As an online training method,
Self-KD is more suitable for applications on intelligent sensors with limited memory and
computational resources than the two-stage traditional KD method, which needs to train a
cumbersome teacher beforehand. However, the mentioned self-KD methods above have
their limitation for widespread use. Multi-branch KD methods [18,21] need to redesign the
DNN for different tasks, and the data-distortion methods [20,22] rely on the effectiveness
of the augmentation method.

The motivation of this article is to try to provide a universal KD approach that can be
combined with different DNNs and applied to different tasks with no extra modification.
The proposed self-KD method is called Memory replay Knowledge Distillation (MrKD),
illustrated in Figure 1 above. No extra model [15,16] or structure [18] is required in our
strategy: the knowledge is distilled from the model backups during the training trajectory.
The method is based on the assumption that a student can be improved by reflecting on his
own experience. In the training session, n model backups are used as teachers. In every
κ steps during the training procedure, the network backup n’ parameter θ̂n is updated as
backup n− 1, while θ̂n−1 is updated as θ̂n−2, and so on. Finally, θ̂1 is updated as the current
model parameters θ. Besides the traditional supervised learning CE loss, the averaged KL
loss between the current and the backup models will also be penalized for regularizing
the model to a more general solution. In the test session, since the label information is
unknown, the auxiliary KL loss with the corrected logits is abandoned. The network
predicts test data similar to a regularly trained network.

This model backup strategy is rarely used in conventional supervised learning but
is a common practice in the Deep Reinforcement Learning (DRL) method [23] for the
target network renewal. By offering a stable temporal q-value for the current network
training, the target network design is critical to DRL for achieving a robust network
and surpassing human-level control on Atari games. Similarly, in the supervised learning
problem, the whole stochastic gradient descent (SGD) training procedure can be regarded as
a Markov Chain trajectory sampled from a dynamic transition distribution parameterized
by learning rate, mini-batch size, sampling order, and the model weight initialization [24].
The diverse distribution of the model backup κ steps ago can be an informational reference
for the model to achieve a more general minimum.

Although it is convenient to use the training trajectory model backups as teachers,
these teachers have obvious flaws comparing to multiple model methods [15,16]: inac-
curacy and similarity. As we mentioned above, since the teachers are historical model
backups that are inevitably worse than the current student, the plain MrKD method may
degrade the student learning. Furthermore, because the teachers and the student belong to
the same training procedure, their similarity would also deteriorate the performance.

To relieve the disadvantages of MrKD above, we ensemble the backup teachers by a
simple Fully Connected Network (FCN). As Figure 1 shows, by ensembling the backup
output ligits, the FCN acts as the new teacher for the current student network training.
The student is trained with the CE loss and KL loss as MrKD, whereas the FCN is only
trained by the KL loss. The ensembling output is usually more accurate than the backup
outputs. Meanwhile, by re-processing the backup logits, FCN can decouple the similarity
between backups and the current student. In conclusion, MrKD-FCN can alleviate the
inaccuracy and similarity problems of MrKD. Additionally, we introduce the Knowledge
Adjustment (KA) [25] method to assure the maximum of each teacher logit is reached

Sensors 2021, 21, 2792 3 of 20

at ground truth label by swapping the value of the ground truth with the value of the
predicted class.

Backup 1

Backup 2

Backup n

Current
Network

Logit

Soft Output

KL Loss

CE LossHard Output One-hot
Ground Truth

FCN
...

Soft Output

Logit

... Trained
Network

CE LossHard Output One-hot
Ground Truth

Training

Test

Logit

Corrected
logit

Historical models

Ensemble
Knowlege Adjustment

Figure 1. The framework of our proposed memory replay Knowledge Method with Fully Connected Network and
Knowledge Adjustment.

The contributions of this work are summarized as follows:

1. We propose a new self-distillation method, MrKD, which distills knowledge from
the training trajectory model backups. By FCN ensembling and Knowledge Ad-
justment, MrKD offers reliable knowledge to improve the generalization of current
training network.

2. The Knowledge Adjustment method was originally used in static teacher-student KD
methods. For the first time, we apply KA in self-KD to reduce the misleading risk of
the imperfect teacher.

3. The proposed methods are evaluated exhaustively on image classification datasets
(CIFAR-100, CIFAR-10 [26], and CINIC-10 [27]) with various networks (ResNet [1],
WideResNet [28], ResNeXt [29]). We also conduct MrKD on audio datasets DCASE’18
acoustic scene classification (ASC) [30] and DCASE’20 Low Complexity ASC [31]. Our
experiments demonstrate that MrKD can help improve model training across different
network architectures and different datasets consistently.

Sensors 2021, 21, 2792 4 of 20

The remainder of the paper is organized as follows. In Section 2, we briefly review the
related work, and Section 3 describes the MrKD method. Section 4 shows the experimental
results, and Section 6 summarizes the whole work.

2. Related Work

Self-Knowledge Distillation : Furlanello et al. [15] proposed a Born Again Network
(BAN) that a teacher parameterized identically to the student can improve student training
significantly. For the next iteration of training, the trained student is set as the teacher.
However, the recurrent distillation of BAN requires high computation and storage costs.
Zhang et al. [18] divided a single network into several branches connected with extra
bottlenecks and densely connected layers to comprise multiple classifiers. Then the deepest
classifier acts as a teacher to guide the shallower branches learning by KL loss. Their
study of self-KD is promising; they claimed that the teacher branch improves the shallower
sections’ learning features. Ref. [21] deepened the shallower section’s bottleneck classifier
and applied mutual learning distillation instead of the teacher-student method and achieve
better performance. This improvement of MSD indicates that the self-distillation method
can be regarded as a Deep Mutual Learning (DML) [16] method of four peers with different
low-level weight sharing. We evaluate four-model DML directly and found comparable
results. Except with fewer parameters, this self-distillation method [18] can also be regarded
as a multi-model KD method as DML. These network remodeling or model ensembling
methods [18,32,33] have the limitation of generalization and flexibility.

Furthermore, there are other types of self-KD methods that do not need extra model
peers; we roughly categorize them as data-based and model backup-based self-KD. Data-
based self-KD tried to regularize the model output consistency of similar training sam-
ples, such as augmented data and original data [22], or samples from the same classes
(CS-KD [19]). However, the former method relies on the augmentation method’s efficacy,
and the latter needs a carefully designed training procedure. The model backup-based
self-KD is introduced in the next paragraph.

KD with historical models: Ref. [34] revealed that larger models are not making good
teachers because of capacity mismatching: small students cannot mimic large teachers. To
alleviate the capacity mismatching problem, Ref. [35] introduces multi-step KD, which
uses an intermediate-sized model (teacher assistant) to bridge the gap between the student
and teacher. Route Constrained Optimization (RCO) [36] supervises the student model
with some anchor points selected from the route in parameter space that the teacher pass
by, instead of the converged teacher model. Our MrKD method extracts the anchor points
progressively from the student itself during the training. Inspired by the fact that averaging
model weights over training steps tend to find a flatter solution [37], the Mean Teacher [38]
method distilled the knowledge from a teacher that averages successive steps model
weights and improved the performance of semi-supervised tasks. Ref. [39] fine-tuned the
BERT model in Natural Language Processing problems by distilling the knowledge of the
averaged weight parameter of κ recent steps. The recent time steps historical model KD
can help semi-supervised learning or model fine-tuning but scarcely improve common
classification problems.

As Figure 2b shows, Kim et al. [40] proposed Self-KD, which progressively distills a
model’s own knowledge one epoch ago to soften hard targets during training. Their work
also used the historical model, except that they use the historical model output to smooth
the one-hot ground truth instead of being a standalone teacher. Self-KD fixed the update
frequency κ to one epoch, while MrKD reveals that the model backups far away from the
current training can regularize supervised learning effectively. A properly tuned κ can
effectively improve the performance of MrKD.

Sensors 2021, 21, 2792 5 of 20

Current
Network

Teacher Prediction

Student Prediction

Peer Sample
 From Same Class

Current Sample

KL Loss

CE Loss One-hot
Ground Truth

(a) CS-KD

Backup

Current
Network

CE Loss

One-hot
Ground Truth

+

Mixed Label

Teacher Prediction

Student Prediction

(b) Self-KD

Backup

Current
Network

KL Loss

CE Loss
One-hot

Ground Truth

Teacher Prediction

Student Prediction

(c) MrKD

Figure 2. Simplified graphical illustration for different self-knowledge distillation methods. (a) Class-
wise self-Knowledge Distillation [19]; (b) self-Knowledge Distillation [21]; (c) memory replay Knowl-
edge Distillation.

Summary: Some of the typical KD methods mentioned above are summarized in
Table 1 with their implementation and computation complexity. MrKD has advantages in
every aspect. Firstly, as an online KD method, MrKD does not need to pre-train a teacher.
Secondly, since MrKD uses its own historical models, the parameters engaged do not need
to be doubled as other KD methods rely on peer output. Thirdly, MrKD only adjusts
some training procedures; the model structure is untouched. Finally, compared to the
collaborative KD method (DML and MSD), MrKD is a single model knowledge method
learning from its own backups; thus, MrKD only needs one backward propagation in one
training step. Overall, as a self-KD method, MrKD has many advantages for application
and is worthy of further study.

Sensors 2021, 21, 2792 6 of 20

Table 1. Summary of different Knowledge Distillation (KD) methods in implementation and compu-
tation complexity. Note that we adopt ’f’ and ’b’ as units to indicate the forward propagation and
backward propagation time of the student network. The results are shown with only one teacher
(Born Again Network—BAN and Memory-replay Knowledge Distillation—MrKD), peer (Deep
Mutual Learning—DML), or branch (MSD).

KD
Method

Need Pre-Trained
Teacher

#Parameters
Engaged

Need Model
Redesign

Training
Time Test Time

BAN [15] Yes 2× No 2f + 1b 1f
DML [16] No 2× No 2f + 2b 1f
MSD [21] No 1.75× Yes 2f + 2b 1f
MrKD No 1× No 2f + 1b 1f

3. Method

In this section, we first formulate the traditional knowledge distillation method
(Section 3.1). Next, we introduce the plain self-knowledge distillation method using histori-
cal models as teachers in Section 3.2. Then, we improve it by reprocessing the model output
logits with a fully connected network (Section 3.3) and knowledge adjustment (Section 3.4).
Finally, we summarize our proposed full MrKD method in Section 3.5.

3.1. Knowledge Distillation

We consider a standard classification problem. Given a training dataset D = {(xi, yi)}N
i=1,

where xi is the ith sample from M classes and yi ∈ {1, 2, . . ., M} is the corresponding label
of sample xi, the parameters θ of a deep neural network (DNN) that best fit to the dataset
need to be determined.

The softmax function is employed to calculate the mth class probability from a
given model:

pm(θ; τ) =
exp(zm(θ)/τ)

∑M
i=1 exp(zi(θ)/τ)

. (1)

Here zm(θ) is the mth logit output of the model’s fully connected layer. τ indicates
the temperature of softmax distribution normally set to 1 in traditional cross-entropy loss
but greater than 1 in knowledge distillation loss [10]. A larger τ means a softer probability
distribution that reveals more detail than a hard softmax output (τ = 1).

Firstly, for M-class classification, the traditional cross-entropy loss of a sample is
as follows:

LCE(p(θ; τ = 1), q) = −
M

∑
m=1

qmlog(pm(θ; τ = 1)), (2)

where qm is the mth element of one-hot label vector q. Note that the temperature τ is set
to 1.

In the KD method, a teacher network is trained beforehand. The parameter of the
pre-trained teacher is then frozen, and only forward-propagation is conducted during the
student training. The teacher outputs a corresponding logit zt. To transfer the knowledge
from the teacher model to the student, KL Divergence between their output probabilities
is penalized:

LKL(p(θt; τ)||p(θ; τ)) =
M

∑
m=1

pm(θ
t; τ)log(

pm(θt; τ)

pm(θ; τ)
), (3)

Here the temperature τ is a hyper-parameter need to be tuned, and the pm(θt; τ) is
obtained by Equation (1) with zm(θt). During training, the KD method calculates the sum
of two losses above with a hyper-parameter α:

LKD = (1− α)× LCE(p(θ; τ = 1), q) + α× τ2 × LKL(p(θt; τ)||p(θ; τ)), (4)

Sensors 2021, 21, 2792 7 of 20

where τ2 is a factor in ensuring that the relative contribution of the ground-truth label and
teacher output distribution remains roughly unchanged [10].

3.2. Knowledge Distillation with Historical Models

Unlike the traditional KD method above, the historical models during the training
trajectory can also help the current model training. Figure 3 shows the plain self-knowledge
distillation method without using the other two components. In every κ steps during the
training, the backup model weights θ̂ will be updated to the current model θ. The identical
structure model with parameter θ̂ is used as a teacher in Equation (4). Thus, the plain
MrKD loss is:

LMrKD−plain = (1− α)× LCE(p(θ; τ = 1), q) + α× τ2 × LKL(p(θ̂; τ)||p(θ; τ)). (5)

Backup 1

Backup 2

Backup n

Current
Network

Logit
Soft

Output KL Loss

CE Loss

Hard Output Ground Truth
 Label

Data

Figure 3. The framework of MrKD-plain without Fully Connected Network (FCN) ensemble
and Knowledge Adjustment (KA).

The proposed method can extend to n memory copies θ̂1, . . ., θ̂n, with κ training steps
interval. The KL loss in Equation (5) is substituted as:

LKL(p(θ̂1; τ), . . . , p(θ̂n; τ)||p(θ; τ)) =
1
n

n

∑
i=1

LKL(p(θ̂i; τ)||p(θ; τ)). (6)

The training procedure is shown in Algorithm 1. With every κ steps, all the model
copies’ parameters θ̂1, . . ., θ̂n, are updated recursively. In each step, a mini-batch d is
sampled and fed into the current model and its copies. With the models’ logit outputs
z(θ), z(θ̂1), . . ., z(θ̂n), we can get the probabilities of mini-batch d by Equation (1). Then the
loss is calculated by Equation (5). Finally, the current model parameters θ are updated
by SGD as Equation (7). Note that this algorithm can benefit from multiple GPU training.
If n+1 GPUs are available, where n is the number of copies, distributed forward pass can

Sensors 2021, 21, 2792 8 of 20

be implemented for n+1 models, then the training time will be identical to the standard
training method.

Algorithm 1 Self-Knowledge Distillation with Historical Models

Require: training set D, learning rate λt, kd loss ratio α, copy step interval κ, copy

amount n, temperature τ, total training steps T

Initilize: model parameters θ, θ̂1, . . ., θ̂n

for t = 1, . . ., T do

if (t mod κ) == 0 then

for i = n, . . ., 2 do

θ̂i := θ̂i−1

end for

θ̂1 := θ

end if

Sample a mini-batch of data d form D

Feed d to networks θ, θ̂1, . . ., θ̂n, and get the logits z(θ), z(θ̂1), . . ., z(θ̂n)

Compute the predictions p(θ;τ=1), p(θ;τ) , p(θ̂1;τ), . . ., p(θ̂n;τ) by Equation (1)

Compute loss LMrKD−plain (θ) by Equation (5)

Update θ with SGD

θ := θ − λt
∂LMrKD−plain

∂θ
(7)

end for

Output: θ

3.3. Fully Connected Network Ensemble

In MrKD-plain, the historical models, which are inevitably worse than the current
student, have the risk of degrading the student learning. Moreover, because the teachers
and the student belong to the same training procedure, the similarity between them would
also deteriorate the performance.

Overall, to deal with the inaccuracy and similarity issue of plain MrKD, we introduce
the FCN ensemble. Instead of adopting the training trajectory models’ outputs as teachers
directly in the previous section, the backup output logits ẑ1, ẑ2, . . . ẑn with size M * 1 are
concatenated as a single nM *1 feature vector and fed into a two-layers FCN. As Figure 4
shows, the FCN can further process the information that backups offered and output the
ensembled logit ẑens.

The parameter sizes of the two layers including the bias are (nM + 1)×M, (M + 1) ×M
respectively, where M is the number of classes. Thus, the total parameter number is
(nM + 1) ×M + (M + 1) ×M. For example, on the CIFAR-100 dataset which the class
number M is 100, and with n set to 3, the parameter size of FCN is 420. This small
parameter number is negligible comparing to the main deep neural networks, which
always have millions or billions of parameters. Thus, the FCN procedure consumes
negligible computational resources than the plain MrKD method.

Sensors 2021, 21, 2792 9 of 20

nM*1

M*1

FC (nM+1)*M

Concat

M*1 M*1 M*1

ReLU

FC (M+1)*M

M*1

M*1

n Logits

Output Logit

FCN

Figure 4. The framework of the Fully Connected Network.

3.4. Knowledge Adjustment

To further improve the teacher probability distribution, we adopt the Knowledge
Adjustment (KA) [25] method. Given the output zensemble(φ)of FCN, KA swaps the value of
ground truth (the theoretical maximum) with the value of predicted class (the predicted
maximum) and obtains the corrected logit zcorrect(φ). As shown in Figure 5 below, KA
assures the maximum of each logit is reached at the ground truth label.

0.242

0.216

Figure 5. Knowledge Adjustment of a wrong probability offered by an imperfect teacher. The distri-
bution is from a sample of the CIFAR-10 training dataset, whose ground truth label is ‘ship’, but the
teacher’s prediction is ‘car’. Their values are exchanged.

The KA method was originally used in static teacher-student KD methods for model
compression, where the teacher is pre-trained. Since the teacher always has a larger
capacity and is well trained before teaching the student learning. The teacher tends to
overfit the training set and rarely makes mistakes on it. Thus, KA helps marginally on
the traditional KD training. For online knowledge distillation like our method, where
the teacher accuracy is growing up as the student in the training procedure, the miss

Sensors 2021, 21, 2792 10 of 20

classification issue is more serious. In this case, KA is more critical to reduce the misleading
risk of the imperfect teacher.

3.5. Memory Replay Knowledge Distillation

Over all, the total loss of MrKD with FCN and KA is as folows:

LMrKD = (1− α)LCE(p(θ; τ = 1), q) + α× τ2LKL(pcorrect(φ; τ)||p(θ; τ)), (8)

note that pcorrect(φ; τ) is the soft target of zcorrect(φ) obtain by Equation (1). Additionally,
the parameter φ for FCN is also trained by the second term of Equation (8).

The training procedure of our proposed MrKD with Fully Connected Network
and Knowledge Adjustment is shown in Algorithm 2. The different part comparing
to Algorithm 1 is highlighted in bold. With the backups’ logit outputs z(θ), z(θ̂1), . . ., z(θ̂n),
we can get the ensembled logit zensemble(φ). Then the zcorrect(φ) is obtained by Knowledge
Adjustment refer to ground truth label p. Based on the logit values, we can get the prob-
abilities p(θ; τ = 1), p(θ;τ) , pensemble(φ; τ) of mini-batch d by Equation (1) and the loss is
calculated by Equation (8). Finally, the current model parameters θ and the FCN parameter
φ are updated by SGD as Equations (9) and (10) respectively. Note that this algorithm can
still benefit from multiple GPU training as mentioned in Section 3.2.

Algorithm 2 Memory Replay Knowledge Distillation

Require: training set D, learning rate λt, kd loss ratio α, copy step interval κ, copy

amount n, temperature τ, total training steps T

Initilize: model parameters θ, θ̂1, . . ., θ̂n, φ

for t = 1, . . ., T do

if (t mod κ) == 0 then

for i = n, . . ., 2 do

θ̂i := θ̂i−1

end for

θ̂1 := θ

end if

Sample a mini-batch of data d and label p form D

Feed d to networks and get logits z(θ), z(θ̂1), . . ., z(θ̂n)

Feed z(θ̂1), . . ., z(θ̂n) to Fully Connected Network and get logits zensemble(φ)

Correct the value zensemble(φ) to zcorrect(φ) refer to label p by Knowledge Adjustment

method

Compute the predictions p(θ;τ=1), p(θ;τ) , pensemble(φ; τ) by Equation (1)

Compute loss LMrKD (θ) by Equation (8)

Update θ and φ with stochastic gradient descent:

θ := θ − λt
∂LMrKD

∂θ
(9)

φ := φ− λt
∂LMrKD

∂φ
(10)

end for

Output: θ

Sensors 2021, 21, 2792 11 of 20

4. Experiments

In this section, we conduct experiments to evaluate MrKD on five datasets for image
and audio classification: CIFAR100, CIFAR10 [26], CINIC10 [27] DCASE’18 ASC [30]
and DCASE’20 Low Complexity [31]. For a fair comparison, all results on the same
dataset are obtained with the identical setting. We implement the networks and training
procedures in PyTorch and conduct all experiments on a single NVIDIA TITAN RTX
GPU. Besides baseline and MrKD, we also provide the results of two peer self-knowledge
distillation methods, self-KD [40] and MSD [21], that are introduced in Section 2.

4.1. CIFAR-100

The CIFAR-100 [26] dataset consisted of 50,000 training images and 10,000 test 32 ×
32 color images in 100 classes, with 600 images per class in total. A random horizontal
flip and crop with 4 pixels zero-padding weere carried out for data augmentation in the
training procedure. The networks used below were implemented as their official papers
for 32 × 32 images, including ResNet [1], WideResNet [28], ResNeXt [28]. See Figure 6.

leopard train fox pickup_truck snail wolf castle cockroach

Figure 6. Samples from the CIRFAR-100 dataset. Upper: original image. Lower: augmented image.
The labels from left to right: leopard, train, fox, truck, snail, wolf, castle, and cockroach.

For all runs, including the baselines, we trained a total epoch of 200, with batch size
128. The initial learning rate of 0.1 decreased to zero with linear annealing. The SGD
optimizer was used with a weight decay of 0.0001, and momentum was set to 0.9. We
averaged the last epoch results of four runs for all presented results because choosing the
best epoch results was prone to benefiting unstable and oscillating configurations.

Experimental results are shown in Table 2. The best result for every network is in bold.
It can be observed in Table 2 that MrKD improved the baseline consistently. With historical
model teachers’ knowledge, MrKD decreased the error rate from 1.03% to 1.96% on the
CIFAR100 test set. Although MSD obtained competitive results for some networks, we
argue that MSD was a multi-branch method that needed to redesign each of the networks.
On the other hand, self-KD, which smoothed the one hot label by a historical teacher,
reduced the error rate not as significantly as MSD and MrKD.

Table 2. Test error rate comparison on CIFAR-100 [26] dataset (mean(± standard deviation), in %).

Model #Parameter Baseline Self-KD [40] MSD [21] MrKD

ResNet-32 [1] 0.5M 30.08 (±0.57) 28.15 (±0.28) 28.31 (±0.18) 28.12 (±0.27)
ResNet-56 0.9M 27.76 (±0.24) 26.24 (±0.35) 26.18 (±0.27) 26.23 (±0.16)
ResNet-110 1.7M 25.79 (±0.44) 24.91 (±0.62) 25.38 (±0.35) 24.76 (±0.15)
ResNet-164 1.7M 23.46 (±0.31) 21.85 (±0.33) 21.72 (±0.22) 22.12 (±0.21)
WRN-16-8 [28] 11.0M 20.35 (±0.37) 19.33 (±0.51) 19.34 (±0.18) 19.12 (±0.16)
WRN-28-10 36.5M 19.60 (±0.22) 18.71 (±0.35) 18.56 (±0.16) 18.32 (±0.09)
ResNeXt-29, 8×64d [29] 34.5M 18.57 (±0.24) 17.55 (±0.31) 17.46 (±0.25) 17.23 (±0.18)

Influence of each component: We empirically demonstrate the influence of MrKD
with each component. Table 3 shows that the plain historical model distillation without
FCN ensemble and Knowledge Adjustment could improve the networks from 0.6% to
1.2%. The FCN ensemble could decrease the error rate further by around 0.4–0.7%. Finally,

Sensors 2021, 21, 2792 12 of 20

compared to MrKD without KA, the full MrKD method showed more improvement when
the networks went deeper. We argue that a deeper network was more sensitive to the
correctness of the teacher distribution. Thus ResNet-164 and WRN-28-10 benefited more
from KA than their shallower siblings.

Table 3. Test error rate comparison on CIFAR-100 [26] dataset with different components. The ’w\o’
stands for ‘without’.

Model #Parameter Baseline MrKD w/o MrKD w/o MrKD
FCN and KA KA

ResNet-32 [1] 0.5M 30.08 28.85 28.17 28.12
ResNet-56 0.9M 27.76 26.74 26.02 26.23
ResNet-110 1.7M 25.79 25.17 24.79 24.76
ResNet-164 1.7M 23.46 22.85 22.46 22.12
WRN-16-8 [28] 11.0M 20.35 19.63 19.24 19.12
WRN-28-10 36.5M 19.60 19.01 18.58 18.32

Update frequency κ: The critical hyper-parameter for the MrKD method was the
model backups’ update frequency κ. Following the setting in Section 3.1, we evaluated
MrKD with different κ on the CIFAR-100 dataset within the range of {1/391, 4/391, 10/391,
40/391, 0.25, 1, 2.5, 10, 25, 50, 100, 200}. Note that the unit of κ was the epoch. As the
batch size we set was 128 on CIFAR-100, the total iteration of an epoch was 391; thus,
the κ = 10/391 meant we updated the copies every 10 steps, and κ = 200 means that we
never updated the copies during the 200 epochs training. Overall, the range selected above
covered the frequency from updating in each step to never renewing the copies during the
whole training procedure. The widest range allowed us to observe the influence of update
frequency κ thoroughly. The control variates method was used below to show the result,
which meant that we set other hyper-parameters to the optimal value except for the one
we wanted to evaluate.

In Figure 7, we can see that if the step interval of the model backups was quite
small, the error rate rose because the copy was too similar to the current model, then the
regularization would not be helpful and may stumble the current model from learning.
On the other hand, if the step was too large, the copies would be worse and lagging, then
MrKD would also mislead and destabilize the learning. In conclusion, two ambivalent
factors influenced the performance of MrKD while κ was changing: accuracy and diversity.
For high accuracy, we needed to be updated the copies frequently, while for diversity,
the copies needed to be far from the current model.

The shallower model (ResNet56) was relatively insensitive to κ. On ResNet110 and
ResNet164, we can see clearly in Figure 7 that the optimum value of κ was 25. The short
standard deviation bars indicated that the optimal values were very stable. These optimal
values of κ were out of our expectation because updating copies every 25 epochs meant
more than a 10% rise of training error than the current model. The large update step
interval indicated that diversity was more important than accuracy.

Copy amount n: Figure 8 demonstrates the influence of more model backups being
available. For ResNet-110 and ResNet-164, the performance gain was saturated with around
three historical models. However, on shallower networks ResNet-56, more improvement
was obtained with five copies. A similar trend could be found from multiple model
distillation methods [15–17]. As our experiments showed in Sections 4.1–4.3, setting
copies to three was a reasonable choice that could achieve significant improvement, yet,
for shallower networks, more than three copies were worth trying for further improvement
if computation resources were sufficient.

Sensors 2021, 21, 2792 13 of 20

Figure 7. Performance on CIFAR-100 with different update frequency κ.

Figure 8. Performance on CIFAR-100 with different copy amount n.

Fully Connected Network: For the Fully Connected Network, we only used the KL
loss to update the parameters. Table 4 shows the loss options. Compared to the baseline,
the plain CE loss improved the least. The KL loss between the FCN output and the model
output decreased the error rate by 0.3% to 0.5%. The combination of CE and KL loss
obtained similar results as KL loss only. We used the KL loss for ensembling only as of the
online KD methods [41,42].

Sensors 2021, 21, 2792 14 of 20

Table 4. Test error rate comparison on CIFAR-100 [26] with different loss setting (mean (± standard
deviation), in %).

Model #Parameter Baseline CE loss KL loss CE+KL loss

ResNet-56 0.9 M 27.96 (±0.42) 26.64 (±0.15) 26.33 (±0.16) 26.42 (±0.16)
ResNet-110 1.7 M 25.97 (±0.39) 25.21 (±0.23) 24.76 (±0.15) 24.89 (±0.14)
ResNet-164 1.7 M 23.66 (±0.31) 22.55 (±0.25) 22.12 (±0.21) 22.02 (±0.16)

To determine the depth of FCN, we evaluated different layers for CIFAR-100 classifi-
cation. Note that layers = 0 indicates the logits were averaged evenly with no parameter
in FCN. As illustrated in Figure 9, MrKD achieved the optimal improvement when layer
number equals two. With fewer layers, the FCN was be too simple to conduct the model
copy logits. With the network going too deep, the FCN was prone to overfit the training
set and impair the performance of MrKD.

Figure 9. Performance of MrKD on CIFAR-100 with different depth FCN.

4.2. CIFAR-10 and CINIC-10

In CIFAR-10 [26] dataset experiments, the official divide of training data and test data
was used, consisting of 50,000 images and 10,000 images, respectively, with a resolution
of 32 × 32. As Figure 10 shows, the CINIC-10 [27] dataset was an extended version of
CIFAR-10. It contained all images from the CIFAR-10 dataset and derived 210,000 images
downsampled to 32 × 32 from the ImageNet dataset. Like CIFAR-100 implementation,
a random horizontal flip and crop with four pixels zero-padding was for the training set.
For CIFAR-10 and CINIC-10, we used the same hyper-parameters as on CIFAR-100 to keep
universality. We believed that there would be better results on both datasets through a
thorough search than we report in this paper.

Tables 5 and 6 show similar improvements as in Table 2. MrKD improved the network
error rates of CINIC-10 from 0.70 % to 1.24% and improved CIFAR-10 from 0.50% to 0.61%.
Compared to the performance on CIFAR-100, it should be noted that self-KD performs
better on 10-class classification datasets, which were more manageable and had less error
rate gap between the training set and test set. Especially on the CIFAR-10 dataset, self-KD
outperformed our method on WRN-16-8 and ResNeXt-29 network. We argue that the
networks distilled less information on 10-class datasets problems. Furthermore, the gap
between the test and training error rate on CIFAR10 was much lower than on CIFAR100;

Sensors 2021, 21, 2792 15 of 20

then, KD methods’ generalization effect was not significant. In this case, the smoothed
target of self-KD may have become more effective than KD loss in MSD and MrKD.plane, ship, bird, dog, car, cat, horse, and
deer [0, 8, 2, 5] [1, 3, 7, 4]

Figure 10. Samples from the CINIC-10 dataset. Upper: inherit from the CIFAR-10 dataset. Lower:
extended from ImageNet dataset. The labels from left to right: plane, ship, bird, dog, car, cat, horse,
and deer.

Table 5. Test error rate comparison on the CINIC-10 [27] dataset (mean(± standard deviation), in %).

Model #Parameter Baseline Self-KD [40] MSD [21] MrKD

ResNet20 [1] 0.3M 17.86 (±0.21) 16.88 (±0.23) 16.75 (±0.09) 16.62 (±0.08)
ResNet32 0.5M 16.63 (±0.17) 15.61 (±0.27) 15.76 (±0.08) 15.55 (±0.14)
ResNet56 0.9M 15.44 (±0.20) 14.75 (±0.16) 14.91 (±0.07) 14.74 (±0.07)
WRN-16-8 [28] 11.0M 11.85 (±0.16) 11.09 (±0.09) 11.12 (±0.09) 11.15 (±0.06)
ResNeXt-29, 8 × 64d [29] 34.5M 11.35 (±0.15) 10.25 (±0.22) 10.33 (±0.15) 10.17 (±0.10)

Table 6. Test error rate comparison on the CIFAR-10 [26] dataset (mean(± standard deviation), in %).

Model #Parameter Baseline Self-KD [40] MSD [21] MrKD

ResNet20 [1] 0.3M 7.61 (±0.16) 7.27 (±0.25) 7.14 (±0.15) 7.08 (±0.15)
ResNet32 0.5M 6.53 (±0.14) 6.26 (±0.15) 6.18 (±0.17) 5.96 (±0.15)
ResNet56 0.9M 6.14 (±0.19) 5.62 (±0.13) 5.73 (±0.09) 5.58 (±0.21)
WRN-16-8 [28] 11.0M 4.42 (±0.14) 3.75 (±0.22) 3.88 (±0.10) 3.81 (±0.11)
ResNeXt-29, 8 × 64d [29] 34.5M 4.11 (±0.19) 3.51 (±0.09) 3.66 (±0.08) 3.61 (±0.06)

4.3. DCASE Datasets

Acoustic scene classification (ASC) is a regular task in the Detection and Classification
of Acoustic Scene and Event (DCASE) challenge. The objective of ASC is to categorize the
short audio samples into predefined acoustic scene classes using the supervised learning
method. In this section, the proposed MrKD is evaluated on two ASC datasets. The results
presented are obtained by the official development dataset train/test split in which 70% of
the data for each class is included for training, 30% for testing.

DCASE’18 ASC [30]: The dataset contained 8640 audio segments of 10-s length, where
6122 clips were included in the training set and 2518 clips in the test subset. The 10 acoustic
scenes were airport, shopping mall, metro station, pedestrian street, public square, street,
traveling by tram, bus and underground, and urban park. As Figure 11 shows, the 10-s
audio clips were down-sampled to 22.05 kHz. For feature extraction, the perceptually
weighted Mel spectrograms were computed similar to Koutini et al. [43]. The result was a
256 × 431 tensor with 256 Mel frequency bins and 431 frames.

DCASE’20 Low Complexity ASC [31] was a three-class supervised learning dataset
that comprised 14 ,400 segments of 10-second length. The data were recorded from 10
acoustic scenes as with DCASE’18 ASC and summarized into three categories, indoor,
outdoor, and transportation. As Figure 12 shows, the feature extraction procedure was
the same as the DCASE’18 ASC experiment. We chose this dataset because it was a low
complexity three-class classification task and required the model parameter less than the
500 KB size limit.

Sensors 2021, 21, 2792 16 of 20

airport, park, shopping mall, bus

Figure 11. The 10-s audio clips from DCASE’18 ASC [30]. Left: the raw waveform data. Right: the
corresponding log Mel spectrogram. The acoustic scenes from top to down: airport, park, shopping
mall, bus.

 transportation traveling by tram
indoor metro station
outdoor park

Figure 12. The 10-second audio clips from DCASE’20 Low Complexity ASC [31]. Left: the raw
waveform data. Right: the corresponding log Mel spectrogram. The acoustic scenes from top to
down: transportation (traveling by tram), indoor (metro station), outdoor (park).

For both datasets, the presented baselines are the corresponding model trained with
only regular classification cross-entropy loss. For DCASE’18 ASC, the network CP-ResNet
from Koutini et al. [44] was used as the baseline to evaluate the methods proposed in this
paper. We ran a total epoch of 200, with batch size 10. The learning rate was set to 0.0001
and decreased to zero with linear decay. The SGD optimizer was used with a momentum

Sensors 2021, 21, 2792 17 of 20

of 0.9 and zero weight decay. The classification accuracy was used as the measure of
the performance, and all the results reported below were averaged over four runs. We
also report the result of CP-ResNet combined with Mixup [45], which is a widely used
augmentation method in ASC tasks. For DCASE’20 Low Complexity ASC, the baseline of
self-KD methods was frequency damping [44]. A similar training setup was used as for
DCASE’18 ASC.

As Table 7 shows, MrKD improved both CP-ResNet and the combination with Mixup
by 1.06% and 0.53%, respectively. Although our method improved the baseline perfor-
mance, no significant improvement was shown comparing to the second-best results of
other self-KD methods in Table 7. Note that MSD obtained similar result as our method
on CP-ResNet but failed to get improvement when combining with Mixup. We argue
that Mixup was a strong augmentation method. In this case, the knowledge offered by
standalone peers was no longer helpful, while the similarity of the student and historical
model in MrKD made our method effective. Self-KD obtained less improvement on CP-
ResNet, both with or without Mixup, than ours. To make this conclusion more concrete, we
performed the t-test of the equality of means hypothesis between the results of self-KD and
ours. The level of confidence of rejection without and with Mixup was 98.9% and 91.5%,
respectively.

Table 7. Test accuracy comparison on DCASE’18 acoustic scene classification (ASC) [30] dataset.

Model #Parameter Baseline Self-KD [40] MSD [21] MrKD

CP-ResNet [43] 3.57M 77.26 78.08 78.26 78.32
+Mixup [45] 3.57M 79.99 80.28 79.03 80.52

The evaluation on DCASE’20 Low Complexity ASC is shown in Table 8. The accuracy
drop of baseline with Mixup indicated that as a strong label-mixing augmentation method,
Mixup was not effective when the accuracy gap between training set and test set was small.
Similar to DCASE’18 ASC, although MSD obtained similar improvement as MrKD on
Freq-damp, it failed to improve the combination with Mixup. Self-KD and MrKD obtained
improvement consistently on DCASE’20 Low Complexity ASC, while MrKD had higher
means. The rejection confidence of the equality of means hypothesis was 97.7% and 98.9%,
without and with Mixup, respectively. Particularly, MrKD achieved better performance on
DCASE’20 Low Complexity ASC when combined with Mixup augmentation. As illustrated
in Figure 1, since our method MrKD redesigned the training procedure and did not modify
the final student network, the 500 KB size limit of DCASE’20 Low Complexity ASC was
still satisfied.

Table 8. Test accuracy comparison on DCASE’20 Low Complexity ASC [31] dataset .

Model #Parameter Baseline Self-KD [40] MSD [21] MrKD

Freq-damp [44] 0.25M 97.05 97.22 97.32 97.34
+Mixup [45] 0.25M 96.65 97.37 96.84 97.52

5. Discussion

We investigate MrKD, a self-knowledge distillation method with historical mod-
els for improving the DNN classification tasks. Three components are involved in our
method: MrKD-plain, FCN ensemble, and Knowledge Adjustment. As the ablation study
in Section 4.1 shows, MrKD-plain with only historical model replay boosts the performance
most. FCN ensemble can reduce the classification error rate in a certain extent. Knowl-
edge Adjustment makes more obvious progress on deeper networks. The experiment on
CIFAR-10 (Table 6) shows that when the error rate gap between training and test set is
small, the mixture of backup output and ground truth label in self-KD [40] may perform
better than standalone KL loss in MrKD. The difference between self-KD and MrKD is
shown in Figure 2.

Sensors 2021, 21, 2792 18 of 20

If one wants to apply the proposed method to other classification problems, it is
necessary to modify the FCN network size for the different class amounts. We determine
the update frequency κ to be 25 epochs with a simple grid search with the total epoch set as
200. Some problems may need more or less total epoch to train. If the total epoch for training
is changed, the update frequency needs to adjust proportionally for optimal performance.

Moreover, one can process the multiple feed-forward propagations of MrKD in parallel.
Since the time cost by communication, FCN ensemble, and KA is negligible compared
to the forward and backward propagation, the training time will be similar to typical
classification solutions with CE loss. However, each extra GPU will cost identical memory
as the current student. If only one GPU is available, each model backup will cost an extra
25% of training time for its forward propagation, empirically. In this case, each backup’s
extra memory cost is only 2.5% since the GPU only needs to keep one graph structure for all
models, and the specific value of each parameter occupies only a small amount of memory.
Note that all the analysis above is for the training procedure. For testing or deployment of
a trained student network, since the teacher model is abandoned and only the student is
used for prediction, the computational cost is identical to a regularly trained model.

The historical models during training trajectory are always considered useless and
abandoned immediately after the current model parameters are updated. However, this
paper insists on the idea proposed by Self-KD [40]. That is, historical models can also help
the current model training by knowledge distillation. Instead of the backup’s output logits,
other types of knowledge which have been investigated in traditional KD methods may
also be mined from the model backups in future work, such as weights regularization,
intermediate layer outputs [46], or attention maps [47,48]. Furthermore, Knowledge Ad-
justment is proved to be useful in MrKD and may generalize to other online KD methods in
which the teacher is prone to make mistakes in the earlier training stage, such as DML[16],
CS-KD[19], MSD [21].

6. Conclusions

To low-capacity sensor devices, knowledge distillation is an essential technique for
model compression. Furthermore, self-knowledge distillation can improve the supervised
learning model training directly without the pre-trained teacher in traditional KD methods.
In this paper, we propose a simple but effective self-KD method without external knowl-
edge. Adopting model parameter backups as the teachers of self-distillation, MrKD can
improve classification problems. Experimental results show that MrKD can decrease the
classification error rate of DNN architectures (ResNet, WideResNet, ResNeXt) on image
datasets (CIFAR-100, CINIC-10, CIFAR-10) effectively from 0.50% to 1.96%. MrKD also
improves the audio classification DCASE’18 ASC and DCASE’20 Low Complexity ASC
tasks with 0.3% to 1.0% accuracy raise. The results above indicate that MrKD can improve
both image and audio supervised-learning tasks consistently.

The ablation study on CIFAR-100 shows that Fully Connected Network ensembling
and Knowledge Adjustment are two useful components for MrKD.

Author Contributions: Conceptualization, J.W.; methodology, J.W.; experiments implementation, J.W.
and P.Z.; experiments design, J.W. and Y.L.; formal analysis, J.W.; investigation, J.W. and P.Z.; writing—
original draft preparation, J.W.; writing—review and editing, P.Z. and Y.L.; visualization, J.W., Y.L.;
supervision, Y.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by National Natural Science Foundation of China (NSFC)
(61571192, 61771200).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

Sensors 2021, 21, 2792 19 of 20

2. Huang, G.; Liu, Z.; Pleiss, G.; Van Der Maaten, L.; Weinberger, K. Convolutional Networks with Dense Connectivity. IEEE Trans.
Pattern Anal. Mach. Intell. 2019. [CrossRef]

3. Chen, Y.; Li, J.; Xiao, H.; Jin, X.; Yan, S.; Feng, J. Dual path networks. Adv. Neural Inf. Process. Syst. 2017, 4467–4475.
4. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient

Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.
5. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 4510–4520.

6. Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching
for MobileNetV3. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea,
27–28 October 2019; pp. 1314–1324.

7. Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In Proceedings of
the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 116–131.

8. Liu, H.; Simonyan, K.; Yang, Y. DARTS:Differentiable Architecture Search. arXiv 2018, arXiv:1806.09055.
9. Tan, M.; Le, Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th

International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; Chaudhuri, K., Salakhutdinov, R., Eds.;
Volume 97, pp. 6105–6114.

10. Hinton, G.; Vinyals, O.; Dean, J. Distilling the Knowledge in a Neural Network. arXiv 2015, arXiv:1503.02531.
11. Cho, J.; Lee, M. Building a Compact Convolutional Neural Network for Embedded Intelligent Sensor Systems Using Group

Sparsity and Knowledge Distillation. Sensors 2019, 19, 4307. [CrossRef] [PubMed]
12. Park, S.; Heo, Y.S. Knowledge Distillation for Semantic Segmentation Using Channel and Spatial Correlations and Adaptive

Cross Entropy. Sensors 2020, 20, 4616. [CrossRef] [PubMed]
13. Choi, E.; Chae, S.; Kim, J. Machine Learning-Based Fast Banknote Serial Number Recognition Using Knowledge Distillation and

Bayesian Optimization. Sensors 2019, 19, 4218. [CrossRef] [PubMed]
14. Chechlinski, L.; Siemiątkowska, B.; Majewski, M. A System for Weeds and Crops Identification—Reaching over 10 FPS on

Raspberry Pi with the Usage of MobileNets, DenseNet and Custom Modifications. Sensors 2019, 19, 3787. [CrossRef]
15. Furlanello, T.; Lipton, Z.C.; Tschannen, M.; Itti, L.; Anandkumar, A. Born Again Neural Networks. In Proceedings of the

International Conference on Machine Learning, Stockholm Sweden, 10–15 July 2018.
16. Zhang, Y.; Xiang, T.; Hospedales, T.M.; Lu, H. Deep Mutual Learning. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018.
17. Gao, L.; Lan, X.; Mi, H.; Feng, D.; Xu, K.; Peng, Y. Multistructure-Based Collaborative Online Distillation. Entropy 2019, 21, 357.

[CrossRef]
18. Zhang, L.; Song, J.; Gao, A.; Chen, J.; Bao, C.; Ma, K. Be Your Own Teacher: Improve the Performance of Convolutional Neural

Networks via Self Distillation. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul,
Korea, 27 October–2 November 2019.

19. Yun, S.; Park, J.; Lee, K.; Shin, J. Regularizing Class-Wise Predictions via Self-Knowledge Distillation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020.

20. Xu, T.B.; Liu, C.L. Data-Distortion Guided Self-Distillation for Deep Neural Networks. Proc. AAAI Conf. Artif. Intell. 2019, 33,
5565–5572.

21. Luan, Y.; Zhao, H.; Yang, Z.; Dai, Y. MSD: Multi-Self-Distillation Learning via Multi-classifiers within Deep Neural Networks.
arXiv 2019, arXiv:1911.09418.

22. Hendrycks, D.; Mu, N.; Cubuk, E.D.; Zoph, B.; Gilmer, J.; Lakshminarayanan, B. AugMix: A Simple Data Processing Method to
Improve Robustness and Uncertainty. arXiv 2019, arXiv:1912.02781.

23. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]

24. Mandt, S.; Hoffman, M.D.; Blei, D.M. Stochastic Gradient Descent as Approximate Bayesian Inference. arXiv 2017,
arXiv:1704.04289.

25. Wen, T.; Lai, S.; Qian, X. Preparing Lessons: Improve Knowledge Distillation with Better Supervision. arXiv 2019,
arXiv:1911.07471.

26. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images; Technical report; University of Toronto: Toronto,
ON, Canada, 2009.

27. Darlow, L.N.; Crowley, E.J.; Antoniou, A.; Storkey, A.J. CINIC-10 is not ImageNet or CIFAR-10. arXiv 2018, arXiv:1810.03505.
28. Zagoruyko, S.; Komodakis, N. Wide Residual Networks. arXiv 2016, arXiv:1605.07146.
29. Xie, S.; Girshick, R.B.; Dollár, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural Networks. In Proceedings

of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017;
pp. 5987–5995.

30. Mesaros, A.; Heittola, T.; Virtanen, T. A multi-device dataset for urban acoustic scene classification. In Proceedings of the
Detection and Classification of Acoustic Scenes and Events 2018 Workshop (DCASE2018), Surrey, UK, 19–20 November 2018; pp.
9–13.

http://doi.org/10.1109/TPAMI.2019.2918284
http://doi.org/10.3390/s19194307
http://www.ncbi.nlm.nih.gov/pubmed/31590266
http://dx.doi.org/10.3390/s20164616
http://www.ncbi.nlm.nih.gov/pubmed/32824456
http://dx.doi.org/10.3390/s19194218
http://www.ncbi.nlm.nih.gov/pubmed/31569340
http://dx.doi.org/10.3390/s19173787
http://dx.doi.org/10.3390/e21040357
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670

Sensors 2021, 21, 2792 20 of 20

31. Heittola, T.; Mesaros, A.; Virtanen, T. Acoustic scene classification in DCASE 2020 Challenge: Generalization across devices and
low complexity solutions. In Proceedings of the Detection and Classification of Acoustic Scenes and Events 2020 Workshop
(DCASE2020), Tokyo, Japan, 2–3 November 2020.

32. Song, G.; Chai, W. Collaborative learning for deep neural networks. arXiv 2018, arXiv:1805.11761.
33. Lan, X.; Zhu, X.; Gong, S. Knowledge distillation by on-the-fly native ensemble. arXiv 2018, arXiv:1806.04606.
34. Cho, J.H.; Hariharan, B. On the Efficacy of Knowledge Distillation. arXiv 2019, arXiv:1910.01348.
35. Mirzadeh, S.I.; Farajtabar, M.; Li, A.; Levine, N.; Matsukawa, A.; Ghasemzadeh, H. Improved Knowledge Distillation via Teacher

Assistant. arXiv 2019, arXiv:1902.03393.
36. Jin, X.; Peng, B.; Wu, Y.; Liu, Y.; Liu, J.; Liang, D.; Yan, J.; Hu, X. Knowledge Distillation via Route Constrained Optimization.

In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November
2019.

37. Izmailov, P.; Podoprikhin, D.; Garipov, T.; Vetrov, D.; Wilson, A.G. Averaging Weights Leads to Wider Optima and Better
Generalization. arXiv 2018, arXiv:1803.05407.

38. Tarvainen, A.; Valpola, H. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised
deep learning results. In Advances in Neural Information Processing Systems 30; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H.,
Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017; pp. 1195–1204.

39. Xu, Y.; Xu, Y.; Qian, Q.; Li, H.; Jin, R. Towards Understanding Label Smoothing. arXiv 2020, arXiv:2006.11653.
40. Kim, K.; Ji, B.; Yoon, D.Y.; Hwang, S. Self-Knowledge Distillation: A Simple Way for Better Generalization. arXiv 2020,

arXiv:abs/2006.12000.
41. Chen, D.; Mei, J.P.; Wang, C.; Feng, Y.; Chen, C. Online Knowledge Distillation with Diverse Peers. Proc. AAAI Conf. Artif. Intell.

2020, 34, 3430–3437.
42. Wu, G.; Gong, S. Peer Collaborative Learning for Online Knowledge Distillation. arXiv 2020, arXiv:2006.04147.
43. Koutini, K.; Eghbal-zadeh, H.; Dorfer, M.; Widmer, G. The Receptive Field as a Regularizer in Deep Convolutional Neural

Networks for Acoustic Scene Classification. In Proceedings of the European Signal Processing Conference (EUSIPCO), A Coruna,
Spain, 2–6 September 2019.

44. Koutini, K.; Henkel, F.; Eghbal-Zadeh, H.; Widmer, G. Low-Complexity Models for Acoustic Scene Classification Based on
Receptive Field Regularization and Frequency Damping. In Proceedings of the Detection and Classification of Acoustic Scenes
and Events 2020 Workshop (DCASE2020), Tokyo, Japan, 2–3 November 2020; pp. 86–90.

45. Zhang, H.; Cisse, M.; Dauphin, Y.N.; Lopez-Paz, D. mixup: Beyond Empirical Risk Minimization. arXiv 2018, arXiv:1710.09412.
46. Romero, A.; Ballas, N.; Ebrahimi Kahou, S.; Chassang, A.; Gatta, C.; Bengio, Y. FitNets: Hints for Thin Deep Nets. arXiv 2014,

arXiv:1412.6550.
47. Zagoruyko, S.; Komodakis, N. Paying More Attention to Attention: Improving the Performance of Convolutional Neural

Networks via Attention Transfer. arXiv 2017, arXiv:1612.03928.
48. Aguilar, G.; Ling, Y.; Zhang, Y.; Yao, B.; Fan, X.; Guo, E. Knowledge Distillation from Internal Representations. Proc. AAAI Conf.

Artif. Intell. 2020, 34, 7350–7357.

	Introduction
	Related Work
	Method
	Knowledge Distillation
	Knowledge Distillation with Historical Models
	Fully Connected Network Ensemble
	Knowledge Adjustment
	Memory Replay Knowledge Distillation

	Experiments
	CIFAR-100
	CIFAR-10 and CINIC-10
	DCASE Datasets

	Discussion
	Conclusions
	References

