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Objective. A predictive model was established based on logistic regression and XGBoost algorithm to investigate the factors related
to postoperative hypocalcemia in patients with secondary hyperparathyroidism (SHPT). Methods. A total of 60 SHPT patients
who underwent parathyroidectomy (PTX) in our hospital were retrospectively enrolled. All patients were randomly divided
into a training set (n = 42) and a test set (n = 18). The clinical data of the patients were analyzed, including gender, age, dialysis
time, body mass, and several preoperative biochemical indicators. The multivariate logistic regression and XGBoost algorithm
models were used to analyze the independent risk factors for severe postoperative hypocalcemia (SH). The forecasting
efficiency of the two prediction models is analyzed. Results. Multivariate logistic regression analysis showed that body mass
(OR = 1:203, P = 0:032), age (OR = 1:214, P = 0:035), preoperative PTH (OR = 1:026, P = 0:043), preoperative Ca (OR = 1:062,
P = 0:025), and preoperative ALP (OR = 1:031, P = 0:027) were positively correlated with postoperative SH. The top three
important features of XGBoost algorithm prediction model were preoperative Ca, preoperative PTH, and preoperative ALP.
The area under the curve of the logistic regression and XGBoost algorithm model in the test set was 0.734 (95% CI:
0.595~0.872) and 0.827 (95% CI: 0.722~0.932), respectively. Conclusion. The predictive models based on the logistic regression
and XGBoost algorithm model can predict the occurrence of postoperative SH.

1. Introduction

Secondary hyperparathyroidism (SHPT) is a common com-
plication in patients with chronic renal insufficiency [1]. It
refers to the syndrome caused by the excessive secretion of
parathyroid hormone (PTH) stimulated by low blood cal-
cium or high blood phosphorus for various reasons and is
one of the common severe complications of maintenance
hemodialysis patients [2, 3]. The main manifestations of
SHPT patients are elevated parathyroid hormone, calcium
and phosphorus metabolism disorder, ectopic calcification,
and osteoporosis [4]. About 50% of the death causes of dial-
ysis patients are cardiovascular events caused by vascular
calcification, which seriously affects patients’ quality of life
and survival time [5].

Treatment of SHPT includes the normalization of serum
phosphorus and calcium levels and optimization and
improvement of parathyroid hormone levels [6, 7]. For
patients with SHPT who are refractory to treatment or can-
not afford expensive drugs, parathyroidectomy (PTX) can
quickly and effectively control PTH levels and prevent pro-
gression [8, 9]. However, after PTX, serum calcium (Ca),
phosphorus (P), and parathyroid hormone levels were sig-
nificantly reduced [10]. A sudden drop in parathyroid hor-
mone leads to a brief and significant increase in bone
remineralization, with rapid transfer of calcium from the cir-
culation to bone tissue [11]. Patients with mild clinical
symptoms may be accompanied by weakness, headache,
and paresthesia [12]. Severe postoperative hypocalcemia
(SH) is the most common complication after PTX, with an
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incidence of 70%-97%, and patients can develop life-
threatening complications [13].

SH in patients is a common complication after PTX.
How to effectively prevent and correct SH is the main con-
cern after PTX. At present, there are few studies on the risk
factors related to SH after PTX. Building machine models to
predict diseases has become a hot topic in recent years [14].
In this study, the XGBoost algorithm and logistic regression
model were used to analyze the influencing factors of cal-
cium demand after SHPT and to provide therapeutic strate-
gies for postoperative correction of postoperative SH.

2. Material and Methods

2.1. General Data. A total of 60 patients diagnosed with
SHPT who underwent SHPT in our department from Janu-
ary 2017 to December 2019 were retrospectively selected as
the study subjects. The inclusion criteria of 60 patients have
met the Improving Global Outcomes (KDIGO) for the Diag-
nosis, Evaluation, Prevention, and Treatment of Chronic
Kidney Disease-Mineral and Bone Disorder (CKD-MBD):
(1) PTH > 800pg/mL and (2) chronic renal insufficiency
[15]. All patients had the following surgical indications:
severe SHPT symptoms, such as hyperphosphatemia, post-
operative SH, pruritus, and bone pain. None of the 60
patients had severe cardiac insufficiency. Exclusion criteria
include complicated with other serious diseases and compli-
cations and poor treatment compliance.

2.2. Study and Analyze Variables. General data and labora-
tory results of patients were included in the analysis. General
data of the patients include gender, age, body mass, dialysis
time, and parathyroid gland volume. Laboratory examina-
tion included intact serum parathyroid hormone (PTH),
serum calcium (Ca), serum phosphorus (P), and serum alka-
line phosphatase (ALP) from preoperative patients.

2.3. Construction of Logistic Regression Model. Logistic
regression is a commonly used statistical learning model to
predict the outcome of binary variables. The dependent var-
iable y is a dichotomous variable and only takes 0 and 1. P
= Pðy = 1jx1,⋯, xkÞ is the object of study, It is affected by
K factors and is called binary logistic linear regression model
or logistic regression model for short.

ln
P

1 − P
= β0 + β1x1+⋯+βkxk: ð1Þ

The value P/ð1 − PÞ = eβ0+β1x1+⋯+βkxk of the advantage
ratio P/ð1 − PÞ can be obtained from formula (1). The calcu-
lation formula of P can be obtained:
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2.4. Construction of XGBoost Algorithm Model. XGBoost
reduces the complexity of the model and avoids overfitting
by adding regularization terms into the objective function
on the basis of gradient lifting decision tree. The objective
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γ and λ are the penalty coefficient for the model. T and
w represent the number of leaves and the weight of leaves in
the Kth tree, respectively. c is a constant term. XGBoost per-
forms second-order Taylor expansion on this basis, assum-
ing that the loss function of the t time is defined as
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Second-order Taylor expansion is performed on formula
(4), and the constant term is simplified and removed:
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2.5. Establishment of Study Sequence. The data sets of SHPT
patients were randomly divided into a training set (n = 42)
and a test set (n = 18) based on a 7 : 3 ratio. The training
set is used to fit the prediction model, and the test set is used
to evaluate the model effect. To prevent overfitting and
improve the model’s prediction performance, the indepen-
dent risk factors of postoperative SH were analyzed by
one-way ANOVA and Mann–Whitney U test in the logistic
regression prediction model, and the optimal model in the
training set was screened. Regression coefficient, OR value,
and 95% CI can reflect the effects of predictors in the logistic
prediction model (Figure 1).

In the XGBoost prediction model, parameters are firstly
adjusted by adjusting the weight of the leaf node and the
depth of the tree model. Then, the training set was further
subdivided into 10 pieces using the 10-fold cross-validation
method. One of them was cyclically extracted as the verifica-
tion set to adjust the hyperparameters of XGBoost. In the
XGBoost prediction model, the importance of the predictors
is reflected by the important feature score (Figure 2). The
patients in the training set were divided into the SH group
and nonsevere hypocalcemia (non-SH group) according to
postoperative blood calcium level. According to the quality
guidelines for prognosis of renal disease, blood calcium <
1:8mmol/L 7 days after the operation was defined as the
SH group. In contrast, serum calcium > 1:8mmol/L 7 days
after the operation was defined as the non-SH group [16].

2.6. Statistical Analysis. The Shapiro-Wilk test is performed
to determine the normality of the data. The measurement
data conforming to normal distribution were described by
mean ± standard deviation. SPSS 20.0 software was used for
statistical analysis. The predictive effectiveness of the logistic
regression model and the XGBoost algorithm model was
evaluated with the receiver characteristic curve (ROC). The
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larger the area under the curve is, the higher the prediction
efficiency will be. P < 0:05means the difference is statistically
significant.

3. Results

3.1. Comparison of Clinical Data. Among the 42 patients in
the training set, 25 were male and 17 were female. The mean
age of the patients was 49:6 ± 7:8 years. Of the 18 patients in

the test set, 11 were male and 7 were female. The patient’s
age was 48:7 ± 6:9 years. There were no significant differ-
ences in gender, age, body weight, dialysis time, and para-
thyroid gland volume between the training set and the test
set (P > 0:05). The specific data are shown in Table 1.

3.2. Comparison of Clinical Data between the SH Group and
Non-SH Group. Patients in the training group were divided
into the SH group (n = 18) and the non-SH group (n = 24)
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Optimal
models

ValidationTest set
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Data set

Figure 1: Flow chart of logistic regression model training.
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Figure 2: Flow chart of XGBoost algorithm prediction model training.

Table 1: Comparison of general patient data between the training set and test set.

Variable Training test Test set x2/t P

Age (years) 49:6 ± 7:8 48:7 ± 6:9 -0.519 0.605

Gender (male) 25 11 0.013 0.908

Body mass (kg) 54:7 ± 10:1 53:8 ± 9:3 -0.396 0.693

Dialysis time (years) 5:6 ± 0:5 5:7 ± 0:4 0.920 0.360

Parathyroid gland volume (cm3) 4:5 ± 2:1 4:4 ± 2:0 -0.210 0.834

Table 2: Comparison of clinical data between the SH group and non-SH group.

Variable SH group Non-SH group x2/t P

Gender (male/female) 11/7 14/10 0.033 0.856

Dialysis time (years) 7:69 ± 3:43 8:53 ± 3:85 0.897 0.373

Parathyroid gland volume (cm3) 4:64 ± 2:16 4:62 ± 2:14 -0.037 0.971

Preoperative P (mmol/L) 2:45 ± 0:51 2:36 ± 0:42 -0.768 0.446
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according to postoperative blood calcium levels. There were
no significant differences between the two groups in terms of
gender, dialysis time, parathyroid gland volume, and preop-
erative serum P (P > 0:05). However, there were statistically
significant differences in age, body weight, preoperative
PTH, preoperative Ca, and preoperative ALP between the
two groups (P < 0:05). Detailed information is shown in
Table 2 and Figure 3.

3.3. Logistic Regression Analysis Results. Multivariate logistic
regression analysis showed that body mass, preoperative

PTH, and preoperative ALP were positively correlated with
postoperative SH, which were risk factors. However, age
and preoperative Ca were negatively correlated with postop-
erative SH, which were protective factors (Table 3).

3.4. Important Feature Score of XGBoost Model. The vari-
ables in the training set are incorporated into the algorithm
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Figure 3: Comparison of clinical data between the SH group and non-SH group in the training set. The difference in clinical data between
the two groups was statistically significant (P < 0:05).

Table 3: Multivariate logistic regression analysis of severe
postoperative hypocalcemia.

Variable β SE P OR 95% CI

Body mass 0.186 4.291 0.032 1.203 1.203~1.428
Age -0.236 0.070 0.035 1.214 1.219~1.297
Preoperative PTH 0.004 4.215 0.043 1.026 1.006~1.009
Preoperative Ca -6.608 3.007 0.025 1.062 1.073~1.081
Preoperative ALP 0.027 3.986 0.040 1.031 1.031~1.059
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Figure 4: Important feature score in the XGBoost algorithm
model.
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model for training, and the scoring results of important fea-
tures are finally obtained. According to the score, the order
is preoperative Ca, preoperative PTH, preoperative ALP,
age, and body mass. The important feature scores in the
XGBoost algorithm model are shown in Figure 4.

3.5. Evaluation of the Effectiveness of Prediction Models. The
area under the curve of the logistic regression model in the
training set was 0.754 (95% CI: 0.619~0.888), and the area
under the curve of the XGBoost algorithm was 0.784 (95%
CI: 0.655~0.913). The area under the curve of the logistic
regression model in the test set was 0.734 (95% CI:
0.595~0.872), and the area under the curve of the XGBoost
algorithm was 0.827 (95% CI: 0.722~0.932). The ROC is
shown in Figure 5.

4. Discussion

The SHPT is a common complication of maintenance dialy-
sis patients, which can cause symptoms such as dialysis bone
pain, pruritus, and insomnia and even significantly increase
the fatality rate [17]. PTX is the most important treatment
for patients with refractory SHPT [8]. Postoperative SH is
a common postoperative complication of SHPT patients.
Patients may experience convulsions of the limbs, numb-
ness, laryngeal muscle spasm, and even cardiac arrest, which
is a difficulty in the current treatment [4]. Therefore, it is of
great clinical significance to explore the influencing factors
of SHPT after PTX to prevent and treat SH.

The mechanism of SH occurrence after PTX is that PTH
in postoperative blood circulation decreases rapidly and 2
hours after surgery is often reduced to less than 10% of the
preoperative level. This causes a decrease in intestinal cal-
cium absorption and slows down osteoclasts. The rapid
deposition of serum Ca and serum P into the bone tissue
leads to a sharp drop in blood Ca levels, presenting as persis-
tent and SH, also known as “bone starvation” syndrome

[18]. Several studies have shown that the incidence of severe
SH after PTX is 70%~90% [19].

According to the study, age, body weight, preoperative
PTH, preoperative Ca, and preoperative ALP have statistical
significance with postoperative SH (P < 0.05). In this study,
the logistic regression model was used to analyze and show
that age, body weight, preoperative PTH, preoperative Ca,
and preoperative ALP have an impact on postoperative
SH. In addition, the XGBoost algorithm model is also con-
structed in this study, and the top three variables are preop-
erative Ca, preoperative PTH, and preoperative ALP
according to important feature scores, while preoperative
Ca level is a protective factor for postoperative SH. Many
previous studies have confirmed the influence of preopera-
tive Ca on postoperative SH [20, 21]. PTH is one of the main
hormones regulating Ca and P metabolism in the body.
After PTX, PTH level decreases rapidly, intestinal Ca
absorption decreases, osteogenesis rate exceeds osteolysis,
and blood Ca deposits to the bone tissue, so blood Ca
decreases significantly [22]. ALP is a recognized biomarker
of renal osteodystrophy [23]. The sudden decrease of PTH
in SHPT patients after surgery can affect osteoclast activity
and bone resorption, leading to postoperative SH and the
corresponding increase in serum ALP level [24]. PTH regu-
lates the balance of serum Ca and serum P, promotes bone
resorption, and inhibits bone formation. Our study was sim-
ilar to previous studies. Yang et al. [25] showed that preop-
erative ALP affected postoperative SH. The higher the
preoperative ALP level of PTX was, the more obvious post-
operative SH would be.

In addition, based on multiple logistic regression, our
study also found that age and body mass were also related
variables of postoperative SH, among which age was nega-
tively correlated with postoperative low Ca. Based on the
XGBoost algorithm prediction model, it was found that
although body mass was the influencing factor of SH after
PTX, it had the lowest feature score. Ge et al. recently found
that patients with higher body mass have higher bone mass
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Figure 5: The ROC of the logistic regression model and XGBoost algorithm model in the training set and test set.
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and hence greater postoperative total Ca requirements [26].
These results indicate that monitoring and managing body
mass are of great significance in preventing and treating
SH after an operation. Recent studies have shown that body
mass is an independent predictor of SH, and overweight and
obesity are risk factors for SH [27].

Logistic regression is one of the most commonly used
statistical models in which the outcome variables are dichot-
omous [28]. The XGBoost algorithm model can not only
control the complexity of the model but also prevent the
model from overfitting due to the regular term added into
the loss function [14]. In this study, the prediction models
of postoperative SH in patients with SHPT based on logistic
regression and XGBoost algorithm have good prediction
efficiency.

This study has some limitations. First, not many predic-
tive variables are included in this study, which may affect the
prediction results. Second, the relatively small sample size
may mask potentially significant associations between vari-
ables. Therefore, increasing the predictive variables and the
sample size is the focus of future research. In the future,
more algorithms will be tried to predict postoperative SH
[29–31].

5. Conclusion

This study suggested that the predictive models based on the
logistic regression and XGBoost algorithm model can pre-
dict the occurrence of postoperative SH. The body weight,
preoperative PTH, and preoperative ALP are risk factors
for SH occurrence after PTX in SHPT patients, while age
and preoperative Ca are protective factors for SH. To avoid
the occurrence of SH, high attention should be paid to the
prevention and treatment of high-risk groups, and preoper-
ative monitoring and management of these indicators
should be paid to treat SHPT and related complications
better.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Conflicts of Interest

The authors declare no conflict of interest.

References

[1] P. Messa and C. M. Alfieri, “Secondary and tertiary hyperpara-
thyroidism,” Frontiers of Hormone Research, vol. 51, pp. 91–
108, 2019.

[2] W. L. Lau, Y. Obi, and K. Kalantar-Zadeh, “Parathyroidec-
tomy in the management of secondary hyperparathyroidism,”
Clinical Journal of the American Society of Nephrology, vol. 13,
no. 6, pp. 952–961, 2018.

[3] M. E. Rodríguez-Ortiz and M. Rodríguez, “Recent advances in
understanding and managing secondary hyperparathyroidism
in chronic kidney disease,” F1000Research, vol. 9, 2020.

[4] M.Mizobuchi, H. Ogata, and F. Koiwa, “Secondary hyperpara-
thyroidism: pathogenesis and latest treatment,” Therapeutic
Apheresis and Dialysis, vol. 23, no. 4, pp. 309–318, 2019.

[5] T. K. Chen, D. H. Knicely, and M. E. Grams, “Chronic kidney
disease diagnosis and management,” JAMA, vol. 322, no. 13,
pp. 1294–1304, 2019.

[6] K. E. Eidman and J. B. Wetmore, “Treatment of secondary
hyperparathyroidism: how do cinacalcet and etelcalcetide dif-
fer?,” Seminars in Dialysis, vol. 31, no. 5, pp. 440–444, 2018.

[7] A. Mathur, W. Sutton, J. B. Ahn et al., “Association between
treatment of secondary hyperparathyroidism and posttrans-
plant outcomes,” Transplantation, vol. 105, no. 12, pp. e366–
e374, 2021.

[8] K. E. Eidman and J. B. Wetmore, “The role of parathyroidec-
tomy in the management of secondary hyperparathyroidism,”
Current Opinion in Nephrology and Hypertension, vol. 26,
no. 6, pp. 516–522, 2017.

[9] M. Okada, Y. Tominaga, T. Ichimori, T. Tomosugi,
T. Hiramitsu, and T. Tsuzuki, “Surgical outcomes of parathy-
roidectomy for secondary hyperparathyroidism resistant to
calcimimetic treatment: a retrospective single-center cohort
study,” Therapeutic Apheresis and Dialysis, vol. 25, no. 2,
pp. 188–196, 2021.

[10] A. Patel, C. Y. Lee, D. A. Sloan, and R. W. Randle, “Parathy-
roidectomy for tertiary hyperparathyroidism: a multi-
institutional analysis of outcomes,” The Journal of Surgical
Research, vol. 258, pp. 430–434, 2021.

[11] S. Frey, É. Mirallié, B. Cariou, and C. Blanchard, “Impact of
parathyroidectomy on cardiovascular risk in primary hyper-
parathyroidism: a narrative review,” Nutrition, Metabolism,
and Cardiovascular Diseases, vol. 31, no. 4, pp. 981–996, 2021.

[12] R. V. Rasche, F. Schuster, N. Meurer et al., “Influence of para-
thyroidectomy on sleep quality in primary hyperparathyroid-
ism,” Advances in Experimental Medicine and Biology,
vol. 1335, pp. 121–127, 2021.

[13] J. I. Fonseca-Correa, C. Nava-Santana, L. Tamez-Pedroza
et al., “Clinical factors associated with early and persistent
hypocalcaemia after parathyroidectomy in patients on dialysis
with severe hyperparathyroidism,” Nephrology (Carlton),
vol. 26, no. 5, pp. 408–419, 2021.

[14] M. Alim, G. H. Ye, P. Guan, D. S. Huang, B. S. Zhou, and
W. Wu, “Comparison of arima model and xgboost model for
prediction of human brucellosis in mainland china: a time-
series study,” BMJ Open, vol. 10, no. 12, article e039676, 2020.

[15] D. C. Wheeler andW. C. Winkelmayer, “KDIGO 2017 clinical
practice guideline update for the diagnosis, evaluation, preven-
tion, and treatment of chronic kidney disease-mineral and
bone disorder (CKD-MBD) foreword,” Kidney International
Supplements, vol. 7, no. 1, pp. 1–59, 2017.

[16] M. Noordzij, J. C. Korevaar, E. W. Boeschoten et al., “The kid-
ney disease outcomes quality initiative (k/doqi) guideline for
bone metabolism and disease in CKD: association with mor-
tality in dialysis patients,” American Journal of Kidney Dis-
eases, vol. 46, no. 5, pp. 925–932, 2005.

[17] T. Shoji, S. Nakatani, D. Kabata et al., “Comparative effects of
etelcalcetide and maxacalcitol on serum calcification propen-
sity in secondary hyperparathyroidism,” Clinical Journal of
the American Society of Nephrology, vol. 16, no. 4, pp. 599–
612, 2021.

[18] Y.Wei, L. L. Peng, Z. L. Zhao, Y. Li, andM. A. Yu, “Risk factors
of severe hypocalcemia after us-guided percutaneous

6 Computational and Mathematical Methods in Medicine



microwave ablation of the parathyroid gland in patients with
secondary hyperparathyroidism,” Journal of Bone and Mineral
Research, vol. 35, no. 4, pp. 691–697, 2020.

[19] J. Liu, Q. Huang, M. Yang, L. Huang, and L. Zhang, “Risk fac-
tors predicting severe hypocalcemia after total parathyroidec-
tomy without autotransplantation in patients with secondary
hyperparathyroidism,” Journal of International Medical
Research, vol. 48, no. 1, 2020.

[20] W. Wang, C. Meng, Q. Ouyang, J. Xie, and X. Li, “Magnese-
mia: an independent risk factor of hypocalcemia after thyroid-
ectomy,” Cancer Management and Research, vol. 11, pp. 8135–
8144, 2019.

[21] K. Ikegami, M. Hashiguchi, H. Kizaki, O. Yasumuro,
R. Funakoshi, and S. Hori, “Development of risk prediction
model for grade 2 or higher hypocalcemia in bone metastasis
patients treated with denosumab plus cholecalciferol (vitamin
D3)/Ca supplement,” The Journal of Clinical Pharmacology,
2022.

[22] R. D. Bhanot, J. Kaur, and Z. Bhat, “Severe hypocalcemia and
dramatic increase in parathyroid hormone after denosumab
in a dialysis patient: a case report and review of the literature,”
Case Reports in Nephrology, vol. 2019, Article ID 3027419, 4
pages, 2019.

[23] P. Wen, L. Xu, S. Zhao et al., “Risk factors for severe hypocal-
cemia in patients with secondary hyperparathyroidism after
total parathyroidectomy,” International Journal of Endocrinol-
ogy, vol. 2021, Article ID 6613659, 7 pages, 2021.

[24] M. Haarhaus, V. Brandenburg, K. Kalantar-Zadeh,
P. Stenvinkel, and P. Magnusson, “Alkaline phosphatase: a
novel treatment target for cardiovascular disease in CKD,”
Nature Reviews. Nephrology, vol. 13, no. 7, pp. 429–442, 2017.

[25] M. Yang, L. Zhang, L. Huang, X. Sun, H. Ji, and Y. Lu, “Factors
predictive of critical value of hypocalcemia after total parathy-
roidectomy without autotransplantation in patients with sec-
ondary hyperparathyroidism,” Renal Failure, vol. 38, no. 8,
pp. 1224–1227, 2016.

[26] Y. Ge, G. Yang, N.Wang et al., “Bone metabolismmarkers and
hungry bone syndrome after parathyroidectomy in dialysis
patients with secondary hyperparathyroidism,” International
Urology and Nephrology, vol. 51, no. 8, pp. 1443–1449, 2019.

[27] C. Blanchard, S. Bannani, F. Pattou et al., “Impact of body
mass index on post-thyroidectomy morbidity,” Head & Neck,
vol. 41, no. 9, pp. 2952–2959, 2019.

[28] E. O. Bayman and F. Dexter, “Multicollinearity in logistic
regression models,” Anesthesia and Analgesia, vol. 133, no. 2,
pp. 362–365, 2021.

[29] M. Zhang, L. Zhu, Y. Sun, D. Niu, and J. Liu, “Computed
tomography of ground glass nodule image based on fuzzy c-
means clustering algorithm to predict invasion of pulmonary
adenocarcinoma,” Journal of Radiation Research and Applied
Sciences, vol. 15, no. 1, pp. 152–158, 2022.

[30] Z. Tang, S. Wang, X. Chai, S. Cao, T. Ouyang, and Y. Li,
“Auto-encoder-extreme learning machine model for boiler
nox emission concentration prediction,” Energy, vol. 256, arti-
cle 124552, 2022.

[31] J. Li, S. Fong, R. K. Wong, R. Millham, and K. K. L. Wong,
“Elitist binary wolf search algorithm for heuristic feature selec-
tion in high-dimensional bioinformatics datasets,” Scientific
Reports, vol. 7, no. 1, p. 4354, 2017.

7Computational and Mathematical Methods in Medicine


	Prediction Model of Postoperative Severe Hypocalcemia in Patients with Secondary Hyperparathyroidism Based on Logistic Regression and XGBoost Algorithm
	1. Introduction
	2. Material and Methods
	2.1. General Data
	2.2. Study and Analyze Variables
	2.3. Construction of Logistic Regression Model
	2.4. Construction of XGBoost Algorithm Model
	2.5. Establishment of Study Sequence
	2.6. Statistical Analysis

	3. Results
	3.1. Comparison of Clinical Data
	3.2. Comparison of Clinical Data between the SH Group and Non-SH Group
	3.3. Logistic Regression Analysis Results
	3.4. Important Feature Score of XGBoost Model
	3.5. Evaluation of the Effectiveness of Prediction Models

	4. Discussion
	5. Conclusion
	Data Availability
	Conflicts of Interest

