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Background: Varicocele (VC) is present in 35 - 40% of men with infertility. However,
current surgical and antioxidant treatments are not completely effective. In addition to
oxidative stress, it is likely that other factors such as testicular immune microenvironment
disorder contribute to irreversible testicular. Evidence suggests that VC is associated with
anti-sperm antibodies (ASAs), spermatogenesis and testosterone secretion
abnormalities, and testicular cytokine production. Moreover, inhibition of inflammation
can alleviate VC-mediated pathogenesis. The normal function of the testis depends on its
immune tolerance mechanism. Testicular immune regulation is complex, and many
infectious or non-infectious diseases may damage this precision system.

Results: The testicular immune microenvironment is composed of common immune cells
and other cells involved in testicular immunity. The former includes testicular
macrophages, T cells, dendritic cells (DCs), and mast cells, whereas the latter include
Leydig cells and Sertoli cells (SCs). In animal models and in patients with VC, most studies
have revealed an abnormal increase in the levels of ASAs and pro-inflammatory cytokines
such as interleukin (IL)-1 and tumor necrosis factor (TNF)-alpha in the seminal plasma,
testicular tissue, and even peripheral blood. It is also involved in the activation of potential
inflammatory pathways, such as the nucleotide-binding oligomerization domain-like
receptor family pyrin domain containing (NLRP)-3 pathway. Finally, the development of
VC-mediated infertility (VMI) may be facilitated by abnormal permeability of proteins, such
as claudin-11, that constitute the blood-testis barrier (BTB).

Conclusions: The testicular immune response, including the production of ASAs and
inflammatory factors, activation of inflammatory pathways, and destruction of the BTB
may be involved in the pathogenesis of VMI it is necessary to further explore how patient
outcomes can be improved through immunotherapy.
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INTRODUCTION

Approximately 15% of couples worldwide have infertility; half of
these cases are attributable to male factors. Varicocele (VC), a
vascular disease characterized by abnormal enlargement of the
pampiniform plexus veins, is a highly treatable cause of infertility
observed in 35–40% of men with infertility (1). VC is left-sided in
at least 85% of cases (2); right-sided VCs are rare (3). Surgical
ligation or embolization of the spermatic cord vein can improve
semen quality, sperm DNA integrity, mitochondrial activity, and
assisted reproductive cycle outcomes (4). It has been suggested
that VC-mediated infertility (VMI) is not caused by a single
factor but is the result of the synergy of genetic and other
molecular factors, such as hypoxia, oxidative stress, and
nutrient deprivation (5). However, some patients fail to regain
fertility after surgery, antioxidant therapy, or other treatments.
Interestingly, Mazdak Razi et al. (6) proposed that VMI is caused
by endoplasmic reticulum stress and the unfolded protein
response, which promote testicular cell apoptosis, and could be
treated with antioxidants and anti-inflammatory molecules. In
addition to the above factors, there are likely other factors that
contribute to irreversible testicular damage. Evidence suggests
that VC is associated with anti-sperm antibodies (ASAs) (7),
spermatogenesis and testosterone secretion abnormalities (8),
and cytokine production (9) in the testes. Moreover, inhibition of
inflammation can alleviate VC-mediated pathogenesis (10). The
normal function of the testis depends on its immune tolerance
mechanism (11). The complex yet precise system of testicular
immune regulation may be compromised by various infectious
or non-infectious diseases.

The exact mechanism by which VC causes infertility remains
unknown. It is generally accepted that the pathogenesis of VMI is
complex and multifactorial (12, 13). Currently, immunotherapy
is rarely applied to VMI. This review explores the mechanisms of
VMI from the perspective of reproductive immunology. In the
first half of this article, we review the composition of the
testicular immune microenvironment under normal
physiological conditions, and in the second half, we focus on
the potential immunological pathogenesis of VMI, including the
role of ASAs, the blood–testis barrier (BTB), cytokines, and
inflammatory pathways. Rather than denying the important
role of oxidative stress, this review explores the reproductive
immune mechanism of VMI from an alternative perspective and
provides ideas for future research and potential treatment
of VMI.
TESTICULAR IMMUNITY

Mammalian testes create a unique immune environment; that is
crucial for testicular function. The testis is a significant immune-
sparing site that protects immunogenic germ cells from adverse
effects of the immune response (14). Both local immunosuppression
and systemic immune responses may be involved in maintaining
testicular immunity (15). Pattern recognition receptors (PRRs) play
a significant role in the testicular innate immune response. The BTB
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prevents harmful substances from entering the seminiferous
epithelium and prevents sperm antigens from escaping into the
seminiferous tubules and causing autoimmune reactions. Moreover,
testicular cells secrete immunosuppressive factors and negative
regulatory factors considered to be associated with several diverse
immune cells (16), including testicular macrophages, lymphocytes,
dendritic cells (DCs), and mast cells.
COMMON IMMUNE CELLS

Testicular Macrophages
Macrophages are tissue-specific immune cells that are widely
present in various tissues; their functions differ depending on the
site. Testicular macrophages are the major immune cells in the
testes, accounting for approximately 20% of murine testicular
stromal cells (17), which regulate the development of rat Leydig
cells and steroidogenesis (18, 19). Specifically, testicular
macrophages play a key role in fetal testicular organogenesis
(20), testosterone synthesis (21), spermatogenesis (22), and
testicular immunosuppression (23). Notably, the inflammatory
response of testicular macrophages is lower than that of blood
macrophages (24–26). Therefore, testicular macrophages are
regarded as testicular guardians (27). In other words, testicular
macrophages are characterized by a higher degree of
immunosuppressive activity than macrophages from other
tissues. Testicular macrophages are mainly polarized into pro-
inflammatory (M1) and inhibitory-inflammatory (M2), the latter
of which is characterized by high levels of anti-inflammatory
cytokines, such as interleukin (IL)-10 and transforming growth
factor-beta (TGF-b) (28). Furthermore, testicular macrophages
in rats are less responsive to pathogen stimulation; and
constitutively produce anti-inflammatory cytokines (29, 30),
such as IL-10, which are essential for the prevention of organ-
specific autoimmune inflammation (8). In contrast, under the
influence of some negative regulatory factors, macrophages
polarize to M1 and secrete high levels of pro-inflammatory
cytokines, such as IL-1b and TNF-a (31).

Testicular Lymphocytes
Lymphocytes are cells with immune recognition functions. They
can be classified as T cells, B cells, and natural killer (NK) cells
according to their migration, surface molecules, and function.
T cells are vital regulators of cellular and humoral immunity and
can be distinguished as CD4+ T cells and CD8+ T cells based on
their surface receptors. T cell receptors recognize antigenic
proteins released by pathogens. Under normal physiological
conditions, CD8+ T cells are the predominant lymphocytes in
the testicular interstitial space (32). Regulatory T cells (T-regs)
promote peripheral immune tolerance and exhibit
immunosuppressive properties in the vasectomy model (33).
Murine models of allogeneic islet cell transplantation have also
exhibited the immunosuppressive effects of testicular T-regs
characterized by CD4+ CD25+ (34, 35). T-regs inhibit the
activation of effector T cells under normal physiological
conditions (35) and increase T cells counts under inflammatory
August 2021 | Volume 12 | Article 729539
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conditions (36). These observations suggest that T-regs contribute
to testicular immunity. Induction of T cell apoptosis is one of the
methods by which the testes suppress the immune response, and
the Fas/Fas ligand (Fas/FasL) system is highly expressed in the
testes (37, 38). Programmed deathligand-1(PDL-1) is significantly
expressed in male germ cells. The Fas/FasL and the programmed
death-1 (PD-1)/PDL-1 system can induce T cell apoptosis, thereby
and protecting against islet allogeneic immune damage (39, 40).
Testicular NK cells also have immunoregulatory properties, but
there have been only a few studies on these cells. Previous studies
have used methods such as flow cytometry to confirm that there
are no B cells in the testes under physiologically normal
conditions (41).

DCs and Mast Cells
DCs are the most functional, professional antigen-presenting
cells in the body and are highly efficient at ingesting, processing,
and presenting antigens. DCs occur in the interstitial spaces of
the testes and are immature under normal physiological
conditions. The number of DCs increases significantly and
they express maturation markers in the inflammatory state (42,
43), indicating that DCs play an important role in testicular
autoimmunity (44). DCs minimize autoimmune responses by
tolerating T cell auto-antigens under normal physiological
conditions (45). However, the mechanism underlying their
effects in the testes requires further study. According to
Banchereau’s study (46), the maturation of testicular
immunosuppressive T cells requires the assistance of mast cells.

Mast cells secrete a variety of cytokines and are involved in
immune regulation and immediate hypersensitivity (type I
allergy). The number of mast cells in the testes is small under
normal physiological conditions. However, mast cells are heavily
differentiated during inflammatory activation (47). Abnormal
spermatogenesis is associated with an increased number of mast
cells (48). A randomized controlled trial has demonstrated that
Zaditen, a mast cell blocker, improves semen parameters,
chromatin integrity, and pregnancy rates after VC surgery
(49). Research on mast cells is limited, and the function of
mast cells in testicular immunity is not completely understood.
However, this review demonstrates, their important role in
testicular immune disorders and their effects on sperm
quality parameters.
OTHER CELLS INVOLVED IN
TESTICULAR IMMUNITY

Leydig Cells
In addition to regulating male sex differentiation and fertility by
producing testosterone, Leydig cells can also indirectly
contribute to the testicular immune microenvironment.
Representing the majority of mesenchymal cells, Leydig cells
have congenital antiviral infection function in rats (50, 51).
Furthermore, testosterone inhibits systemic immune responses
to autoantigens (52, 53). Androgen receptor-deficient murine
Sertoli cells (SCs) impair immune exemption in the seminiferous
tubules, suggesting that testosterone also plays a local role in
Frontiers in Immunology | www.frontiersin.org 3
maintaining testicular immune privilege (54). Leydig cells also
play an important role in the innate immune defense of the
testes. In microbial invasion, Leydig cells synthesize and release
antiviral factors, such as TNF-a and interferon (IFN)- a, or anti-
inflammatory factors, such as IL-6 and IL-1b (55, 56).

SCs
As part of the BTB, SCs are crucial for testicular immune
privilege. Tight junctions form between adjacent SCs in the
testicle; this is the basis of the BTB, blocking contact between
systemic immune cells and spermatogenic cells in the stroma,
thereby producing immune tolerance (57, 58). Once the tight
junctions are destroyed, the BTB is weakened. More seriously, as
demonstrated in mice, sperm cell differentiation is altered with
significant germ cells loss, suggesting that the BTB/SC barrier
effectively prevents humoral immune responses to late germ cells
in normal testes (56).

Various cytokines secreted by SCs also form a part of the
testicular immune microenvironment. TGF-b is mainly
produced by testicular SCs in testis for immune suppression
(59). SCs also express large amounts of activin A and B (60).
The former is similar in structure to TGF-b, which inhibits the
expression of pro-inflammatory cytokines (including IL-1 and
IL-6), thereby inhibiting testicular inflammation. Once Toll-like
receptors (TLRs) expressed on SCs are activated, a large number
of pro-inflammatory factors are released (39). Gas6 is a
functional ligand of the Tyro 3 receptor tyrosine kinase (RTK)
subfamily, and its tyrosine kinase receptors TAM are
constitutively expressed in murine testes (61). It mediates the
ability of SCs to phagocytose apoptotic germ cells and plays a key
role in testicular immunity (40, 62).
THE IMMUNE MECHANISM OF VC

The current consensus is that VMI is mainly caused by hypoxia
and oxidative stress, as clarified in a review by Jensen (12), but
some phenomena cannot be fully explained by these factors
alone. Numerous studies have suggested that inflammation and
immunity play a role as mediators, and any abnormal changes in
the immune links of the testes may have a negative impact.
Testicular macrophages are involved in the pathogenesis of
various inflammatory diseases. Experimental autoimmune
orchitis models have shown substantial macrophage infiltration
and secretion of numerous inflammatory factors (25, 63). Some
researchers have found that the pathological changes in the testes
of experimental autoimmune orchitis models are similar to those
in VC, both are associated with abnormalities of permeability
and structure of the BTB structure (64). Our previous study
showed that the inflammasome, NLRP3, is activated in testicular
macrophages, producing a large amount of IL-1b and inhibiting
the normal synthesis of testosterone (65).
ASAs
ASAs are present in 1-2% of fertile men and 5-15% of men with
infertility (66). Sperm immunoglobulin (Ig) levels in the seminal
August 2021 | Volume 12 | Article 729539
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plasma of men with infertility and VC were higher than those in
men with infertility but without VC (67, 68). The positive rate of
mixed antiglobulin reaction (MAR)-IgG in the seminal plasma of
patients with VMI was more than three times that of normal
seminal plasma (66). In patients with improved semen quality
after surgery, the level of seminal ASAs decreased accordingly
(69, 70). Animal experiments also showed similar results; i.e. the
ASA of the VC rats model increased (71). The incidence of anti-
sperm immune responses is associated with increased
chromosomal abnormalities in the gametes. There was a
significant positive correlation between the MAR-IgG
percentage and sperm DNA fragmentation rate. ASAs can
agglutinate sperm and bind to apoptosis-related proteins (e.g.,
caspase 3 and hsp70), leading to apoptosis in sperm cells (72).

ASAs affect male fertility through different mechanisms, and
largely correlates with sperm autoimmunity and ASA antigen
specificity (Figure 1A). The main role of the testicular
autoimmune response is to reduce sperm movement and
agglutination (73). An anti-spermatic immune response is
associated with decreased sperm function and sperm quality
parameters, such as DNA breaks. One study found that sperm
quality in patients with ASA (+) VC is significantly reduced and
correlates with the VC grade (66). Simultaneously, sperm
damage is more severe in patients with ASA positive VC. The
spermatozoa count in grade 2 ASA-positive VCs patients was less
than half of that in ASA negative patients, whereas the reactive
oxygen species (ROS) level in ASA (+)patients with infertility
was 2.8 and 3.5 times higher than that of ASA (-) patients,
respectively (5). However, the results of ASA testing in patients
with infertility were similar regardless of whether the patient had
been diagnosed with VC (2). In other words, VC may be an
important cofactor for ASA production. VC increases the
likelihood of immune infertility; after testicular trauma, the
probability of immune infertility in patients with VC increases
by a factor of 2 (66). Therefore, VCmay not be the direct cause of
ASA production, but VC is a synergistic factor that leads to
immune sterility. However, Bozhemov et al. (66) suggested that
VC is not a direct cause of the sperm autoimmune response; but
a cofactor that increases the risk of ASA production. In VC
Frontiers in Immunology | www.frontiersin.org 4
patients, the odds ratio for immune infertility tripled after
testicular trauma.
PERMEABILITY OF THE BTB

In the VC animal model, Pan et al. (74) and Raĭtsina et al. (64)
reported a significant disruption of the BTB, and the latter also
found lymphocytes sensitized to spermatozoa antigens in the
lymphatic organs of experimental rats. Soares et al. (75)
suggested that the receptor for activated C kinase 1 up-
regulation, induced by VC, may also be involved in the
phosphorylation of focal adhesion kinase, thus affecting the
dynamics of the BTB and apical ectoplasmic specialization.
Immune factors in VC act on the adherent tight junction
molecule of the BTB, increasing the permeability of the BTB.
The immune factor subsequently enters the seminiferous tubule
to destroy spermatogenic cells (73, 76–79). Simultaneously,
sperm antigens may be exposed to the circulating blood.
Claudin-11, a tight junction protein expressed by SCs, E-
cadherin, and a-catenin have been shown to participate in cell
adhesion, and all molecules are involved in the formation of the
BTB but the levels in the seminiferous tubules were significantly
down-regulated (Figure 1B) (8, 74, 80, 81).
INFLAMMATORY FACTORS
AND PATHWAYS

IL
Multiple studies have demonstrated the central role of IL-1a and
IL-1b in a number of autoinflammatory diseases (82–85). In the
testes, IL-1 regulates spermatogenesis through autocrine and
paracrine expression, and overexpression of IL-1 is critical for
improving VMI. Studies have shown that IL-1 expression in the
testes has increased in VC animal models (86, 87). Kim’s study
(88) and Sahin et al. (89) found that the expression of both IL-1a
and IL-b increased in the testes of the VC model, which could be
A B

FIGURE 1 | Anti-sperm antibodies (ASAs) and blood testes barrier (BTB). (A) ASAs bind to sperm, resulting in sperm agglutination and sperm motility reducing.
(B) the important constituent proteins (claudin-11, E-cadherin, and a-catenin) that constitute the BTB are reduced in the testes of Varicocele (VC), resulting in
increased BTB permeability.
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reversed by treatment with herbs. However, case-control studies
found that, compared with that in the control group, the level of
IL-1b in the seminal plasma of patients with VC did not change
significantly (9, 55, 90). (Table 1) This contrasts with the
increased IL-1 levels typically observed in the testicular tissues
of patients with VMI. A potential explanation for this is that the
liquid components of the semen originate from multiple sites,
including the seminal vesicle gland and prostate, and may dilute
the levels of the original substances in the testicles. Therefore, IL-
1 is most likely a factor that causes infertility in patients with VC.

IL-6 is produced rapidly and briefly in response to infection
and tissue damage, but the persistent dysregulation of IL-6
synthesis plays a pathological role in chronic inflammation and
autoimmunity (99). Most studies (8, 55, 88, 91–94) support the
view that the level of IL-6 is increased in VC animal models or
patients with VMI (Table 1). The concentration of IL-6 in the
seminal plasma of patients with VC is much higher than that in
fertile men (55, 93, 94), but lower in Finelli’s study (9). However,
the study conducted by Finelli et al. included only patients with
VC, excluding those with VMI the focus of our review. This may
be one of the main reasons why the levels of IL-1b, IL-6, IL-8,
TNF-a, and IFN-g found in that study are inconsistent with
those found in other studies. In patients with VMI, it has been
reported that levels of IL-6 and ROS are elevated and that total
oxidative binding energy is decreased. In vitro, IL-6 reduces
sperm motility, possibly attributed to excessive production of
nitric oxide (NO) (100). IL-1 and IL-6 have inhibitory effects on
the acrosomal reaction similar to those of TNFa (93). In short,
Frontiers in Immunology | www.frontiersin.org 5
IL-6, like IL-1, may be an important immunoregulatory factor
affecting fertility in patients with VC.

The number of white blood cells in seminal plasma is
significantly correlated with IL-8, also known as C-X-C motif
chemokine ligand (CXCL) -8 (55, 73, 101). Compared with those
in the control group, the levels of IL-8 in the seminal plasma of
patients with VC was found to be higher (55, 95). The
mechanism related to IL-6 and IL-8 has not yet been reported.
Similarly, IL-17A and IL-18, as well as anti-inflammatory factors
IL-10 and IL-37, have also been reported in a series of studies (9,
96–98) (Table 1). In general, the current research on IL-8, IL-10,
IL-17A, IL-18 and IL-37 is limited, and it is difficult to draw
definite conclusions on the role of ILs in VC. Further
investigation on this topic is required, is needed in the future,
particularly through high-quality human studies.

TNF-a, IFN-g, and TGF-b
Multiple studies have reported an increase in TNF-a levels in
both patients with VC and in animal models (Table 1). For other
two studies (9, 98) did not find significant changes in TNF-a
levels because they included patients different from those in the
other studies, as described above. TNF-a alters mitochondrial
function, increases NO production, and is inversely related
to sperm motility. It also increases the production of
malondialdehyde and inhibits spontaneous and induced
acrosomal reactions (73). The role of pro-apoptotic TNF-a in
the pathogenesis of VC-mediated dysfunction is currently under
intense study (93). Animal studies demonstrated that IFN-a levels
TABLE 1 | Summary of cytokine reported in VC of human and animal model.

Cytokine Species Group Sample type Regulation References

IL-1 Rats VC & Sham Testicular tissue Up (86, 87)
IL-1a Rats VC & Sham Testicular tissue Up (8, 89)
IL-1b Rats VC & Sham Testicular tissue Up (88, 89)
IL-1b Homo sapiens Infertility with VC & Normal seminal plasma NSS (55, 90)
IL-1b Homo sapiens VC & without VC seminal plasma NSS (9)
IL-6 Rats VC & Sham Testicular tissue Up (8, 88, 91, 92)
IL-6 Rats VC & Sham Serum Up (91)
IL-6 Homo sapiens Infertility with VC & Normal seminal plasma Up (55, 93)
IL-6 Homo sapiens VC & Fertility seminal plasma Up (94)
IL-6 Homo sapiens VC & without VC seminal plasma Down (9)
IL-8 Homo sapiens VC & without VC seminal plasma NSS (9)
IL-8 Homo sapiens VC & without VC seminal plasma Up (55, 95)
IL-10 Homo sapiens VC & without VC seminal plasma Up (9)
IL-17A Homo sapiens VC & without VC seminal plasma NSS (9)
IL-18 Homo sapiens Infertility with VC & Normal seminal plasma NSS (96)
IL-18 Homo sapiens Infertility with VC & Normal seminal plasma Up (97)
IL-37 Homo sapiens Infertility with VC & Normal seminal plasma Up (97)
TNF-a Rats VC & Sham Testicular tissue Up (8, 71, 88, 92)
TNF-a Homo sapiens Infertility with VC & Normal seminal plasma NSS (90)
TNF-a Homo sapiens Infertility with VC & Normal seminal plasma Up (55, 94)
TNF-a Homo sapiens VC & without VC seminal plasma NSS (9)
TNF-a Homo sapiens VC & Normal seminal plasma NSS (98)
IFN-g Rats VC & Sham Testicular tissue Up (91, 92)
IFN-g Rats VC & Sham serum Up (91)
IFN-g Homo sapiens VC & without VC seminal plasma Down (9)
IFN-g Homo sapiens Infertility with VC & Normal seminal plasma NSS (96)
TGF-b Rats VC & Sham Testicular tissue Up (71)
A
ugust 2021 | Volume 12 |
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increased in the testes or serum, but human studies did not support
this finding, possible reasons have been explained in IL-1. (Table 1)
Habibi et al. (91) found that IFN-g levels in serum and testicular
tissue were increased in rat VC models, suggesting that VC has a
detrimental, time-dependent effect on cytokine levels and decreases
the number of SCs, and spermatogonia, as well as the seminiferous
tubules diameter and sperm indices. TGF-b balances pro-
inflammatory and anti-inflammatory effects by reducing cell
growth of immune precursors and plays a key role in immune
tolerance (102). Similar to those of most cytokines, TGF-b levels
were also reported to be increased in the testes of VC model
(Table 1) (71). Together, these results suggest that TNF-a and
IFN-g are potential markers of testicular damage in patients
with VC.

Overall, most of the available data from patients with VC or
animal VC models support the observation of elevated levels of
pro-inflammatory factors in the testicular tissues and seminal
plasma, to varying degrees. In particular, IL-1, IL-6, TNF-a, and
IFN-g may be key immunoregulatory factors for testicular injury
in patients with VC. Simultaneously, some anti-inflammatory
factors, such as IL-10, IL-37, and TGF-b, tend to be upregulated;
this may be the result of the normal feedback mechanism of the
body. These anti-inflammatory factors may also be of
consequence to future treatment strategies, but their
authenticity must first be confirmed by further studies.

Inflammatory Pathways
PRRs can be divided into five categories, including TLRs, located
on the cell membrane, and NLRs, located in the cytoplasm (103).
They occur mainly on immunocytes such as macrophages, DCs,
and rarely non-immunized cells. Thus, once PRRs are activated by
pathogen-associated molecular patterns (PAMPs) or danger-
associated molecular patterns (DAMPs), the signal will
eventually be transmitted to the downstream target gene, which
regulates immunity and inflammation (104). PRRs and their
specific ligands are listed in detail in a review byWang et al. (103).

TLR2, one of the TLRs, can also recognize PAMPs and/or
DAMPs (105), the latter including heat shock proteins (HSP60,
HSP70, Gp96), advanced glycation end-products, high mobility
group box 1, and serum amyloid A (103, 106). The average
relative expression of TLR2 in the semen of men with infertility
and VC was twice as high as that in fertile men, but the difference
was not statistically significant (107).

NLRP3 is a subtype of the NLR family, that can be directly
triggered by cytoplasmic DAMPS, such as peptides, DNA, and
RNA (103). NLRP3 inflammasomes are composed of
cytoplasmic sensor molecules, such as pyrin domain-
containing protein 3, adaptor proteins (e.g., caspase-recruiting
domain, ASC, and apoptosis-associated speck-like proteins), and
effector proteins (e.g., pro-caspase-1). NLRP3 and ASC promote
the cleavage of pro-caspase-1 and form an active complex, which
triggers the cleavage of pro-IL-1b into mature IL-1b (65). The
VC model showed a significant increase in NLRP3 gene
expression after partial ligation of the left renal vein (108).
Interestingly, this trend was reversed by the administration of
Resveratrol (3,5,4′-trihydoxy-trans-stilbene), which is an anti-
inflammatory, anti-apoptotic compound in some plants (109).
Frontiers in Immunology | www.frontiersin.org 6
We previously found a significant up-regulation of prokineticin 2
(PK2) in the VC animal model (110), whereas in the orchitis
model PK2 promoted IL-1b secretion via the NLRP3 pathway
(111). We speculate that this process is also involved in the onset
of VMI, although this hypothesis has not been validated with
rigorous experiments.

FUTURE PERSPECTIVE

The current treatment approach of VC is mainly surgical, but a
certain proportion of patients find it difficult to regain natural
fertility even after surgery. Whether normal fertility can be
restored in these patients through immunotherapy is worth
further exploration. Although the studies reviewed here have
reported various abnormalities of immune-related cells or active
molecules in the testicular tissue or seminal plasma of patients
with VC, little is known about how these factors interact or
function. However, there are currently at least three strategies to
protect the testicular immune microenvironment in cases of
VMI reduction of the production of ASAs and removal of ASAs
from the body, reduction of BTB permeability, i.e., reduction of
sperm antigen exposure; maintenance of the balance of pro-
inflammatory and anti-inflammatory molecules and cells in
testes, as well as inhibition of related inflammatory pathways.
It should be emphasized that the molecular targets of these three
strategies are not clearly defined and need further exploration.

CONCLUSIONS

The mechanism by which VC induces male infertility is complex
and multi-factorial. However, at its core, it is a disorder of the
testicular immune microenvironment caused by various injury
factors. Where testicular immunity and inflammation are
concerned, it mainly involves the production of ASAs, an
increased permeability of the BTB caused by abnormal proteins,
the release of a series of inflammatory factors, and the activation of
inflammatory pathways. Although some protective molecules,
such as anti-inflammatory cytokines, are up-regulated, this is
not enough to combat the negative regulatory of damaging
factors. Given that immune mechanisms are involved in the
pathogenesis of VMI, it is necessary to investigate the use of
immunotherapy to improve patient outcomes in the future.
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