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Global use of pneumococcal conjugate vaccines (PCVs) with increasingly broader serotype coverage has helped to reduce the 
burden of pneumococcal disease in children and adults. In clinical studies comparing PCVs, higher-valency PCVs have met 
noninferiority criteria (based on immunoglobulin G geometric mean concentrations and response rates) for most shared 
serotypes. A numeric trend of declining immunogenicity against shared serotypes with higher-valency PCVs has also been 
observed; however, the clinical relevance is uncertain, warranting additional research to evaluate the effectiveness of new 
vaccines. Novel conjugation processes, carriers, adjuvants, and vaccine platforms are approaches that could help maintain or 
improve immunogenicity and subsequent vaccine effectiveness while achieving broader protection with increasing valency in 
pneumococcal vaccines.
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Streptococcus pneumoniae is a leading cause of morbidity and 
mortality worldwide, especially in children <5 years of age [1, 
2]. There are approximately 100 pneumococcal serotypes, a 
small proportion of which are responsible for most infections 
[3]. Pneumococcal conjugate vaccines (PCVs), routinely used 
in children ≥2 months of age, contain pneumococcal polysac
charides of serotypes responsible for most invasive pneumo
coccal disease (IPD) worldwide (Table 1, Figure 1). PCV use 
has been associated with a substantial reduction in the inci
dence of pediatric IPD caused by vaccine serotypes [4, 6, 9, 
15, 16]. This reduction occurs via direct protection of vaccinat
ed individuals and indirect protection of those unvaccinated 
through a decrease in nasopharyngeal carriage and subsequent 
transmission, particularly among vaccinated children [17]. 
However, nonvaccine serotypes contribute to an ongoing 

burden of pneumococcal disease, suggesting that PCVs with 
broader serotype coverage are needed.

Increasing serotype valency in new PCVs can lead to reduced 
immunogenicity, which may affect vaccine effectiveness (VE). 
However, this may not be initially apparent when licensure is 
based on immunobridging studies. These head-to-head studies 
compare the immunologic responses of a new, extended- 
valency PCV against a previously licensed PCV by using estab
lished correlates of efficacy that are based on antibody concen
trations. The antibody concentrations identified as a correlate 
are used to infer similar efficacy against disease. In clinical tri
als, new PCVs are typically evaluated by comparing immuno
genicity with previous PCVs because efficacy studies are 
generally not feasible [18]. A vaccine-induced serotype-specific 
immunoglobulin G (IgG) antibody level of 0.35 µg/mL—de
rived as a correlate of protection for IPD from 3 efficacy studies 
conducted with the 7-valent PCV (PCV7; Prevnar, Wyeth LLC, 
Pfizer)—is a widely accepted threshold for regulatory approval 
[19, 20]. Noninferiority of immune responses induced by a new 
PCV as compared with an established one, based on the pro
portion of participants with antibody levels of 0.35 µg/mL per 
serotype, as well as serotype-specific IgG antibody geometric 
mean concentration (GMC) ratios, has been used in lieu of ef
ficacy studies in infants [18]. PCVs licensed according to im
munobridging have been comparators for subsequent PCVs, 
creating a “bridge to a bridge.” As noninferiority analyses allow 
a margin of difference between PCVs, ongoing comparison of 
immunogenicity between a new investigational PCV and a li
censed PCV that had shown lower immune responses in other 
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comparator studies with older PCVs may lead to lower anti
body levels. This reduction could lead to decreased VE if the 
antibody levels do not maintain a protective threshold.

This literature review examines published data on the immu
nogenicity of current PCVs, investigating the possible impact 
of increasing PCV valency on immune response and its poten
tial clinical significance. Furthermore, we explore new vaccine 
technologies that may maintain or improve immunogenicity 
while achieving broader protection with increasing valency.

IMMUNOGENICITY OF PCVs

Immunogenicity Based on Noninferiority Criteria

Noninferiority results from key phase 3 trials comparing the 
immunogenicity of higher- and lower-valency PCVs are pre
sented in Table 2. Studies used a 3 + 1 or 2 + 1 dosing schedule, 
and most assessed noninferiority at 1 month after the primary 
series whereas some assessed noninferiority at 1 month after 
the toddler dose. Interstudy comparisons are not made, as 
IgG enzyme-linked immunosorbent assays vary significantly 
across studies and any differences may not be clinically or stat
istically significant [28, 29].

Per World Health Organization (WHO) guidance, noninfer
iority of a higher- vs lower-valency PCV is based on the confi
dence intervals for the difference in IgG response rate 
(proportion of participants achieving a serotype-specific GMC 
threshold, usually ≥0.35 μg/mL) or IgG GMCs, although exact 
criteria can vary by study. Noninferiority is assessed per serotype: 
WHO guidance states that meeting either the predefined nonin
feriority criteria for IgG response rates or GMCs should be ade
quate for approval. Table 2 shows serotypes for which 
noninferiority criteria were not met in trials comparing higher- 
and lower-valency vaccines. WHO guidance also states that meet
ing noninferiority requirements for every serotype in a vaccine is 
not an absolute requirement [18]. As such, some trials have in
cluded an overall noninferiority objective requiring a predefined 
number of serotypes to meet noninferiority criteria [1, 21].

Noninferiority against serotype 6B was not met for 13-valent 
PCV (PCV13; Prevnar 13, Wyeth LLC, Pfizer) vs PCV7 after 

administration of the primary series across 2 studies [22, 23] 
and for 10-valent PCV (PCV10; Synflorix, GlaxoSmithKline 
Inc) [7] vs PCV7 after the administration of primary series in 
1 study [21]. Responses to serotype 6B may be influenced by 
the infant immunization schedule used [30, 31]; however, all 
3 studies assessed a 3 + 1 schedule. Although noninferiority 
was not assessed after the toddler dose, 95% CIs of the IgG 
GMCs for serotype 6B after the toddler dose did not overlap 
for the 2 study vaccines in 2 studies [21, 23], suggesting persis
tent differences in immunogenicity to this serotype between the 
vaccines. Serotype 6B may require a lower threshold than the 
standard 0.35 μg/mL for protection against IPD, with 1 study 
estimating a threshold of 0.16 μg/mL (95% CI, .08–2.54) for 
this serotype [32].

In 1 study comparing 15-valent PCV (V114, Vaxneuvance; 
Merck Sharp & Dohme LLC, a subsidiary of Merck & Co, 
Inc) with PCV13, noninferiority was missed with the higher- 
valency vaccine by a narrow margin for 1 serotype (serotype 
6A). However, noninferiority based on IgG GMC ratio after 
dose 4 and IgG response rate was achieved [24].

Other Immunogenicity Outcomes

Several differences in absolute serotype-specific IgG GMC be
tween higher- and lower-valency vaccines have been observed, 
based on 95% CIs [1, 21–27, 33]. As these data are descriptive, 
the statistical and clinical significance of numeric differences 
between vaccines cannot be determined. Higher-valency vac
cines had lower GMCs for certain serotypes across several stud
ies. Exceptions to this observation include serotype 19F, for 
which GMCs were frequently lower with PCV7 vs PCV10 
[21, 33], and serotype 3, for which response rates and GMCs 
were often statistically significantly lower with PCV13 than 
V114 in pivotal trials [24–26]. Differences between PCVs 
may be related to vaccine design; for example, PCV10 utilizes 
different carrier proteins and conjugation chemistry and con
tains lower concentrations of pneumococcal polysaccharides 
(Table 1). Unique features of the serotype 3 capsular polysac
charide, including a high rate of capsular shedding, are a chal
lenge for the induction of vaccine-elicited immune responses to 

Table 1. Overview of PCVs

Vaccine Name Marketed Name Approval Year Age Indication Amount of Serotype per Dose Carrier Protein References

PCV7 Prevnar 2000 ≥2 mo 2.0 µg for each except 6B (4.0 µg) CRM197 [4, 5]

PCV10 Synflorix 2011 ≥6 wk–5 y 1.0 µg for each except 4, 18C,  
and 19F (3 µg each)

Protein D, except for 18C (tetanus  
toxoid) and 19F (diphtheria toxoid)

[6–8]

PCV13 Prevnar 13 2010 ≥6 wk 2.2 µg for each except 6B (4.4 µg) CRM197 [5, 9]

PCV15 (V114) Vaxneuvance 2021 ≥6 wk 2.0 µg for each except 6B (4.0 µg) CRM197 [10–12]

PCV20 Apexxnar 2021 ≥18 y 2.2 µg for each except 6B (4.4 µg) CRM197 [13, 14]

Prevnar 20 2023 ≥6 wk

Aluminum phosphate was the adjuvant for each vaccine.  

Abbreviations: CRM, cross-reacting material; PCV7, 7-valent pneumococcal conjugate vaccine; PCV10, 10-valent pneumococcal conjugate vaccine; PCV13, 13-valent pneumococcal conjugate 
vaccine; PCV20, 20-valent pneumococcal conjugate vaccine; V114, 15-valent pneumococcal conjugate vaccine.
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this serotype [34, 35]. During the development of V114, these 
features were considered with a goal of maximizing active tar
gets against serotype 3, which may be the reason behind more 
robust immune responses to serotype 3 after vaccination with 
V114 than PCV13 across pediatric and adult populations.

In this review, differences between higher- and lower- 
valency vaccines were rarely observed for opsonophagocytic 
activity (OPA) response rates, suggesting that functional anti
body responses may be conserved. OPA responses have an im
portant role in evaluating pediatric PCV trials and are 
frequently incorporated into analyses of immunogenicity. 
OPA assays mimic host immune responses, reflecting the abil
ity of neutralizing antibodies to opsonize S pneumoniae and 
promote phagocytosis [36]. Immunogenicity against some se
rotypes was numerically lower with higher-valency vaccines 
for OPA geometric mean titers and their ratios [1, 21–25, 33, 
37]. However, specific correlates of protection for OPA have 
not been established in children [20]. OPA is not used as a pri
mary endpoint in pediatric studies and is often performed only 
in subsets of participants owing to serum volume requirements. 
This differs from adult studies, in which OPA is considered the 
principal basis for comparison [38].

RELATIONSHIPS BETWEEN MEASURES OF 
PCV-INDUCED IMMUNOGENICITY AND CLINICAL 
EFFECTIVENESS

Immunologic Thresholds of Protection

Certain serotypes may require higher concentrations of 
serotype-specific IgG to provide adequate protection against 
IPD. Based on data from England and Wales, among PCV13 
serotypes, serotype-specific thresholds were highest for sero
types 3 (2.83 μg/mL), 19F (1.17 μg/mL), and 19A (1.00 μg/mL) 
[32]. The amount of capsular polysaccharide required to inhibit 
antibody-dependent bacterial killing has been shown to be con
siderably lower for serotype 3 vs 4 [34]. Serotype 3 also releases 
a greater amount of capsular polysaccharide than other sero
types, including serotypes 1, 4, 6B, and 14 [34]. This may result 

because serotype 3 polysaccharide is noncovalently attached 
to the bacterial surface, increasing shedding and thus reducing 
the ability of anticapsular antibodies to bind to the bacterial 
surface to induce killing [39]. Serotype 19F may require 6-fold- 
higher antibody concentrations to achieve 50% opsonophago
cytic killing when compared with serotype 6B, which is attrib
uted to resistance to complement component 3 deposition [40]. 
Serotypes 19A and 19F are closely related biochemically [41], 
suggesting that serotype 19A may be similarly resistant to 
opsonophagocytosis.

Vaccine Effectiveness

In a systematic review of IPD vaccine failures in children vac
cinated with PCV13 or PCV10, the main serotypes associated 
with vaccine failure or breakthrough were serotypes 3, 19A, 
and 19F for PCV13 and serotypes 14 and 6B for PCV10 [42]. 
Except for serotype 6B, all of these serotypes are presumed to 
require higher protective antibody levels. For some serotypes 
associated with failure or breakthrough, including 19F for 
PCV13 [22] and 14 and 6B for PCV10 [21], immunogenicity 
was lower in clinical trials when compared with a lower-valency 
vaccine. Similarly, in a study in Canada, the most common se
rotypes causing breakthrough infection in children vaccinated 
with PCV13 during the 7 years after introduction were sero
types 3, 19A, and 19F [43].

Results from VE studies are consistent with data on vaccine 
failure and breakthrough disease for some serotypes and PCVs. 
In a retrospective study assessing the VE of PCV13 and PCV10 
against IPD between 2012 and 2018 across 12 European coun
tries [44], serotype-specific VE for PCV13 was lowest against 
serotype 3 (64.5%; 95% CI, 43.7%–77.6%). Serotype-specific 
VE of PCV13 against serotypes 3 and 19A showed a more rapid 
decline over the 48 months after the booster vaccination as 
compared with overall VE. PCV10 VE was 65.9% against sero
type 19F (95% CI, −36.4% to 91.5%) [44]. In the United States, 
serotypes 19A and 3 were the only vaccine serotypes among the 
10 most common ones causing IPD in children up to 3 years 

Figure 1. Serotype composition of licensed pneumococcal conjugate vaccines [4, 6, 9–11, 13, 14]. PCV7, 7-valent pneumococcal conjugate vaccine; PCV10, 10-valent pneu
mococcal conjugate vaccine; PCV13, 13-valent pneumococcal conjugate vaccine; PCV20, 20-valent pneumococcal conjugate vaccine; V114, 15-valent pneumococcal conju
gate vaccine.
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after the introduction of PCV13 [45]. In England, VE against 
serotype 3 IPD, calculated according to a case–control design, 
was 0% in participants who received ≥2 doses at <12 months 
of age or 1 dose at >12 months of age [46]. In Denmark, no sig
nificant changes in the incidence of serotype 3 were observed 
during the 3 years after the introduction of PCV13 [47], and 
in Sweden, PCV13 had no observable effect on serotype 3 up 
to 6 years after introduction [48]. In the United States and 
England, the majority of serotype 3 IPD cases occurred in chil
dren fully vaccinated with PCV13 [35, 46]. In Lebanon, sero
type 3 IPD increased after PCV13 adoption and was a 
predominant cause of mortality [49].

As V114 was only recently approved for pediatric use, there are 
no VE data available. Modeling analyses, based on serotype- 
specific antibody concentrations that predicted the effectiveness 
of PCV13, suggest the potential for increased VE of V114 against 
serotype 3 as compared with PCV13, countering the trend 
for a decline in immunogenicity with increasing valency [50]. 
Similarly, 20-valent PCV was only recently approved for pediatric 
use; thus, no VE data were available at the time of writing.

Nasopharyngeal Carriage

Antibody levels required to prevent nasopharyngeal carriage 
may be higher than those needed to prevent IPD [17]. In infants 
in Nepal, the IgG antibody concentration associated with 

protection against nasopharyngeal carriage of serotype 19F 
was 2.54 μg/mL [51], which is greater than the reported 1.17 
μg/mL correlate for serotype 19F IPD [32]. On average, protec
tive correlates were 2.15 times higher in low/low-middle–in
come countries than high/upper-middle–income countries 
(GMC, 2.15; 95% CI, 1.46–3.17; P = .0024) [51]. Accordingly, 
evidence of noninferiority used for PCV licensure is insuffi
cient to predict noninferiority against nasopharyngeal carriage 
[17]. Decreasing immunogenicity with higher-valency vaccines 
could be particularly impactful on carriage rates, given the high 
antibody levels required for prevention [52, 53]. Failure to pre
vent nasopharyngeal carriage of pneumococci in healthy indi
viduals could reduce indirect protection, as carriage is a 
prerequisite for disease transmission [3].

In a study in Papua New Guinea, the proportion of infants 
achieving serotype-specific IgG concentrations ≥1.0 µg/mL at 
9 months of age—a higher threshold than that commonly 
used for IPD—was significantly higher in those who received 
PCV10 vs PCV13 for vaccine serotypes 6B, 18C, and 19F 
[52]. Although the number of infants with carriage of these se
rotypes at 9 months of age was similar between the vaccine 
groups, suggesting that these differences may not necessarily 
affect vaccine efficacy and VE against carriage, the overall num
ber of participants with carriage was small, limiting statistical 
power. PCV10 and PCV13 were administered in a 3 + 0 

Table 2. Potential Differences in Immunogenicity Among Vaccines for Shared Serotypes in Key Phase 3 Randomized Controlled Clinical Trials

Shared Serotypes Failing Noninferiority 
Criteria With Higher-Valency PCV

Author PCVs Vaccination Schedule, mo Timing of Assessment Response Ratea IgG GMC Ratiob

Vesikari (2009) [21] PCV7 2, 3, 4 1 mo after primary series 6B, 23Fc,d NR

PCV10 +12–18

Kieninger (2010) [22] PCV7 2, 3, 4 1 mo after primary series 6B None

PCV13 +11–12

Yeh (2010) [23] PCV7 2, 4, 6 1 mo after primary series 6B, 9V None

PCV13 +12–15

Temple (2019) [1] PCV10 2, 4 1 mo after primary series Noned NR

PCV13 +9.5

Lupinacci (2023) [24] PCV13 2, 4, 6 1 mo after primary series Noned 6Ad

V114 +12–15

Benfield (2023) [25] PCV13 3, 5 1 mo after toddler dose Noned Noned

V114 +12

Martinon-Torres (2023) [26] PCV13 2, 4 1 mo after toddler dose Noned Noned

V114 +11–15

Watson (2023) [27] PCV13 2, 4, 6 1 mo after primary series 3d,e Noned

PCV20 +12–15 1 mo after toddler dose NRd Noned

Abbreviations: GMC, geometric mean concentration; IgG, immunoglobulin G; NR, not reported; PCV; pneumococcal conjugate vaccine; PCV7, 7-valent pneumococcal conjugate vaccine; 
PCV10, 10-valent pneumococcal conjugate vaccine; PCV13, 13-valent pneumococcal conjugate vaccine; PCV20, 20-valent pneumococcal conjugate vaccine; V114, 15-valent 
pneumococcal conjugate vaccine.  
aIgG response threshold is 0.35 μg/mL unless otherwise stated.  
bNoninferiority criteria differed across studies.  
cIgG response threshold is 0.20 μg/mL for noninferiority; serotypes listed did not meet noninferiority criteria.  
dPrimary or coprimary immunogenicity endpoint.  
eDifferent thresholds used for serotypes 5, 6B, and 19A.
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schedule, and antibody levels waned rapidly after completion of 
the series [52]. Use of a booster dose may have increased the 
number of infants reaching the higher threshold.

In a randomized controlled trial in Vietnam, a 1 + 1 schedule 
of PCV10 or PCV13 administered at 2 and 12 months of age 
reduced carriage of vaccine serotypes at 24 months of age (by 
58% and 65%, respectively) [54]. In a randomized controlled 
trial comparing PCV13 and PCV7, reductions in nasopharyn
geal carriage for shared serotypes were generally comparable, 
with a higher reduction in serotype 19F with PCV13 [55].

In addition to the traditional markers of immunogenicity as
sessed in PCV trials, recent studies suggest that cellular immu
nity may have a role in preventing pneumococcal colonization 
and subsequent transmission within communities. T-cell re
sponses targeting specific pneumococcal antigens have been 
implicated in limiting nasopharyngeal carriage and thus can re
duce the overall burden of pneumococcal disease [56]. Despite 
challenges with measuring cellular markers of immunogenicity 
in large vaccine trials, improvements in immunologic assays 
and methodologies will contribute to exploring cellular immu
nity to vaccine-induced protection [36].

Overall, evidence suggests that nasopharyngeal carriage of 
vaccine serotypes has decreased with the widespread use of 
PCVs [57, 58], including in nonvaccinated populations [59], 
with no obvious impact of reduced immunogenicity with 
higher-valency vaccines. It is possible that the impact of immu
nogenicity decline on nasopharyngeal carriage may be less ap
parent than the impact on IPD. This may be explained by the 
greater role of the toddler dose, and immunogenicity differenc
es between higher- and lower-valency vaccines seem to be 
smaller after the toddler dose vs the primary series.

VACCINE DESIGN STRATEGIES TO MAINTAIN 
IMMUNOGENICITY IN HIGHER-VALENCY PCVs

While reduced immunogenicity has been observed among higher- 
vs lower-valency PCVs, the trend is inconsistent. Different vac
cine components, platforms, technologies, and manufacturing 
processes can affect serotype-specific immunogenicity.

Importance of Carrier Proteins and Conjugation Methods

PCVs are manufactured by conjugating pneumococcal capsular 
polysaccharides to an immunogenic carrier protein, such as 
CRM197. Carrier proteins provide a source of T-cell help, resulting 
in immunoglobulin class switching to convert the polysaccharide 
from a T-cell–independent antigen to a T-cell–dependent antigen 
[60]. The choice of specific carrier proteins and conjugation pro
cesses can influence immunogenicity and the functionality of an
tibodies elicited after vaccination with PCVs [61].

Several hypotheses have been proposed to explain declining 
serotype-specific immunogenicity as valency increases. First, 
increasing the number of serotypes in a vaccine could reduce 

the potency of individual polysaccharide conjugates, due to in
terference among multiple polysaccharide-specific B cells com
peting for T-cell help from the same carrier protein [62]. 
Adjusting the polysaccharide dose per serotype to maintain a 
balanced antigen-to-carrier ratio can mitigate this immune in
terference in multivalent vaccines [62]. Second, the develop
ment of polysaccharide-specific B-cell and antibody responses 
may be hindered by immune responses to carrier proteins 
(carrier-induced suppression) [62, 63]. Carrier-specific im
mune responses that are thought to be associated with carrier- 
induced epitope suppression include anticarrier antibodies that 
prevent B cells from accessing the polysaccharide antigen, 
carrier-specific memory B cells that compete for T-cell help, 
and carrier-specific regulatory cells [62]. Third, the length of 
the link between polysaccharide and carrier protein, deter
mined by the conjugation method used, may affect the immune 
response [63]. Last, conjugation chemistry may alter the poly
saccharide structure, potentially destroying immunogenic 
polysaccharide epitopes [41].

Immune interference with polysaccharide responses caused 
by the carrier protein in PCVs is dependent on the specific car
rier protein used (eg, tetanus toxoid, diphtheria toxoid, protein 
D, or CRM197). For CRM197, interference has primarily been 
observed when PCVs are mixed with other conjugate vaccines 
utilizing the same carrier protein [62]. Therefore, immune in
terference via CRM197 protein-induced suppression may occur 
in vaccine formulations that exceed a certain number of glyco
conjugates and/or carrier protein dose. Susceptibility to im
mune interference may vary by serotype. For example, the 
serotype 6B–CRM197 conjugate is thought to be more suscepti
ble than other serotypes [62]. PCV13 coadministered with 
childhood diphtheria toxoid-containing conjugate vaccines 
has resulted in significant reductions in immune responses 
for serotypes 4, 6B, and 19F as compared with coadministered 
PCV7 [22]. The increased carrier protein dose in PCV13 
(29 µg) vs PCV7 (20 µg) and immune interference could con
tribute to this decline in immunogenicity [22, 62].

It is currently unclear whether carrier-induced suppression 
is the main mechanism underlying the reduction in immuno
genicity with some higher-valency PCVs. The use of different 
carrier proteins, such as protein D (in PCV10) [6] or tetanus 
toxoid (in PCV10 and an investigational 21-valent PCV) [6, 
64], could be a strategy to reduce immune interference and 
carrier-induced suppression, especially for populations for 
whom coadministration of vaccines with similar carrier pro
teins is generally recommended.

Strategies to Enhance PCV Immunogenicity
Conjugation Processes and Novel Carriers. Maintaining the 
structural integrity of the capsular polysaccharide during con
jugation is important for robust T-cell–dependent immune re
sponses that effectively recognize native polysaccharide on the 
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bacterial surface and in generating immunologic memory [65]. 
Conjugate vaccines use various methods for functionalizing 
capsular polysaccharides prior to conjugation to the carrier 
protein [66]. For example, polysaccharide activation of sero
type 14 is achieved via sodium periodate oxidation to introduce 
reactive aldehydes at vicinal hydroxyl groups in the polysaccha
ride chain, followed by reductive amination coupling to the car
rier protein. However, depending on the chemical structure of 
the specific serotype, this method of polysaccharide activation 
can modify important immunologic epitopes or cause intra
chain polysaccharide cleavage, which may reduce the ability 
of vaccine-elicited antibodies to recognize native polysaccha
ride on the infecting bacterium [66].

For PCV10, CDAP (1-cyano-4-dimethylamino-pyridinium 
tetrafluoroborate) is used to introduce a reactive cyano group 
for conjugation [41]. Cyanylation may better preserve native 
polysaccharide epitopes as compared with reductive amina
tion, although data were presented only for serotype 19F 
[41]. Nevertheless, optimal preservation of the native polysac
charide structure is important for the effectiveness of PCVs, 
and novel approaches, including bioenzymatic polysaccharide 
activation, are being explored [66]. Galactose oxidase has 
been investigated for its ability to reversibly introduce 
site-specific aldehydes to mitigate polysaccharide degradation 
[66]. Preclinical results in a murine sepsis infection model 
showed that immunization with a pneumococcal vaccine con
taining a conjugate synthesized with galactose oxidase elicited 

increased antipneumococcal polysaccharide 14 immunoglob
ulin M titers [66].

Using specific linker moieties between polysaccharide and 
protein has been explored to increase immune response. 
Hydrazinepolyethylene glycol–hydrazine linkers boosted the 
immunogenicity of PCVs in preclinical models [63]. In a recent 
study in mice, PCVs containing a hydrazine–polyethylene gly
col–hydrazine linker induced significantly higher IgG geomet
ric mean titers and antibody avidity when compared with PCV 
only [63]. The increased size of the linker polysaccharide com
plexes may increase the half-life of the PCV [63].

Studies in mice have suggested that replacing carrier pro
teins, such as tetanus toxoid or CRM197, with 1 or more con
served S pneumoniae proteins can expand the breadth of 
vaccine coverage without adding additional serotype-specific 
conjugates [67, 68]. This could help prevent reduced immune 
responses attributable to high carrier protein levels [68]. 
Proteins such as pneumococcal surface protein A, pneumococ
cal histidine triad D, detoxified pneumolysin, and spr96/2021 
can act as “universal” antigens and carrier proteins [15, 69].

A recent innovation in carrier protein technology utilizes 
eCRM carrier protein produced via cell-free synthesis, allowing 
the incorporation of biorthogonal amino acids at specific protein 
locations. Subsequent conjugation to polysaccharide can then 
be completed with established click chemistries. Controlling con
jugation sites allows targeting outside of the primary T-cell epi
tope region [39]. This approach allows site-specific covalent 

Figure 2. Schematic of platforms for the production of vaccines. VLP, virus-like particle. Reproduction based on Ihssen et al [74] and Brisse et al [75].
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conjugation of pneumococcal capsular polysaccharides, resulting 
in an increased polysaccharide-to-protein ratio and enabling in
clusion of more serotypes while minimizing immune interference 
[39]. However, the technology requires polysaccharide activation 
and derivatization to introduce the cognate moiety enabling click 
chemistry reactions. An investigational 24-valent PCV (PCV24) 
uses this technology. Initial results in mice showed comparable 
IgG responses and OPA titers after PCV24 vaccination vs 
PCV13 or 23-valent pneumococcal polysaccharide vaccine [39, 
70]. Cell-free synthesis of conjugate vaccine candidates has also 
been performed for Escherichia coli with the oligosaccharyltrans
ferase PglB from Campylobacter jejuni, resulting in strong humor
al responses [71]. It remains unclear whether changes in carrier 
protein alone will alter serotype-specific immune responses or VE.

Novel Vaccine Platforms. The multiple antigen-presenting sys
tem (MAPS) has been designed to present polysaccharide and 
protein antigen components in a modular manner. MAPS can 
boost the activity of B-cell and T-cell immune responses while 
broadening vaccine coverage via inclusion of conserved pneu
mococcal protein components. Furthermore, the noncovalent 
conjugation consists of biotinylated polysaccharides bound to 
bacterial rhizavidin [72]. Mice immunized with serotype 14 
polysaccharide complexed with MAPS elicited an approximate
ly 80-fold-higher IgG serum titer than those vaccinated without 
MAPS [72]. The MAPS construct induced multipronged im
mune responses, including T-helper 1 and 17 responses.

In vivo bioconjugation is an alternative to chemical conjuga
tion with purified polysaccharide and proteins typically used in 
licensed pneumococcal vaccines [73]. Bioconjugation using 
bacterial protein glycosylation systems involves covalently link
ing glycans to proteins during protein glycosylation within a liv
ing cell (Figure 2). S pneumoniae is suitable for bioconjugation, 
as pneumococcal capsular polysaccharides use lipid-linked oli
gosaccharides typically assembled on the cell surface of bacterial 
cells prior to their polymerization and transfer to the cell surface 
[73]. A preclinical study evaluated the immunogenicity of a 
multivalent pneumococcal bioconjugate vaccine against sero
types 9V, 14, and 8 in murine models; statistically significant in
creases in serotype-specific IgG levels were recorded 49 days 
after vaccination as compared with a chemically conjugated 
PCV containing PCV13 serotypes [73].

Virus-like particle (VLP) technology is another vaccine plat
form that consistently generates strong and durable antibody re
sponses, as VLPs contain multiple protein fragments that can 
target immune cells and increase antigen-presenting cell uptake 
(Figure 2) [76]. Synthetic VLPs made from coiled coil lipopeptides 
provide immunologic advantages owing to their size, surface 
structure, and capacity to induce strong immune responses with
out adjuvants [76, 77]. Preclinical studies assessed the inclusion of 
pneumococcal surface protein A on the surface of synthetic VLPs 
as potential vaccine candidates. In mice, this approach resulted in 

significant immune responses and protection [77]. Other poten
tial future strategies for pneumococcal vaccine development in
clude the use of messenger RNA technology [78].

CONCLUSIONS

Based on published clinical studies, there is a trend for declin
ing immunogenicity against shared serotypes with increasing 
valency of PCVs. Effectiveness data are needed to definitively 
elucidate the clinical relevance of this trend, which is currently 
unknown due to variability in protective thresholds across se
rotypes. However, persistence of certain serotypes in widely 
used PCVs, which have been predicted to have higher corre
lates of protection than the standard threshold of 0.35 μg/mL, 
suggests that immunogenicity is important.

Preservation of critical polysaccharide antigenic epitopes, 
choice of conjugation chemistry, and antigen concentration 
can affect immunogenicity, functional antibody levels, and im
munologic memory. These elements must be optimized to 
minimize the immunogenicity decline observed in higher- 
valency PCVs. Novel vaccine platforms and technologies may 
be utilized to improve immune responses while expanding vac
cine valency. Although out of the scope of this review, protein- 
based pneumococcal vaccines that target conserved protein an
tigens of S pneumoniae may represent a promising alternative 
strategy to PCVs [76].

Further research is needed to understand the clinical rele
vance of immunogenicity decline in serotype-specific responses 
with increasing valency. Additional data could help vaccine 
manufacturers improve immune responses in novel vaccines 
while maintaining and even enhancing coverage against persis
tent and emerging disease-causing serotypes.
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