
ARTICLE OPEN

Heterogeneity of tumor microenvironment is associated with
clinical prognosis of non-clear cell renal cell carcinoma: a single-
cell genomics study
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Non-clear renal cell carcinomas (nccRCCs) are less frequent in kidney cancer with histopathological heterogeneity. A better
understanding of the tumor biology of nccRCC can provide more effective treatment paradigms for different subtypes. To reveal
the heterogeneity of tumor microenvironment (TME) in nccRCC, we performed 10x sing-cell genomics on tumor and normal tissues
from patients with papillary renal cell carcinoma (pRCC), chromophobe RCC (chrRCC), collecting duct carcinoma (CDRCC) and
sarcomatoid RCC (sarRCC). 15 tissue samples were finally included. 34561 cells were identified as 16 major cell clusters with 34 cell
subtypes. Our study presented the sing-cell landscape for four types of nccRCC, and demonstrated that CD8+ T cells exhaustion,
tumor-associated macrophages (TAMs) and sarcomatoid process were the pivotal factors in immunosuppression of nccRCC tissues
and were closely correlated with poor prognosis. Abnormal metabolic patterns were present in both cancer cells and tumor-
infiltrating stromal cells, such as fibroblasts and endothelial cells. Combined with CIBERSORTx tool, the expression data of bulk RNA-
seq from TCGA were labeled with cell types of our sing-cell data. Calculation of the relative abundance of cell types revealed that
greater proportion of exhausted CD8+ T cells, TAMs and sarRCC derived cells were correlated with poor prognosis in the cohort of
274 nccRCC patients. To the best of our knowledge, this is the first study that provides a more comprehensive sight about the
heterogeneity and tumor biology of nccRCC, which may potentially facilitate the development of more effective therapies for
nccRCC.
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INTRODUCTION
The new diagnosis of kidney cancer is estimated to reach 73,750
cases in 2020 [1]. The proportion of renal cell carcinoma (RCC) in
kidney cancer is up to 85% [2], of which clear cell RCC (ccRCC) and
non-clear cell RCC (nccRCC) account for 75% and 25%, respec-
tively, approximately [3]. Recent years have witnessed the critical
progress in the management options of RCC to achieve better
outcomes. Of those, the surgery remains the essential treatment
and the targeted therapy involving VEGF, mTOR, or immunother-
apy has also improved the patients’ survival [4, 5]. However, the
pathogenesis and therapeutic targets of nccRCC are rarely
elaborated and its therapeutic outcome remains unsatisfactory.
Papillary (pRCC, 10–15% of RCC), chromophobe (chrRCC, 5% of

RCC), and collecting duct (cdRCC, aggressive, 1% of RCC) rank the
three top subtypes of nccRCCs with controversial clinical under-
standing and therapy [6]. Sarcomatoid RCC (sarRCC, <1% of RCC) is
also listed in the nccRCC classification of WHO with high mortality

[6, 7]. Several small direct comparative clinical studies currently
available have shown that the targeted therapies for nccRCC are
not significantly different [8, 9], but it is difficult to determine the
optimal treatment or reach consensus due to the limited data
concerning the efficacy of the present therapies on nccRCCs [7].
Therefore, the development of drugs for efficient therapies against
nccRCCs is still a great challenge.
Tumors are characterized by substantial heterogeneity, which

can lead to different responses to the same therapy in patients.
Hitherto, arduous efforts have been made to explain the
heterogenetic features of tumors, but the understanding of tumor
heterogeneity remains limited to tumor cells themselves [10].
Recent studies have demonstrated that the immune cells
infiltrated by tumor and stromal cells present heterogeneity [11].
In addition, increasing evidence has shown that the tumor
microenvironment (TME) plays an important role in the targeted
drugs [12]. Previous studies have also emphasized that CD8+
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exhaustion, immune checkpoints, tumor-associated macrophages
(TAMs) [13] and cancer-associated fibroblasts (CAFs) [14] are
critical therapeutic targets. All these data enhances our under-
standing about the heterogeneity of TME.
The concept of bulk RNA-seq is established on the assumption

that each single gene is equally expressed in each cell, which
could not reflect the true heterogeneity of tumor cells or TME.
Thus, scRNA-seq is a major breakthrough to achieve single-cell
transcriptome landscape, making it feasible to reveal the
comprehensive TME or intratumoral heterogeneity. In the
published scRNA-seq study of kidney cancer, Young et al. [15]
described the single-cell profile for ccRCC, pRCC, and Wilms tumor.
However, their study has not included the other nccRCCs, such as
chrRCC and cdRCC. Thus, we further conducted the scRNA-seq for
nccRCCs combined with the published pRCC samples to
investigate the heterogeneity of nccRCCs and their TME, and
explore potential direction for nccRCCs therapy. More importantly,
we attempted to validate the clinical value of identified cell
clusters through linking the scRNA data to the published datasets
from TCGA nccRCC cohort (KIRP and KICH dataset), hoping that
the result could help explain the features of nccRCCs and provide
evidence-based data for developing novel clinical strategies for
the treatment of nccRCC.

RESULTS
Cell clustering of the nccRCC landscape
A total of 14 tissues from five nccRCC patients were included in
our work. Of the remaining cells after quality filtering,
27374 single cells were tumor-derived, and 7187 originated
from non-malignant samples (Fig. 1E). These cells were classified
into 16 major cell clusters: cancer cells and cancer stem cells
(CSC), seven types of immune cells (PTPRC or CD45+), involving
Mast, B cells, NK cells, NKT cells, Plasma cells, macrophages and
CD8+ T cells, and nine nonimmune cell types (PTPRC or CD45−),
involving distal tubule cells (DT), kidney progenitor cells,
proximal tubule cells (PT), podocytes, collecting duct cells
(CD), fibroblasts and endothelial cells (Fig. 1A–C). As described
in Fig. 1D, all cells were classified into Tumor_cells, Immunue_-
cells and Others, and showed Tumor_cells had higher tumor
purity, and Immune_cells had higher immune scores, confirming
the relative accuracy of the clustering. Additionally, five top
markers of each major cell type are shown in the form of a
bubble diagram in Fig. 1F.

nccRCC cancer cells present diversities and abnormality in
metabolism and gene expression compared with
corresponding normal-derived cells
CDRCC, chrRCC, pRCC originated from CD [16], DT [17], and PT
[18], respectively. DEGs were analyzed respectively between
CDRCC vs. CD, chrRCC vs. DT, pRCC vs. PT. The DEGs analysis of
scRNA-seq was based on cell markers [19], so that the results
could be regarded as the exclusive DEGs between cancer cells and
corresponding normal-derived cells. Interestingly, we found that
the upregulated or downregulated DEGs were potentially
associated with the metabolic pathways (Figs. 2A–C and S1).
Then, we conducted KEGG enrichment analysis of the altered
genes. Previous study has reported that PPAR pathway was
suppressed in ccRCC cells, compared with renal tubule cells [19].
However, our Gene Set Enrichment Analysis (GSEA) results showed
that only pRCC cells presented the similar repressed PPAR
pathway, which could be the result that pRCC and ccRCC both
originate from PT [20]. Meanwhile, Glycolysis pathway was
enriched for CDRCC, while the CD acid secretion pathway was
repressed; the proteoglycan pathway in cancer was enriched in
chrRCC (Fig. 2A–C).
Compared with the other nccRCC or normal tubules, HIF-1α was

upregulated in sarRCC cells, which was previously demonstrated

to be an independent prognostic factor in sarRCC [21]. Genes
regulated by other TFs associated with lipid metabolism, involving
KLF4, KLF6, CEBPB [22–24], were upregulated in nccRCC cells (Fig.
2D). As for autophagy related TFs, pRCC presented the similar
results to ccRCC that NR1H4 was downregulated compared with
PT [19]. On the contrary, NR1H4 was upregulated in CDRCC cells.
Other ccRCC-associated TFs such as NFκB, STAT3, POU2F2 and
RARA were also upregulated in nccRCC [19, 25]. The gene set
variation analysis (GSVA) analysis also demonstrated that PPAR
pathway was upregulated in PT (Fig. 2E). The hypoxia pathway
was upregulated in all the nccRCC cells except CDRCC, which
presented the active adipogenesis. The classical pathways, P53,
EMT and angiogenesis, were upregulated in nccRCC cells [26–28].
And tumor glycolysis, glutathione metabolism pathways were
upregulated in nccRCC cells [29, 30]. Both the SCENIC and GSVA
analyses revealed that the NFκB pathway was upregulated in
cancer cells. NFκB was involved in T cell exhaustion [31] and
suppression of macrophages surveillance in tumor development
[32]. Highly heterogenetic copy number variations (CNVs) were
obtained from these types of nccRCCs (Fig. 2F), whose results were
close to the previous study [33]. Finally, the active interactions
occurred between cancer cells and CD8+ T cells, macrophages,
endothelial cells and fibroblasts; the top 20 ligand-receptor pairs
and the top 20 interactions of immune checkpoints, cytokines,
growth factors in TME were shown (Fig. 2G, H).

Exhausted CD8+ T cells tend to progress in TME of nccRCC
A total of 3701 CD8+ T cells were detected and then divided into
three sub-clusters (Fig. 3A). The top 10 markers are presented in
the bubble chart (Fig. 3B). The immune checkpoints were
detected, involving LAG3, HAVCR2, PDCD1, CTLA4, TNFRSF9
(Fig. 3C). Notably, the immune checkpoint markers were
upregulated in cluster 3 (Fig. 3E), and thus we confirmed that
cluster 3 were exhausted in nccRCC TME. Currently, PD-1/PD-L1
and CTLA4 are popular for immunotherapy targets, even though
fewer than 50% patients with solid tumors benefited from this
treatment. However, there were no prominent evidence demon-
strating that immune checkpoints targeted immunotherapy could
be helpful for nccRCC. Our data may provide an understanding
that the HAVCR2/LAG3 could be the better target for the
exhausted CD8+ T cell subpopulation of nccRCC, and they might
be even superior to PD-1/PD-L1 and CTLA4 as the immunotherapy
target for nccRCC.
Previous studies have demonstrated the role of CD8+ T cell

exhaustion in RCC [34]. We used Monocle 3 to perform the
differentiation of trajectory, visualized in Fig. 3D. Non-
malignant tissues derived CD8+ T cells (cluster 1) could
differentiate into cluster 2 and cluster 3. The cluster 3,
representing exhausted CD8+ T cells, presented at the end
direction. Cluster 3 expressed more immune checkpoints
related ligand-receptor pairs, while cluster 2 possessed more
normal ligand-receptor pairs CD8+ T cells with immunity. DEGs
between cluster 3 vs. 2 were presented in the volcano plot
(Fig. 3G).
The changes of TFs during the T cell exhaustion in nccRCC were

displayed in Fig. 3H, I. These data suggest that NFAT might lead to
the upregulation of genes associated with T cell dysfunction
without FOS and JUN [35]. EOMES, the TF participating in the
regulation of the end differentiation of T cells, was upregulated in
cluster 3, with immunosuppressive NFAT5 (Fig. 3I). In addition,
STAT3 was also observed to be upregulated (Fig. 3H). The GSEA
analysis results were shown in Fig. 3J. IHC analysis for CD8+LAG3+
cells between para-Tumor and Tumor suggested that
CD8+LAG3+ T cells potentially acted as the key exhaustion T cell
marker in nccRCC (Fig. 3K, L, all p < 0.05). The GSVA results also
showed that NFAT, STAT3, CTLA4, and PD1, along with other tumor
potentially activated pathways were upregulated in the cells from
cluster 3 (Fig. 3M).
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Fig. 1 Landscape of single cells derived from nccRCC and normal tissues. A Sixteen major cell types identified by scRNA-seq; B sample
origin (Tumor or normal); C immune cells (PTPRC+ or CD45+) or nonimmune cells; D the results of ESTIMATE algorithm: Tumor purity, Stromal
score, Immune score of different cells; E for 34 subgroups identified in this landscape (left to right): the fraction of cells originating from 11
tumor and 4 normal samples, and the fraction of cells originating from each of 6 patients; F the bubble plot of top5 genes expression in each
cell cluster; the size of bubble represents the percent expressed of cells; the color represents the average expression of each gene in clusters:
red means the high expression.
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Macrophages play an important role and present tumor
infiltration in nccRCC
Of these 16 cell clusters, macrophages possessed the largest cell
number (6404). As described in the Fig. 2G, H, macrophages
interacted with nccRCC cells actively. This main cluster was sub-

grouped into five cluster based on derivation (Fig. 4A). Next, we
identified the markers of each subgroup, confirming that one
cluster was derived from non-malignant tissues (Normal_M
cluster, THBS1+), while pRCC_M (NDUFA4L2), chrRCC_M
(SLC40A1), cdRCC_M (KRT8+) and sarRCC_M (ATP5F1E) clusters
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Fig. 2 Abnormal biological processes occur in nccRCC. A–C Volcano plot of differentially expressed genes (DEGs) between cancer cells and
corresponding normal-derived renal tubular epithelial cells. Upregulated genes are colored in red, and downregulated genes are colored in
blue; and GSEA results revealed the pathways enriched in cancer cells; D Heatmap of selected regulons altered in cancer cells. AUC scores
were measured by SCENIC per cell; E Heatmap of GSVA results for selected pathways altered in cancer cells; upregulated pathways are colored
in red, and downregulated pathways are colored in blue; F InferCNV results of cancer cells, referenced by the normal-derived renal tubular
epithelial cells. The sarRCC possessed amplifications from chromosomal 7 and deletions from chromosomal 8; the CDRCC possessed deletions
from chromosomal 11, while the amplifications located on chromosomal 12; the CNVs of chrRCC occurred in chromosomal 4, 5, 17, 18. In
pRCC, the loss was derived from chromosomal 3, while the amplifications occurred on chromosomal 22. G iTALK results revealed the
interactions between the cell clusters. Immune checkpoints interactions of cancer cells with CD8+ T cells, macrophages and endothelial cells.
Chemokines, including CCL5, CXCL12, CXCR3 and CXCR4, secreted by CD8+ T cells, macrophages and endothelial cells in TME were frequently
interacted with nccRCC cells. VEGFA, PGF and IGF secreted by nccRCC cells actively interacted with CD8+ T cells, macrophages, endothelial
cells and fibroblasts, which could be associated with angiogenesis. Each circle represents a cluster; the arrows represent the interactions
between circles; the number on the arrows represent the number of the interactions; H The interaction of top 20 ligand-receptor pairs are
presented. The size of the arrow represent the relative expression level of the receptor (thick for high, small for low); the size of the line
represent the relative expression level of the ligand (thick for high, small for low).

Fig. 3 Exhausted CD8+ T cells are enriched in nccRCC TME. A UMAP plot of three subsets of CD8+ T cells; B, C Dotplot of five top markers of
each cell cluster; diameters of dots represent abundance, and color represents the expression level; D Differentiation trajectory of CD8+ T cells
in nccRCC, with each color coded for pseudotime (left) and clusters (right); E Distribution of immune checkpoint expression in CD8+ T cells;
F iTALK analysis revealed the interaction of immune checkpoints among the three clusters; the size of the arrow represent the relative
expression level of the receptor (thick for high, small for low); the size of the line represent the relative expression level of the ligand (thick for
high, small for low). G Volcano plot of upregulated and downregulated genes between clusters 3 and 2 (logFC > 0.9, p < 1e−5); upregulated
genes are colored in red, and downregulated genes are colored in blue. H Heatmap of expression regulated by transcription factors estimated
by SCENIC among the three clusters; upregulated TFs are colored in red, and downregulated TFs are colored in blue; I The distribution of
EOMES and NFAT5 expression in CD8+ T cells, which participates in T cell dysfunction; J GSEA revealed pathways enriched in exhausted
T cells. FDR < 0.05 was considered as significantly enriched. K, L The IHC analysis results of CD8+LAG3+ cells between para-Tumor and Tumor
tissues. (random 20 fields and bar= 50 μm). M GSVA results of pathways enriched in exhausted T cells, and most cancer-associated pathways
upregulated in exhausted T cells. Upregulated pathways are colored in red, and downregulated pathways are colored in blue.
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were enriched in corresponding nccRCC tissues (Fig. 4B). THBS1
has been reported to possess antiangiogenic and antitumor
effects [36]; NDUFA4L2 may be the molecular target for ccRCC
therapy [37]; SLC40A1 was found to play an inflammatory role in
TAMs [38]; it was reported that the KRT8+ state could establish
specific intercellular communication with mesenchyme and
macrophages during injury repair [39].
The expression of TAMs markers was visualized in Fig. 4C, such

as TREM2+. Subsequently, we calculated the DEGs for nccRCC
macrophages (Fig. 4D). As described in Fig. 4E, the HAVCR2 was
highly expressed in chrRCC, pRCC and sarRCC derived macro-
phages. Interestingly, the most popular immune checkpoints, PD1
and CTLA4 were not found to be different. Thus, HAVCR2 was
more likely to be the therapy target for nccRCC rather than PD1 or
CTLA4. In addition, FGL2, the immunosuppressive ligand for
FcγRIIB on CD8+ T cells, inducing the apoptosis of effector CD8+
T cells [40], was highly expressed in chrRCC cells and relatively
highly expressed in pRCC cells. Cell crosstalk between different
clusters were in Fig. S2A. As shown in Fig. S2B, tumor-derived
macrophages were at the end of differentiation trajectory.
SCENIC analysis (Fig. 4F) revealed that MAFG, a type of

macrophage-activation factor promoting inflammation [41], was
upregulated in the Normal_M. In addition, ATF2 and ATF4, the
known component of activator-protein-1, were also upregulated
in Normal_M, which could participate in inflammatory stimuli [42].
IRF2, upregulated in chrRCC_M, has been reported to be
immunosuppressive, and IRF/STAT1 was also related to M2
polarization [43, 44]. The IHC analysis indicated that higher in
tumor tissues expressed higher CD163+TREM2+ compared with
para-tumor did (Fig. 4G, H). The tumor-associated pathways were
mostly upregulated in chrRCC_M (Fig. 4I), which were close to the
GSVA results of ccRCC [19].

Fibroblasts present heterogeneity in nccRCC and endothelial
cells exhibit diversities because of derivation
A total of 2217 cells were identified as fibroblasts, and mostly were
tumor-derived (Figs. 5A and S3): fetal cluster (PLK2), cluster 1
(NDUFA4L2), cluster 2 (S100A8), and cluster 3 (THBS2) (Fig. 5A, B).
PLK2, a member of the polo-like kinase family, was differentially
expressed after activation of quiescent fibroblasts [45]. NDUFA4L2
could participate in the oxidative phosphorylation of CAFs [46]
and protect the cancer cells in low-oxygen consumption [47, 48].
In addition, IL-6 and IL-8 released by fibroblasts could stimulate
the upregulation of S100A8 in tumor-infiltrating myeloid cells, and
fibroblasts could promote the differentiation of cells in bone
marrow into S100A8-expressed TAMs in TME [49]. Proteomic
analysis showed that thrombospondin-B2 (THBS2) was correlated
with angiogenesis when CAFs were activated in TME [50]. SCENIC
analysis revealed that CEBPD, FOXO3, FOXO1, CEBPZ, and SMAD3
in the cluster 3 were upregulated (Fig. 5C). CEBP family was known
to play a critical role in adipocyte differentiation [51]. FOXO1/3
and SMAD3 pathways could promote the tumor development
[52]. Similarly, cells from cluster 1, HIF1A and PPARγ were
upregulated and associated with lipid accumulation [53]. As
shown in a recent 10x Genomics scRNA-seq study of ccRCC [19],
CAFs in TME of nccRCC presented were associated with abnormal
lipid metabolism. Meanwhile, the cell crosstalk between different
fibroblasts clusters were presented in Fig. S2C. The differentiation
of trajectory was visualized in Fig. S2D. The non-malignant tissues
derived fibroblasts could differentiate into clusters 1–3, which
could be all regarded as CAFs, as these clusters were tumor-
derived (Fig. 5A).
As shown in the Fig. 5D, 5355 endothelial cells derived from

tumor or normal tissues were clustered into seven subgroups. The
DEGs are listed in the volcano plot (Fig. 5E). The SPARCL1+ and
CRHBP+ were identified for tumor and normal derivation
respectively (Fig. 5F). SPARCL1, a matricellular protein, can
increase the neo-angiogenetic and infiltrative features of tumor

[54] and regulate the TME-dependent heterogeneity of endothe-
lial cells [55]. CRHBP, as the CRH binding protein, could upregulate
NF-κB and p53 induced apoptosis to suppress ccRCC cells
development [56], here was characteristically detected in
normal-derived tissues.
As shown in Fig. 5G, tumor-derived endothelial cells were at

the end of differentiation trajectory, which was hypothesized
that normal-derived endothelial cells, tended to evolve into
tumor-associated ones. GSEA analysis revealed that RCC-
associated pathways, like EGFR, HIF-1, mTOR, and VEGF, were
upregulated in the tumor-derived endothelial cells, indicating
the vascular or anoxia-related diseases occurred in the endothe-
lial cells of TME in nccRCC (Fig. 5H, I) and the tumor-educated
process could be the angiogenesis-induced alternations. Subse-
quently, GSVA results revealed the heterogeneity in different
derived endothelial cells (Fig. 5J). Clusters 1 and 4 were both
tumor-derived and WNT-b-catenin, NOTCH signaling, angio-
protein, glycolysis, hypoxia pathways were upregulated and
enriched in these cells.

sarRCC cells or infiltrative immune cells in TME are correlated
with the poor outcomes in an acknowledged 274 patients
nccRCC cohort
Finally, we calculated the relative abundance of each cluster in
patients of TCGA nccRCC cohort by CIBERSORTx to evaluate the
clinical significance of these cell clusters. As visualized in Fig. 6A, B,
C, D, the cells from CD8T_cluster3_cells (Exhausted T cells),
chrRCC_macrophages, and sarRCC_cells were all correlated with
worse OS and PFS (HR > 1 and p < 0.05). Interestingly, the
abundance of these three cell clusters was increased in the
high-TNM-stage patients (Fig. 6E, sequentially p < 0.0001, p=
0.0117, p < 0.0001). Subsequently, we established a clinical
predictive model to evaluate the correlation of abundance of
the three cell clusters with age, TNM stage and AJCC stage, and
found that the multi-factors may favorably affect the predictive
ability (Fig. 6F). To further explore the clinical significance of
immune TME, we categorized the 274 nccRCC patients into three
immune groups via ConsensusClusterPlus (“Materials and meth-
ods”, Fig. 6G). Compared with the patients of Clusters 1 and 2,
those from Cluster 3 presented worse OS (Fig. 6H, p= 0.0004).
Notably, we found that the relative abundances of CD8T_clus-
ter3_cells (Exhausted T cells), chrRCC_macrophages and sarRCC_-
cells in Cluster 3 of ConsensusClusterPlus were all significantly
higher than those in the other two clusters (Fig. 6I, sequentially
p < 0.0001, p= 0.012, p < 0.0001). Therefore, these data pointed
out the critical significance of exhausted CD8+ T cells, TAMs and
sarcomatid RCC in nccRCC progression.

DISCUSSION
Besides ccRCC, nccRCCs also make the treatment of renal tumors
an arduous task, especially due to the high malignancy of some
subtypes. Due to no available standardized systemic diagnosis or
management options for nccRCC, conventional renal cancer
treatments such as mTOR, TKIs, chemotherapy and immune
checkpoint inhibitors remain the main therapies [57]. However,
the efficacy of these treatments is limited. It has been gradually
recognized that tumor-infiltrating cells can affect the response to
treatments or aggravate the drug resistance in TME [5, 58], and
therefore more attention should be paid to not only nccRCC cells
but TME cells for the sake acquiring optimal therapeutic
approaches. In this work, we performed scRNA-seq to investigate
nccRCC and described a complete profile of human nccRCC
tissues in TME. Moreover, we recognized the new cell subsets and
changed pathways in nccRCC, as well as TFs driven regulatory
networks. Our data will contribute to the understanding of TME
heterogeneity of nccRCC and explore new targets for nccRCC
treatments.
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Fig. 4 Tumor-infiltrating macrophages presented immunosuppressive in nccRCC TME. A tSNE plot of five subgroups of macrophages;
B Violin plot of specific markers of each subgroup; C Heatmap of published marker of M2-poloarized like TAMs. Expression of each cluster was
normalized into a row Z score; D Volcano plot of upregulated and downregulated genes between differently derived macrophages and
normal macrophages; upregulated genes are colored in red, and downregulated genes are colored in blue. E Heatmap of already known
immune checkpoints expression on macrophages. The row Z score represented the expression level; F Heatmap of expression regulated by
transcription factors estimated by SCENIC among five clusters; red color represents active TFs; G, H The IHC analysis results of CD8+LAG3+
cells between para-tumor and tumor tissues. (random 20 fields and bar= 50 μm). I GSVA results of pathways enriched in each cluster of
macrophages, and most cancer-associated pathways upregulated in tumor-infiltrating macrophages.
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Due to the different tumor subtypes and high complexity of TME
in nccRCCs, their intratumoral heterogeneity cannot be fully
described. However, several critical observations should be noted.
Firstly, abnormal biological characteristics, like lipid accumulation,
have been reported before, but the underlying mechanisms are
still ambiguous. Previous ccRCC study rarely observed that PPAR
pathway dominated in the process of lipid accumulation [19].
However, we noticed that PPAR pathway was downregulated only
in pRCC, which was different from ccRCC. The reason could be that
previous studies failed to find that ccRCC originates from PT, so
that they simply compare ccRCC and all tubules cells. In cdRCC, we
unveiled the important role of glycolysis/gluconeogenesis pathway
in the lipid metabolism. Meanwhile, we noticed that HIF-1 pathway
was upregulated in both chrRCC and pRCC, which was also
correlated with glycolysis and reprogram metabolism [59]. More-
over, each subtype of nccRCCs possessed several genes, which
could be promising biomarkers and have significant clinical value
for nccRCCs. Interestingly, the abnormality of metabolic biology
occurred in both tumor cells and tumor-infiltrating cells or stromal

cells. Thus, further studies on nccRCCs should pay attention to both
cancer cells and other associated/infiltrating cells.
Secondly, we discovered that CD8+ T cells tended to be

exhausted in nccRCC, which was correlated with poor prognosis.
This might explain why CD8+ T cell infiltration was accompanied
with a worse clinical outcome in the kidney cancer study [60]. We
acquired the first pseudotime trajectory of CD8+ T cell exhaustion
in nccRCC and revealed the pathways that were activated in
several stages of the biological process. Novel strategies against
nccRCC could emerge when these pathways are inhibited to
recover the activated CD8+ T cells. Moreover, we noted some
important TFs changes, which may potentially participate in T cell
dysfunction. Our findings may provide useful clues for a better
understanding about T cell dysfunction process in nccRCCs.
Thirdly, differently derived macrophages presented diverse

phenotypes. Normal macrophages played an antitumor role, while
different tumor tissues infiltrating macrophages showed cancer-
associated pathways and TFs. More importantly, the subgroup of
chrRCC infiltrating macrophages was correlated with poor prognosis

Fig. 5 The characteristics of fibroblasts and endothelial cells in nccRCC TME. A tSNE plot of four subsets of fibroblasts; B Violin plot of
specific markers of each subgroup in fibroblasts; C Heatmap of expression regulated by transcription factors estimated by SCENIC among the
three clusters; red color represents active TFs. D tSNE plot of seven subsets of Endothelial cells; and the distribution of tumor-derived and
normal-derived endothelials; E Volcano plot of upregulated and downregulated genes between tumor-derived and normal-derived
macrophages (logFC > 1.15, p < 1e−5); upregulated genes are colored in red, and downregulated genes are colored in blue. F Violin plot of
specific markers of tumor-derived and normal-derived macrophages; G Differentiation trajectory of macrophages in nccRCC, with each color
coded for pseudotime (top) and clusters (bottom); H GSEA revealed pathways enriched in tumor-derived macrophages, FDR < 0.05 was
considered as significantly enriched. I The pathways network of tumor-derived macrophages. J GSVA results of pathways enriched in each cell
cluster, and most cancer-associated pathways upregulated in tumor-derived macrophages (C1 and C4).
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Fig. 6 Clinical value of cell clusters of TME recognized by our scRNA-seq analysis in patients of TCGA nccRCC cohort. A Forest plot of cell
clusters calculated by CIBERSORTx and overall survival (left) and progression-free survival (right); hazard ratios (HRs), with their 95%
confidence intervals. B–D Kaplan–Meier survival curve for patients in TCGA nccRCC. Log rank p value <0.05 was considered as statistically
significant; E Boxplots showed that CD8T_cluster3_cells, sarRCC_cells and chrRCC-derived macrophages were enriched in high-TNM stage;
F Nomogram plot presented the prognostic role of significant cell clusters combined with clinical factors; G nccRCC patients from TCGA
nccRCC were divided into three clusters by ConsensusClusterPlus according to cell clusters recognized in this landscape; H Survival analysis of
three patient clusters. Log rank p value was calculated in GraphPad Prism 7.0; I Relative abundance of CD8T_cluster3_cells, sarRCC_cells and
chrRCC-derived macrophages in three patient clusters. Tukey’s multiple comparison test was used.
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in the cohort of TCGA nccRCC patients. Previous study reported that
the conventional TAMs biomarker, CD68+CD163+ could not be
fully adequate in ccRCC and the TREM2+ should be one marker to
identify TAMs [19]. When compared with normal macrophages,
TREM2+ was upregulated in all these nccRCC subtypes, which was
consistent with previous study. In addition, our pathway, checkpoint
and TFs analysis demonstrated that TAMs serve as an immunosup-
pressive part in the nccRCC TME. Our results will be helpful to
explore and validate the novel targets for nccRCC immunotherapy.
Fourthly, the identification of nccRCC subtypes has usually been

based on bulk RNA-seq or microarray analysis [61]. The 274 patients
from TCGA nccRCC cohort were clustered into three different
groups according to the proportion of cell subsets defined in our
study for the first time. Remarkably, patients in consensus cluster 3
presented poorer clinical prognosis. The significance of T cell
exhaustion in nccRCC was further confirmed by the fact that the
relative abundance of exhausted CD8+ T cells was low in clusters 1
and 2, and was enriched in cluster 3, though larger prospective
cohort studies are needed to further investigate and validate our
findings. In addition, although this scRNA-seq analysis performed
in-depth characterization of nccRCC and its TME in molecular levels,
limitations for multiple samples from the six patients might still
exist. As nccRCC is relatively rare, more nccRCC fresh samples are
difficult to obtain. On one hand, different lesions of RCC also
present heterogeneity in previous work [62]. Thus, our samples
from primary tumor and metastatic sites served as a basis for
exploring the TME and heterogeneity of nccRCC. It was the first
time to display the relative comprehensive nccRCC scRNA-seq
landscape, involving pRCC, chrRCC, CDRCC, and sarRCC. On the
other hand, we used TCGA cohort to validate the clinical outcomes
of identified heterogenic cell clusters, minimizing this limitation.
Finally, the cell-type-particular markers expression schema

depicted in the present work may help better understand the
TME heterogeneity and biological characteristics of nccRCCs. The
markers of different subsets of cells unveiled in this work are
nccRCC-specific (DEGs with corresponding normal-derived cells),
and may be better markers in diagnosis or other biological
experiments. In conclusion, our work provides a new under-
standing of TME in nccRCC and may contribute to the develop-
ment of new efficient therapies for nccRCC.

MATERIALS AND METHODS
Tissue processing and 10x genomics sequencing
A total of ten tissue samples were acquired from four patients receiving
radical nephrectomy at the Third Affiliated Hospital of the Second Military
Medical University (Shanghai, China), involving primary and metastatic
tumor sites, plus para-tumor normal kidney tissues. Pathologic and clinical
information were maintained in the medical database by the Department of
Urology (Table 1 and Fig. S4 and Supplementary files for pathological
reports). All participating patients provided written informed consent.
Ethical and operational approval of all research procedures was provided by
the Scientific Research Review and Investigation Committee of the Third
Affiliated Hospital of the Second Military Medical University ([2018]:No.012).
We dissolved the 0.75mg/ml type I collagenase (Cat: SCR103, Sigma),

2 mg/ml type IV collagenase (Cat: C5138, Sigma), 0.2 mg/ml hyaluronidase
I-S (Cat: H3506, Sigma), and 0.0025mg/ml DNase IV (Cat: D5025, Sigma) in
the 0.25% trypsin (Cat: R001100, Thermo Fisher Scientific) to form the final
10ml of digestion medium. Fresh renal primary tumor, para-tumor and
metastatic tissue specimens were obtained from surgical resection of
nccRCC patients. Each tissue sample was processed into tiny pieces (<1mm
in radius) and then incubated with prepared digestion solution on a 37 °C
shaker until they were fully digested. Cell debris and clumps were filtered
through nylon meshes (40 μm, Corning). Subsequently, the cell pellet was
centrifuged at 500 × g and 4 °C for 5min and then was re-suspended in 2ml
ice red blood lysis buffer after discarding the supernatant. 5 min of
incubation later at room temperature, ice phosphate buffer saline (PBS) was
added to 10ml, and the suspension was centrifuged at 4 °C and 300 × g for
5min. After removing the supernatant, we used automatic cytometry (Luna)
to count the cell number and calculated the concentration. The optimal cell
concentration and the target capture number were supplied by https://
www.10xgenomics.com/. Gel beads in emulsion (GEMs) were prepared and
reverse transcription was performed immediately once the expected cell
concentration and viability was acquired.

Public datasets acquisition
Considering that relatively low incidence of nccRCC, we attempted to
include all the nccRCC of scRNA-seq for the more comprehensive
analysis. Thus, the public scRNA-seq count matrices for human fetal
kidney and pRCC (pRCC1, pRCC1N, pRCC2, and pRCC2N) were
respectively from Hochane et al. [63] and Young et al. [15]. The
expression matrices and corresponding clinical data of the patients from
TCGA KIRP and KICH datasets (Table 2) containing 210 pRCC and 64
chrRCC samples (excluding cases with incomplete information, Table
S1), which was acquired from official website (http://xena.ucsc.edu/) of
UCSC Xena.

Table 1. Pathologic and clinical information of 10x Genomics sequencing samples.

Patient ID Tissue site Sample ID Sex Age Pathology TNM stage

D1 Primary site chrRCC_P Male 54 (Right Kidney) Chromophobe cell carcinoma with iliac bone
metastases

Satge III

Para-tumor site chrRCC_N

Metastatic
tumor site

chrRCC_B

D2 Primary site pRCC3 Male 61 (Right kidney) Papillary renal cell carcinoma, Type 1.Both
ureter and vascular end (−)

Satge I

D3 Primary site sarRCC_P Male 39 (Right kidney) the tumor cells are distinctly heterogeneous,
considering a renal cell carcinoma with sarcomatoid
differentiation

Satge IV

Para-tumor site sarRCC_N

Metastatic
tumor site

sarRCC_L

D4 Primary site cdRCC_P Female 27 (Right kidney) Collecting duct carcinoma with hilar and
retroperitoneal lymph node metastasis and spinal metastasis

Satge IV

Metastatic
tumor site

cdRCC_L

Metastatic
tumor site

cdRCC_B

D5 Primary site pRCC1 Unknown 70 Papillary renal cell carcinoma Stage I

Para-tumor site pRCC1N

Primary site pRCC2

Para-tumor site pRCC2N

Wen-jin Chen et al.

10

Cell Death and Disease           (2022) 13:50 

https://www.10xgenomics.com/
https://www.10xgenomics.com/
http://xena.ucsc.edu/


Ta
bl
e
2.

Th
e
b
as
el
in
e
cl
in
ic
al

ch
ar
ac
te
ri
st
ic
s
o
f
TC

G
A
n
cc
RC

C
p
at
ie
n
ts

(n
=
27

4)
.

C
h
ar
ac
te
ri
st
ic
s

A
b
un

d
an

ce
of

C
D
8T

_c
lu
st
er
3_

ce
lls

p
va

lu
e

A
b
un

d
an

ce
of

sa
rR
C
C
_c
el
ls

p
va

lu
e

A
b
un

d
an

ce
of

ch
r_
M
ac
ro
p
h
ag

es
p
va

lu
e

C
on

se
n
su
s
cl
us
te
r

p
va

lu
e

Lo
w

(n
=
13

7)
H
ig
h

(n
=
13

7)
Lo

w
(n

=
13

7)
H
ig
h

(n
=
13

7)
Lo

w
(n

=
13

7)
H
ig
h

(n
=
13

7)
1 (n

=
14

5)
2 (n

=
69

)
3 (n

=
60

)

A
g
e

0.
22

3
0.
01

0
0.
19

0
0.
62

0

<
60

44
54

39
59

44
54

51
23

24

≥
60

91
82

97
76

92
81

93
46

34

N
A

2
1

1
2

1
2

1
0

2

G
en

d
er

0.
64

2
0.
72

9
0.
87

9
0.
30

5

Fe
m
al
e

40
36

39
37

38
38

36
24

16

M
al
e

96
98

95
99

99
95

10
7

44
43

N
A

1
3

3
1

0
4

2
1

1

A
JC
C
st
ag

e
<
0.
00

1
0.
00

5
<
0.
00

1
<
0.
00

1

I–
II

13
1

10
0

12
4

10
7

13
7

94
14

5
69

18

III
–
IV

6
37

13
30

0
43

0
0

42

TN
M

st
ag

e
<
0.
00

1
0.
01

0
<
0.
00

1
<
0.
00

1

I–
II

13
1

10
4

12
5

11
0

13
7

98
14

5
69

22

III
–
IV

6
33

12
27

0
39

0
0

38

O
ve

ra
ll
su
rv
iv
al

0.
00

9
0.
02

0
0.
00

9
0.
03

3

−
13

3
12

1
13

2
12

2
13

3
12

1
13

7
66

51

+
4

16
5

15
4

16
8

3
9

Pr
o
g
re
ss
io
n
-f
re
e
su
rv
iv
al

−
12

2
11

8
0.
46

4
12

2
11

8
<
0.
00

1
12

5
11

5
0.
06

7
12

9
62

49
0.
28

4

+
15

19
15

11
9

12
22

16
7

11

Th
e
d
et
ai
le
d
in
fo
rm

at
io
n
o
f
th
es
e
TC

G
A
n
cc
R
C
C
p
at
ie
n
ts
,s
ee

th
e
“M

at
er
ia
ls
an

d
m
et
h
o
d
s”

an
d
Ta
b
le

S1
.

Wen-jin Chen et al.

11

Cell Death and Disease           (2022) 13:50 



Droplet-based scRNA-seq and raw data processing
Chromium Single-Cell 3′ Library, Gel Bead & Multiplex Kit and Chip Kit (10x
Genomics) were used to obtain barcoded scRNA-seq libraries, which were
then sequenced on the Illumina NovaSeq 6000, generating 150 bp paired-
end reads and processed through CellRanger (version 3.0.2) to obtain the
label of human genome (Grch38). All the final raw count matrices of
unique molecular identifier (UMI) were imported into R program (version
3.5.2).

Data quality control (QC) and cell type identification
A total of 11 tumor samples, four normal kidney sample from six patients.
(Figs. S5–S7) were included in our study. The data quality control was
assessed via Seurat (version 3.0.1) [64]. Cells with <200 or >6000 genes or
with more than 10% mitochondrial-derived genes were filtered out
because of the low-quality. Finally, a total of 32,374 cells were included to
perform further analysis. We used the Harmony package (version 1.0) to
minimize differences between batches. The top 30 principal components
and the top 2000 variable genes were applied. The ScaleData function of
Seurat was used to regress out the interference of sample source, UMI
counts and mitochondrial gene proportions. We used the FindClusters
function of Seurat (resolution =2) to identify major cell clusters and
visualized them by 2D UMAP or tSNE. We listed all the markers of each
main cell cluster through FindAllMarker function. Markers for identifying
the primary cell types were obtained from the CellMarker [65] and
PanglaoDB [66] datasets, plus previous studies [19, 62, 67]. The
characteristic markers used for label were presented in Fig. S8. Meanwhile,
we used the SingleR package [68] as the auxiliary tool to identify cell types
for the sake of screening out optimal labeling by the combined methods.

Immunofluorescence (IHC) of human nccRCC tissue
These nccRCCs tissue samples for scRNA-seq were also obtained form the
Department of Pathology in our institution and performed IHC assay. To
detect specific gene expression, the antibodies for IHC are as following:
anti-CD163 (mouse, 1:100, servicebio, catalog no. GB14027), anti-TREM2
(rabbit, 1:100, Proteintech, catalog no. 27599–1-AP), anti-CD8 (rabbit,
1:1000, servicebio, catalog no. GB13068), anti-LAG3 (rabbit, 1:30, Abcam,
ab209236). The number of double-positive cells in random 20 fields were
counted and analyzed statistically.

Tumor purity and immune infiltration analysis
ESTIMATE is a pipeline using expression matrix to generate scores for
tumor purity and the infiltrating level of immune cells or stromal cells. All
the main cell clusters were classified as Tumor_cells, Immune_cells and
Others, and then the ESTIMATE scores were obtained from these three
types of cells, knowing that this method can provide the consideration of
cancer-related cells for single-cell transcriptomic analysis when combined
with Seurat Package [69].

Pseudotime trajectory analyses
In order to investigate the alternations of TME, we utilized Monocle 3 and
Monocle 2, the R packages shared by Cao et al. and Qiu et al. for single-cell
dramatic trajectories [70, 71]. In Monocle 2, highly changed genes were
recognized by the built-in differential GeneTest function.

Differential expression and pathway analyses
Seurat’s FindMarkers function was used to calculate DEGs. The log2 (fold
change) value (0.8~2) was set appropriately and adj. p value < 0.01 was
used as the cutoff threshold value. The DEGs were then processed by
clusterProfiler package for KEGG enrichment analysis [72]. The adj. p value
< 0.05 was considered markedly enriched for each pathway. GSEA was
applied to explore the significantly enriched gene set for every specific
cluster with p value < 0.05 of false discovery rate. GSVA method was used
to evaluate pathway activity for each cell with default parameters.

Intercellular communication analyses
iTALK (R package, version 0.1.0) was utilized to analyze the cell–cell
communication as a calculation tool [73]. Knowing that this method
integrates various differential analysis and visualization approaches, which
annotates ligand-receptors into four categories, including cytokines,
growth factors, immune checkpoints and others, we believed that this
pipeline could be more suitable for the analysis of molecular intercellular

communication among cells involving TME. The ligand-receptor pairs with
p value < 0.05 were considered as significant interaction.

Single-cell regulatory network analyses
To reveal the gene regulatory network of the nccRCC derived samples, we
used the SCENIC package (version 1.1.2.1) reference to motifs database for
GRNboost2 and RcisTarget (version 1.2.1). Potential co-expressed modules
and regulons were obtained by GRNBoost2 from arboreto. Targeted
modules and regulatory network activity were assessed by RcisTarget and
AUCell (version 1.4.1), respectively [74, 75].

InferCNV
We applied the InferCNV package with default parameters to explore the
CNVs in renal tubular cells (proximal and DT cells and CD cells) and to
identify real renal cancer cells and CSC. Normally derived renal tubular cells
were classified as the control group.

Validation in external RNA-seq and clinical data of TCGA
CIBERSORTx tool (R package version) was used to detect the relative
abundance of cell types defined by our single-cell data in bulk RNA-seq
database. The bulk RNA-seq data was normalized by log2(TPM+ 1)
before being loaded into CIBERSORTx analysis. After establishing the
signature matrix, we performed the relative abundance analysis for all
cell clusters. The patients were divided into two equal groups: 50% high
and 50% low. The KM analysis was used by GraphPad Prism (version 7.0)
for hazard ratio. To investigate whether the abundance of cell clusters
was correlated with survival changed accompanied by the TNM stage
progression, we used Mann–Whitney test and visualized the results by
boxplot. Nomogram analysis was performed by “foreign” (version 0.8-78)
and “rms” packages (version 6.0-1) for constructing the risk prediction
model. In order to confirm the significance of the TME subtype,
ConsensusClusterplus (version 1.46.0) was performed to divide KICH and
KIRP (TCGA cohort) into three groups. One-way ANOVA was employed to
assess whether the relative abundance of cell cluster in these three
nccRCC subgroups presented significant diversities. We used the Tukey’s
multiple comparison test to calculate differences between any
two groups
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