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Abstract: The identification of pathogenic variants in monogenic diseases has been of interest to
researchers and clinicians for several decades. However, for inherited diseases with extremely high
genetic heterogeneity, such as hearing loss and retinal dystrophies, establishing a molecular diagnosis
requires an enormous effort. In this review, we use these two genetic conditions as examples to
describe the initial molecular genetic identification approaches, as performed since the early 90s, and
subsequent improvements and refinements introduced over the years. Next, the history of DNA
sequencing from conventional Sanger sequencing to high-throughput massive parallel sequencing,
a.k.a. next-generation sequencing, is outlined, including their advantages and limitations and
their impact on identifying the remaining genetic defects. Moreover, the development of recent
technologies, also coined “third-generation” sequencing, is reviewed, which holds the promise to
overcome these limitations. Furthermore, we outline the importance and complexity of variant
interpretation in clinical diagnostic settings concerning the massive number of different variants
identified by these methods. Finally, we briefly mention the development of novel approaches such as
optical mapping and multiomics, which can help to further identify genetic defects in the near future.

Keywords: inherited hearing loss; inherited retinal dystrophies; genetic diagnostics; diagnostic yield;
next-generation sequencing; third-generation sequencing; variant interpretation

1. Introduction

In previous decades, different methods for disease gene identification have been es-
tablished and successfully employed. All these technologies have significantly contributed
to identifying the large number of genes that are associated with inherited forms of hearing
loss (HL) (>150 genes) [1] and retinal dystrophy (RD) (>270 genes) [2]. HL is the most
common sensory disorder, and it affects 466 million people worldwide [3]. The impact
of HL is generally severe as it has profound consequences, especially on mental health,
including anxiety, depression, and social isolation [4,5]. HL can be explained by both
congenital or acquired causes and displays high clinical heterogeneity in the age of onset,
progression, and severity, amongst others [6]. RD represents a group of clinically hetero-
geneous disorders that involves the death or dysfunction of photoreceptor cells in the
retina. Collectively, RDs affect 2 million people worldwide [7]. Generally, three different
types of RDs can be distinguished based on the primarily affected cell type: (1) the rod
photoreceptors (e.g., retinitis pigmentosa or choroideremia), (2) the cone photoreceptors
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(e.g., macular and/or cone dystrophies), and (3) more generalized types of RDs that involve
both photoreceptor types (Leber congenital amaurosis, cone-rod dystrophies).

Especially for heterogeneous conditions such as RD and HL, the introduction of next-
generation sequencing (NGS) techniques has led to the assumption that, soon, all HL- and
RD-associated genes will be identified. Nevertheless, the diagnostic yield suggests a signif-
icant portion of missing heritability, which can potentially be explained by unrecognized
disease genes or missed variants [8,9]. To provide a genetic diagnosis for all inherited cases,
it has become evident that there is no single technique that can serve as the gold standard.
To be able to detect and interpret all genetic variations of the human genome, classical
methods such as linkage analysis or homozygosity mapping should be combined with
novel state-of-the-art techniques [10,11].

The observed high genetic heterogeneity is not unique for these inherited sensory
disorders; they have also been described for other inherited disorders, including intellectual
disability, ciliopathies, and inherited susceptibility for cancer [12–14]. Although, in general,
disease gene identification strategies applied in these fields rely on the same principles
and have undergone a similar development, an optimal diagnostic strategy depends
heavily on key factors such as evolutionary pressure and the involvement of multifactorial
versus monogenic causes. For example, for intellectual disability, de novo causes are
more frequent due to a strong reduction of reproductive fitness; this impacts the optimal
diagnostic strategy. This review focuses on the identification of monogenic causes of
inherited HL and RD.

In this review, we aim to provide an overview of the development of techniques
that have enabled disease gene discovery throughout the years (Section 2). Additionally,
we evaluate and highlight the complexity and different aspects of candidate variants
and candidate gene interpretation (Section 3). Finally, we describe recent and upcoming
improvements and innovations of existing technologies and the development of novel
technologies in the field (Section 4).

2. Identification of Genes Associated with Hearing Loss and Retinal Dystrophy
2.1. Linkage Analysis

The first HL- and RD-associated genes were identified using linkage analysis and
candidate gene strategies in the early 90s [15–17]. Examples of candidate gene approaches
include analysis of candidate-disease-associated genes based on their function, gene expres-
sion, or animal model studies (discussed in [18]). Linkage analysis was used to pinpoint a
genomic region of interest likely to encompass the disease gene. The strategy is based on
the key principle that a disease haplotype is shared between affected individuals within
a family but is not present in unaffected individuals. The shared haplotype cosegregates
with the disease, according to the observed mode of inheritance. Initially, linkage regions
were mapped using laborious genotyping of polymorphic microsatellite markers, but the
process was optimized when microarray technologies became available. Microarrays, such
as SNP arrays, allow rapid genotyping of thousands of single nucleotide polymorphisms
(SNPs) that are present across the genome and have a variant allele frequency higher than
1% in the healthy population. The higher the density of the SNPs on the array and the more
SNPs that reside within the region showing linkage disequilibrium, the more precise the
determination of a possible disease haplotype is. The distance between two SNPs can be
expressed in centimorgans (cM). One cM is defined as the distance between chromosomal
positions that have a 1% chance of being separated by chromosomal recombination during
meiosis. A logarithm of the odds (LOD) score can be calculated to estimate the odds that
two loci, or a locus and a disease-associated gene, are located at an assumed distance
from each other (expressed as the recombination fraction theta). A LOD score of 3.3 or
higher is considered evidence for linkage in a genome-wide manner, with a probability of
95% [19]. Nowadays, several tools (e.g., GENEHUNTER [20] and PLINK [21]) are available
to calculate the LOD score and identify a linkage region. However, large family pedigrees
and sufficient participating family members are required to reach a statistically significant
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linkage. When a disease-associated locus is defined, Sanger sequencing can be performed
to evaluate the genomic region for causative variants. In this way, the linkage analysis
strategy has been applied very effectively for disease gene identification for many years (re-
viewed in [18,22]). Despite the introduction of higher-throughput sequencing techniques,
SNP genotyping can still be very useful to determine regions of genotype-sharing even in
small families, especially to reduce the number of candidate variants.

2.2. Homozygosity Mapping

Genome-wide homozygosity mapping has proven to be a powerful tool to identify
disease-associated genes for autosomal recessive disorders. For both inherited HL and RD,
a significant number of disease-associated genes were identified using this strategy [18,22].
In consanguineous families, a pathogenic variant is often present in a homozygous state
as it is inherited from a recent common ancestor (grandparent or great-grandparent). Ho-
mozygosity mapping, which is often performed using SNP arrays, can be used to determine
regions that contain consecutive homozygous variants [21,23]. Although the average size
of homozygous stretches is larger in consanguineous families (typically between 30 to
100 megabase (Mb)-sized regions [24,25]), several studies have indicated that this method
is also an effective tool for nonconsanguineous families (1–30 Mb-sized homozygous re-
gions [24–26]). EYS is one of the most frequently mutated genes in RD, and it was identified
using homozygosity mapping in a nonconsanguineous family [27,28]. Other examples of
disease gene identification using homozygosity mapping in nonconsanguineous families
include PDE6C [29], which is associated with RD, and OTOG [30] and MYO15A [31], which
are implicated for HL. The size of a homozygous disease-associated haplotype decreases
over subsequent generations due to meiotic recombination. Well-characterized families
and detailed phenotypic information are prerequisites for the successful application of
this technique.

2.3. Next-Generation Sequencing

DNA studies have been revolutionized by the conventional Sanger sequencing tech-
nique, which was introduced in 1977 [32]. It is known as an enzymatic sequencing or
chain-termination method, which utilizes labeled di-deoxynucleotides, acting as chain
terminators [32]. The first human genome was sequenced based on Sanger sequencing
technology in 2001, which took almost 13 years to complete and cost USD2.7 billion, and
was part of a large collaborative and international publicly funded project [33]. In parallel,
efforts to sequence the first human genome were also performed in a commercial setting
by the company Celera Corporation, whose results were revealed in joint publications
with the public Human Genome Project [34,35]. The Celera project employed a whole-
genome shotgun sequencing approach and proceeded at a much faster pace and lower
cost, although it benefited significantly from the data that was already generated by the
public Human Genome Project [34,36]. As a result of both efforts to sequence the human
genome, it became clear that the scale, efficiency, and cost needed to be vastly optimized
for routine use in clinical diagnostics. Therefore, shortly after the release of the human
genome sequence, the aim was re-established to achieve a USD1,000 human genome within
10 years [37].

Sanger sequencing is still routinely used for variant validation and has an extremely
high accuracy of up to 99.999% [38]. However, it is considered a low-throughput technique,
as up to one kilobase (kb) of DNA can be sequenced in 96 or 384 parallel reactions [39]. The
technique has been optimized by the application of nucleotide-specific fluorescent labels
and automated detection [40,41], the invention of polymerase chain reaction (PCR) [42],
and the usage of polyacrylamide gels in capillary electrophoresis [41]. Therefore, DNA
sequencing can be achieved within a shorter time frame and on a larger scale, in which
the sequencing of millions of reads can be carried out in parallel, called “massive parallel
sequencing” or “NGS”.
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The NGS technique has rapidly overcome the limitations of traditional sequencing.
Since 2005, various sequencing platforms, such as Illumina, Ion Torrent, Roche 454, and
SOLiD sequencing, have been developed, which has resulted in a rapidly changing land-
scape during this new era of sequencing. The read length of these different platforms is
shorter than that of Sanger sequencing (approximately 50–500 bp), with a higher error
rate (0.1% in NGS compared to 0.001% in Sanger sequencing) [43]. However, the fast
development of NGS techniques and the generation of public reference datasets containing
population allele frequency data have allowed widespread integration of NGS technol-
ogy in the research community and, later, in the clinical diagnostics of genetic diseases.
Nevertheless, as whole-genome sequencing (WGS) is still relatively expensive and data
interpretation is complex, a targeted sequencing approach (e.g., whole-exome sequencing
(WES)), is often preferred.

2.3.1. Targeted Capture Sequencing

Genomic regions of interest, such as the genes implicated in HL or RD, can be selec-
tively enriched before sequencing is performed. There are various methods available to
enrich target regions, such as hybridization-based, highly multiplexed PCR-based, and
targeted circularization-based approaches. Extensive studies have been performed, which
have applied these techniques to unravel genetic defects involved in inherited HL and RD.
In 2013, Chio et al. investigated 32 cases with familial nonsyndromic HL, in which they
reached a molecular diagnostic rate of 37% using a candidate gene sequencing approach of
GJB2, SLC26A4, POU3F4, or mitochondrial genes based on observed clinical features and
inheritance patterns. Later, by application of hybridization-based target capture sequencing
for 80 HL-associated genes, they were able to increase the total diagnostic detection rate to
78% in this cohort [44]. In 2017, Dockery et al. utilized the hybridization-based enrichment
method to sequence 254 IRD-associated genes in over 750 affected individuals in Ireland,
in which they could identify pathogenic variants in 68% of the cases [45]. A recent study
by Khan et al. applied a highly multiplexed PCR-based approach, with single-molecule
molecular inversion probes (smMIPs), to sequence the complete ABCA4 gene (coding and
noncoding regions) in 1054 individuals with Stargardt disease (OMIM: 248200), who were
previously screened for variants in the coding regions and remained genetically unex-
plained. This study proved that a smMIP-based approach is a cost-effective approach in the
case of a strong genotype–phenotype correlation. The method allowed deep-sequencing
of the region of interest, and causal structural and deep-intronic variants were identified
in 25% of the investigated cases who were genetically undiagnosed after prescreening
methods [46].

Targeted NGS techniques have several advantages, such as less data storage, high sequenc-
ing accuracy due to high coverage, and cost- and time effectivity [47]. However, this approach is
unable to detect variants in novel (candidate) disease-associated genes. Furthermore, pathogenic
variants residing in noncoding regions and structural variants (SVs) can be missed if only exons
are analyzed. Due to decreasing prices of both WES and WGS, these approaches have become
rapidly preferred to overcome the disadvantages of targeted NGS.

2.3.2. Whole-Exome Sequencing Versus Whole-Genome Sequencing

Protein coding regions comprise 1–2% of the human genome. However, it is estimated
that they harbor approximately 85% of disease-causing variants [48–50]. Therefore, the
enrichment of coding regions utilized in WES quickly became an accurate and efficient
method to investigate the coding regions of the genome for potential pathogenic variants, and
this is now widely applied in genetic diagnostics [51]. One of the striking features of WES is
in the success rates of genetic diagnostics of diseases with extensive locus heterogeneity, such
as inherited HL and RD [9,52]. Currently, the diagnostic yield for RD using WES is estimated
to be between 50% and 80%, dependent on the phenotype studied [9,53–55]. According
to a study performed by Haer-Wigman et al., the highest yields were obtained for retinitis
pigmentosa (63%), and the lowest yields were obtained for macular dystrophy (28%) and rare
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unspecified types of RD (25%) [9]. For HL, the genetic diagnostic rate is also highly dependent
on phenotype (e.g., syndromic or nonsyndromic phenotype, mode of inheritance). The highest
rates are observed in patients with a positive family history or with a congenital or symmetric
type of HL [52]. The overall estimated detection rate for HL, when employing WES, varies
between 30–40% based on different large-cohort studies and largely depends on phenotypic
diversity [8,56]. The diagnostic yield for HL is importantly influenced by the involvement
of environmental factors (e.g., noise, ototoxic drugs, and trauma), which likely explains
the difference in yield compared to RD. Genetic causes have been estimated to underlie
approximately two-thirds of the cases of congenital and early childhood HL; the remaining
cases can be explained by acquired causes [57]. This genetic contribution decreases with the
patient’s age due to increased exposure to damaging environmental factors during life. In line
with this observation, there are several reports of a negative correlation between diagnostic
yield and age of onset of HL [8,52]. Despite the successes of WES in clinical settings, this
technology is inaccurate in detecting SVs, such as a deletion of a single exon, and does not
allow variant detection in deep-intronic regions or regulatory elements. Therefore, WGS
may be preferred as it provides more evenly distributed and uniform read coverage and it
is capable of detecting different types of variants across the entire genome [58–61]. In 2017,
Carss et al. investigated a large cohort of RD patients, in which WGS was performed for
605 cases, WES for 72 cases, and, for 45 cases, both technologies were performed [61]. They
identified disease-causing variants in 56% of all individuals (404/722), while, by using
WES alone, the diagnostic yield was calculated to be 50%. Subsequently, 45/58 cases that
remained unexplained by WES underwent WGS, and pathogenic variants were identified
in 14 cases. The authors concluded that WGS has a great power to detect pathogenic
SVs, variants in noncoding and regulatory regions, and variants in GC-rich regions. The
application of WGS revealed the pathogenic variants in 31% of the cases that remained
unsolved after WES. These variants were missed mainly due to the poor quality of reads
or the incapability of WES to identify SVs [61]. The prices for WGS keep decreasing [62],
and the importance of the noncoding regions of the genome has become more evident.
Therefore, a shift from exome to genome sequencing will be observed in clinical diagnostics
in the near future to overcome the diagnostic gap observed in the application of WES. In
2020, Méjécase et al. provided a practical and cost-effective guideline for current and future
genetic testing of RDs, in which they proposed to utilize WES or targeted NGS for the
initial screening of exons and flanking intronic regions of (candidate or known RD) genes,
reserving WGS solely for cases that remained unresolved [63].

Although NGS techniques have revolutionized the field of medical genetics, these
short-read sequencing (SRS) approaches pose several limitations, such as (1) difficulties
in the identification of complex and large SVs, (2) inability to sequence repetitive regions,
(3) the lack of phasing of alleles, and (4) difficulties in distinguishing highly homologous
regions such as pseudogenes [64]. These limitations may play a significant role in the
diagnostic gap in medical genetics.

2.4. Third-Generation Sequencing

Due to the limitations of the aforementioned NGS techniques, there has been a need to
develop new sequencing approaches to overcome these issues. The era of third-generation
sequencing arrived in 2011 when Pacific Biosciences (PacBio) released a novel sequencing
technique called “single-molecule real-time” (SMRT) sequencing [65]; only three years later,
Oxford Nanopore technologies introduced nanopore sequencing [66]. Although these two
techniques utilize different approaches to sequence genomic DNA, they share two major
advantages compared to NGS. First, they are established on PCR-free and real-time sequencing
processes, and second, they generate ultra-long sequencing reads, >10 kb [64,67]. These long-
read sequencing (LRS) technologies are revolutionizing the genetics field as they provide a
further understanding of the normal and morbid anatomy of the human genome and can,
thereby, fill the gaps in the molecular diagnostics of genetic diseases.
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2.4.1. Single-Molecule Real-Time (SMRT) Sequencing

SMRT sequencing relies on ligating hairpin adapters to both ends of the double-
stranded template DNA molecule (dsDNA), thereby circulating the dsDNA into the con-
struct called the SMRT-bell. In the next step, primers and DNA polymerase are annealed to
the adaptor in the SMRT-bell, which will later be utilized for circular consensus sequenc-
ing (CCS; Box 1, Figure 1A). The CCS approach can obtain approximately 83% accuracy
(10× coverage, on average), with a 13–15% error rate dominated by small insertions and
deletions [67,68]. This can be improved to 99% accuracy by selectively sequencing a tar-
geted region with increased coverage of 15× [69–71]. SMRT technology is a PCR-free
approach and requires minimal amounts of reagents and a simple library preparation
procedure by which ultra-long dsDNA can be obtained. This technology can provide the
result within hours, compared to several days for previous approaches [65]. An average
read length of 10–15 kb can be reached, which allows de novo assembly, phasing of variants
and haplotyping, and the detection of large SVs throughout the genome [64,72,73].
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Figure 1. Overview of single-molecule real-time (SMRT) sequencing technology. (A) Sequencing
starts with library preparation of ultra-long double-stranded DNA. In the next step, adapters, DNA
polymerase, and primers bind to the double-stranded DNA, creating the SMRT-bell, which will
be loaded later to the SMRT-cell. (B) The library is randomly distributed in the SMRT-cell in the
sequencer instrument, in the ideal condition one-third of the ZMWs will be loaded by an SMRT-bell.
In each ZMW, the DNA polymerase together with an SMRT-bell are bound to the bottom of the ZMW.
The SMRT sequencing uses the circular DNA template to generate a continuous long read in each
ZMW chamber. Afterwards, the adapters are trimmed from this long read and overlapping reads can
be combined to one consensus sequence of high quality called HiFi read.
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Box 1. Single-molecule real-time (SMRT) sequencing technique.

To enable the sequencing of single DNA molecules in real-time, two obstacles had to be
overcome. First, concentrating the DNA polymerase and its template, the SMRT-bell (Figure 1A), to
the very small observation chambers, which creates a higher signal-to-noise ratio. This problem
has been solved by zero-mode waveguide (ZMW) technology, a small hole of approximately
45 nanometers (nm) in diameter [74]. The DNA polymerase, with its template, is anchored by a
strong biotin/streptavidin interaction to the bottom of the ZMW. Therefore, the laser illumination
of incorporating nucleotides is limited to the bottom, which increases the signal-to-noise ratio [68],
as ZMW can efficiently distinguish signals of nucleotide incorporation against the background of
unincorporated nucleotides (Figure 1B).

The second obstacle in real-time sequencing of single DNA molecules was the large size of
the fluorescent dye, which interfered with the normal activity of DNA polymerase and caused the
halting of the enzyme shortly after the initiation of DNA synthesis. In SMRT technology, the dye is
attached to the phosphate chain instead of the nucleotide, which is naturally cleaved during DNA
synthesis after nucleotide incorporation; this results in a single long, natural DNA strand [68].

The real-time sequencing of the circular SMRT-bell is performed in each ZMW, which generates
continuous long reads (Figure 1B). During data processing, the adaptors are removed, and subreads
are generated. Subsequently, the combined subreads enable the generation of one highly accurate
consensus sequence called the circular consensus sequence (CCS).

2.4.2. Nanopore Sequencing

Nanopore sequencing is an advanced third-generation sequencing technique that
offers straightforward sample preparation, requiring minimal reagents or amplification
processes [75]. This technology relies on transferring a DNA molecule through a
pore and directly detecting each nucleotide by its effect on an electric current (Box 2,
Figure 2) [76,77].

Box 2. Nanopore sequencing technique.

Nanopore sequencing occurs in a flow cell, in which two ionic solution compartments are
separated by a membrane containing thousands of nanopores. The flow of electric current between
these two compartments depends on the molecule transferring through one of the pores. Since
each nucleotide differs in shape, its effect on the electric current is specific for each nucleotide
(Figure 2) [67,77,78]. Library preparation in nanopore sequencing includes the end-repair of ultra-
long dsDNA, the addition of dA-tails, followed by the size selection and ligation of adapters, which
are protein-DNA molecules. The first adapter is the leader-adapter, which contains a motor enzyme.
It binds to the nanopore and ensures the gradual movement of DNA through the pore. The dsDNA
is then unwound at the pore, and only one strand will pass through the nanopore. The second
adapter is a hairpin-adapter containing a hairpin protein. It generates one long single strand of
DNA, which ensures the sequencing of the second strand of DNA in order to increase the accuracy
of sequencing [66,67,79].

There is no limit in the length of DNA that can be sequenced with this technique
since it does not require DNA amplification or synthesis. However, the challenge lies
in library preparation, which needs to result in ultra-long dsDNA molecules [80]. The
aver-age size of reads is usually above 10 kb, and for some ultra-long dsDNA molecules,
it can reach one Mb [64]. The main drawback of nanopore sequencing technology is
its relatively high error rate of ~20%. Compared to SMRT technology, in which the
error rate can be re-duced by high coverage due to CCS, in nanopore sequencing, it is
a systematic error, and correction can only be achieved by comparison to short-read
sequence data [80]. Never-theless, this technology is rapidly improving to overcome the
current issues (such as error correction), and library preparation is being optimized to
achieve high-quality ultra-long dsDNA [77].
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Figure 2. Overview of the Nanopore sequencing technology. (A) The library preparation includes
end-repairing, and adding dA-tails, followed by ligation of two types of adapters to both ends
of the ultra-long double-stranded DNA. The adapters carry the motor enzyme (in orange) and
hairpin-protein (in green) to facilitate the movement of DNA through the nanopore and ensure the
sequencing of the second strand of DNA, respectively. (B) The library is loaded into the flow cell
in the sequencer instrument. The flow cell contains thousands of nanopores that allow the flow
of Cl− and K+ ions between two compartments. The motor enzyme anchors to the nanopore and
unwinds the DNA to pass it through the pore. Thereby, the electric current is influenced based on the
unique shape of each nucleotide in single-strand DNA. These changes in the electric current are later
translated to sequences.

2.5. Application of Third-Generation Sequencing in Inherited HL and RD

Third-generation sequencing has revolutionized the field of medical genetics by its
superior performance in the analysis of repeated and highly homologous regions, SVs,
haplotype phasing, and transcriptome analysis [81]. These technologies are currently
mainly used in research applications and show great promise to overcome the disadvan-
tages of SRS methods. In a systematic analysis, Ebbert et al. compared the performance
of whole-genome SRS and LRS technologies at repetitive regions in the human genome.
Amongst others, they showed that 8.6% of the protein-coding regions of RPGR (associated
with X-linked RD) and 12.7% of the protein-coding regions of OTOA (associated with HL)
are within the unmapped reads of SRS data, which were resolved by performing LRS.
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Specifically, they indicated that nanopore sequencing outperforms PacBio sequencing by
resolving 90.4% and 64.4% of the SRS-unmapped regions, respectively [82].

One important application has been to identify complex SVs associated with genetic
diseases, including HL and RD. Reiner et al. utilized SMRT LRS to detect a 72.8-kb deletion
region in the BBS9 gene and map the breakpoints at the nucleotide level in a patient
diagnosed with Bardet–Biedl syndrome (OMIM: 615986). This deletion was determined to
be the causal variant and a founder mutation in the Guyanese population [83].

In another recent study, researchers utilized transcriptome sequencing, followed by
short- and long-read WGS, to identify a 7.4-kb duplication in NMNAT1, which spans
two out of five exons of this gene. The duplication caused a previously unrecognized
autosomal recessive syndrome, symptoms of which are Leber congenital amaurosis and
sensorineural HL, which occur together with other features such as spondyloepiphyseal
dysplasia, intellectual disability, and brain anomalies. The authors were able to determine
the exact breakpoints of the duplicated region, missed by previous approaches, as well as
two Alu elements flanking this segment, which are potentially involved in the origin of the
SV [84].

Recently, nanopore sequencing enabled researchers to unravel the genetic defect in two
unrelated patients diagnosed with mild-to-moderate HL. Nanopore sequencing revealed a
gene conversion event between the OTOA gene and its pseudogene, in which exons 21 to
23 of OTOA were replaced by exons 1 to 3 of OTOAP1 [85]. As pathogenic variants within
the OTOA gene have been described to cause autosomal recessive HL (DFNB22; OMIM:
607039), this gene conversion event was considered causative [85].

Despite the advantages of LRS techniques, they possess multiple important drawbacks
that prevent a wide range of uses outside research applications. One of these is the relatively
high costs compared to SRS NGS technologies (USD800–2000 per run, depending on the
different platforms and instruments), based on the lowest possible flow cell price and
highest output [67]. The other major disadvantage is the requirement for high-quality ultra-
long dsDNA, which can be challenging to obtain. In particular, for nanopore sequencing,
the required fresh blood samples for DNA extraction can also be a hurdle. However, as LRS
technologies are rapidly decreasing in price and are continuously improving in different
aspects, such as optimized library preparation and error correction, it is expected that these
technologies will eventually enter routine genetic diagnostics in Western countries. In
addition, like SRS, targeted LRS can also be performed by targeted amplicon sequencing,
CRISPR/Cas-based targeted enrichment, or using a “Read Until” approach in order to
enrich for genetic loci associated with a specific phenotype. Targeted LRS is a cost-effective
and efficient strategy to investigate high-priority loci in unsolved cases [86,87]. For both HL
and RD, several associated genetic loci (44 and 36 loci, respectively) have been described,
for which the implicated genetic defect is still elusive [1,2], and, therefore, a targeted LRS
approach could be of interest.

Finally, as sequencing technologies develop and improve rapidly (Figure 3), the next
challenge will lie in bioinformatics, data storage, data analysis, and variant interpretation
of NGS or LRS data. A high number of different variants are revealed by these methods.
However, not all these variants are disease-causing. Therefore, special attention is
being paid to prioritization processes that can aid in decreasing the number of putative
candidate variants. In addition, developments in bioinformatic tools are needed to
better interpret the effect of candidate variants. In the next section, we will discuss the
importance and challenges of variant interpretation and the importance of this matter in
clinical application.
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(A) schematic representation of (A)) first generation sequencing (Sanger sequencing), (B) next gen-
eration sequencing (e.g. Illumina whole-genome sequencing (WGS) and whole-exome sequencing
(WES)) and (C) third-generation sequencing (e.g. SMRT sequencing as performed by Pacific Bio-
sciences (PacBio) and nanopore sequencing by Oxford Nanopore Technologies (ONT)). For each
technique, advantages (green) and disadvantages (red) are provided.

3. Variant Interpretation

The total length of human DNA is over 3 billion base pairs, and it holds, on average,
4–5 million variants compared to the healthy human reference genome, which highlights
the obvious challenge of distinguishing potential disease-causing variants from benign
variants or polymorphisms [88]. For protein-truncating variants, a potential pathogenic
consequence is often evident, while missense, synonymous and noncoding variants are
more challenging to interpret. Moreover, with increased knowledge regarding the involve-
ment of noncoding DNA in human disease development, the complexity of data to be
analyzed has gone through the roof.

In 2015, the American College of Medical Genetics (ACMG) provided a framework to
utilize and standardize sequence variant interpretation for Mendelian disorders [89]. Each
variant is categorized using a uniform scoring system: benign, likely benign, uncertain
significance, likely pathogenic, or pathogenic. The classification system employs several
hierarchical steps, which include the use of literature and databases, computational and
predictive data, functional data, and segregation analysis. Variant classification is the
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cornerstone of clinical molecular genetic testing. Therefore, ACMG guidelines provide a
consistent and well-applicable system to guide this process. On the other hand, for research
focused on the identification of novel gene-disease associations, the ACMG guidelines are
more difficult to apply and less suitable.

3.1. Literature and Database Use

Variant frequency databases are a useful resource for allele frequencies of variants in
large populations. As a rule of thumb, the frequency of a disease-causing variant should not
be higher than expected, based on the incidence or prevalence of the genetic disorder [90].
The most comprehensive allele frequency database today is gnomAD (successor of ExAC),
which contains frequency data for both SNVs and SVs based on 91,864 genomes and
125,748 exomes [91]. Additionally, this database provides variant frequencies for many
subpopulations, which allows the usage of population-matched control data. Nevertheless,
some populations (e.g., African/African–American) remain underrepresented, which limits
efforts in precision and personalized medicine for these ethnicities. Several efforts are
ongoing to obtain more (high-quality) genomes from these populations [92,93]. Databases
such as gnomAD [91], goNL [94], UK10K [95], and Wellderly [96] contain sequencing data
of (presumably) healthy cohorts. However, important caveats related to age-of-onset and
reduced penetrance should not be ignored.

Unlike population databases, disease databases such as ClinGen [97], ClinVar [98],
Leiden Open (source) Variation Databases (LOVDs) [99], and the Human Gene Mutation
Database (HGMD) [100] also provide genotype–phenotype information. All the variants
collected in the HGMD database have been reported in patients and likely disease-causing.
They have been published in the literature and manually curated. The Deafness Variation
Database (DVD) provides a comprehensive catalog for genetic variation in genes associated
with HL [101]. Efforts are ongoing to collect and annotate all published variants associated
with inherited nonsyndromic RDs, Bardet–Biedl syndrome, and Usher syndrome into 195
gene-specific LOVDs [28,102–106].

Several studies have proven the value of incorporating population frequency data
as a variant prioritization strategy and have successfully clarified variants of unknown
significance [61,107]. However, an important caveat is that a reliable database should
be frequently updated, and uploaded sequencing data should adhere to quality control
criteria. An example of non-pathogenic variants mistakenly reported as pathogenic has
been highlighted in a study performed by Hanany et al. [108]. The authors extracted up-
to-date allele frequencies from gnomAD of variants in genes associated with dominantly
inherited RD and concluded that the pathogenicity of variants in 19% of these genes should
be debated. Inherited HL, on the other hand, is a more common condition, than RD
and therefore the expected maximum allele frequency for a pathogenic variant should be
adjusted accordingly [109].

Once a potentially disease-causing variant is identified, a rich source of available
scientific and medical literature can be assessed. A first important step entails thorough
comparisons between the observed phenotype in the investigated proband and phenotypic
observations described in the literature. Most well-described phenotype–genotype correla-
tions can be found in data repositories: Online Mendelian Inheritance in Man (OMIM) [110],
ClinGen [97], and ClinVar [98].

Strong phenotype–genotype correlations are complicated by a phenomenon called
allelism—different phenotypes can result from different alleles of the same gene [111]. For
example, autosomal recessive Stargardt disease (STGD1), which is due to two variants
or alleles in ABCA4, shows a wide clinical spectrum of maculopathies [112]. The most
severe form is early-onset (onset <10 years) STGD1 or panretinal cone-rod dystrophy,
which is due to two deleterious ABCA4 alleles. Classical or intermediate STGD1 (onset
between 10 and 40 years) is due to a combination of a deleterious variant and a mild
variant. Finally, late-onset STGD1 (onset >40 years) is caused by a deleterious variant and
a mild variant (p.Asn1868Ile), showing reduced penetrance [112–114]. Truncating variants
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in the CDH23 gene are assumed to cause Usher syndrome type 1D (OMIM: 601067), which
consists of HL and retinitis pigmentosa, whereas missense variants cause nonsyndromic HL
(OMIM: 605516) [115]. However, several exceptions to this rule have been reported [116,117].
For pathogenic variants in the USH2A gene that can cause both nonsyndromic retinitis
pigmentosa and Usher syndrome type IIa (OMIM: 276901), the correlation of missense and
truncating variants with the associated phenotypic expression is not always clear, although
truncating USH2A variants are more frequently reported in patients diagnosed with a
syndromic phenotype [118,119]. Additionally, variants affecting genes that are implicated
in ciliopathies (e.g., BBS1, CEP290, IQCB1) can cause a wide range of variable symptoms
that are part of a (syndromic) phenotype. Symptoms described for ciliopathies often include
retinal degeneration and, less frequently, HL (reviewed in [14]). To date, >80 forms of
syndromic RD have been described, which are linked to approximately 200 IRD-associated
genes [120]; for syndromic HL, these numbers are suggested to be even higher [121].

Besides a phenotypic resemblance, the expected mode of inheritance and the involved
pathogenic mechanism of the variant (e.g., haploinsufficiency, loss- or gain-of-function)
should also be compared with literature reports. For genes that have not been previ-
ously associated with the disease of interest, OMIM [110] and GeneCards [122] provide
a summary of known clinical and functional information for the gene. For candidate
disease genes, it may be valuable to investigate gene expression in the tissue of interest
(e.g., SHIELD [123], gEAR [124], EyeGEx [125]) and explore associated protein interaction
networks (e.g., STRING [126]). Additionally, the initiative Genematcher [127] and the
European Retinal Disease Consortium (ERDC) [128] offer the opportunity for different
research groups that share an interest in the same candidate disease gene to collaborate. It
is hypothesized that the most prominent genetic causes of diseases have been identified,
and novel findings appear in few cases or families, which underlines the urgency for
collaborations among research groups worldwide. It is of utmost importance to share
candidate disease gene data to increase the likelihood of identifying multiple unrelated
individuals affected by pathogenic variants in the same gene [129,130].

3.2. Computational and Predictive Data

The spectrum of human genetic variation is diverse, and a rich source of bioinformatics
tools has been developed to evaluate the different potential consequences of a variant.
Although the pathogenicity of SNVs has been most extensively studied, recent efforts into
the characterization of SVs have revealed that pathogenic SVs are more abundant than
initially thought [90,131]. This has led to a gradual shift of attention from coding variations
to structural variations and the noncoding regions of the genome.

3.2.1. Null Variants

Null variants are considered very strong evidence of pathogenicity and often lead to
open reading frame disruption and, consequently, the complete loss of protein function.
Null variants include nonsense, frameshift, canonical splice site, and initiation codon vari-
ants, as well as out-of-frame single- and multiexon deletions. Available in silico prediction
tools are often not designed for the interpretation of null variants, as pathogenicity already
seems evident in most cases. However, some caveats should be considered, including
the presence of alternative transcripts, the position of the variant with respect to 3’UTR,
and the inducement of alternative splicing such as in-frame exon skipping as a putative
correction mechanism [132–134]. For each gene, a loss-of-function intolerance (pLI) score,
which is based on observed (homozygous) loss-of-function variants in healthy cohorts
compared to the expected number based on the gene size, is provided in gnomAD [91].

3.2.2. Missense, Synonymous, Indel, and Intronic Variants

Substitution variants located in the coding (exonic) or noncoding (intronic) regions of
a gene are more difficult to interpret. Missense variants and small in-frame insertions or
deletions (indels) lead to changes in amino acid composition. Several computational tools
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have been developed to aid in the assessment of deleterious consequences of the identified
variants. Output scores provided by these tools are usually based on evolutionary conser-
vation of the altered nucleotide or amino acid residues, biochemical consequences of the
amino acid change, or the location and context of the residue within the protein sequence,
e.g., in a domain with a specific function. The most widely applied tools are combined
annotation-dependent depletion (CADD) [135], Grantham [136], MutationTaster [137],
PhyloP [138], PolyPhen-2 [139], and sorting intolerant from tolerant (SIFT) [140].

Alternatively, synonymous, missense, and (deep)-intronic variants can disrupt the
normal splicing machinery and alter pre-mRNA processing. Variants can introduce or
strengthen cryptic splice sites, disrupt canonical donor or acceptor splice sites, or dis-
rupt the (binding) motifs that are essential for correct splicing processes, such as exonic
splicing enhancers or silencers [107]. This can lead to alternative splicing events, such as
pseudo-exon inclusion, exon elongation, or (partial) exon skipping. Potential splice-altering
variants can be evaluated based on nucleotide conservation scores or by performing splic-
ing assessments using predictive splicing algorithms, such as Human Splicing Finder [141],
SpliceSiteFinder-like [142], MaxEntSCan [143], GeneSplicer [144], NNSPLICE [145], and
SpliceAI, a deep learning algorithm [146]. In vitro midi- or minigene splice assays can
be performed to confirm the predicted alternative splicing events in HEK293T cells or,
if transcript levels allow, aberrant splicing can be detected in RNA derived from (EBV-
transformed) blood cells [147,148].

One pitfall of splice site prediction tools is tissue-specific splicing of exons, which
prevents most current prediction tools from detecting cochlear- or retina-specific splicing
effects. Recently, Riepe et al. benchmarked different established and deep-learning tools
on sets of variants in tissue-specific genes ABCA4 and MYBPC3 and observed that SpliceAI
is the best performing splice prediction tool for both noncanonical splice sites and deep-
intronic variants in ABCA4 [149]. Moreover, Rowlands et al. compared seven machine and
deep learning-based splice prediction tools and demonstrated that SpliceAI is superior in
both sensitivity and specificity [150].

3.2.3. Regulatory Variants

Variants located in intergenic and intronic regions of the genome can exert their
pathogenic effect through a variety of mechanisms. Variation can occur within character-
ized cis-regulatory elements (CREs), such as promoters, enhancers, or insulators [151,152].
Regulatory elements are short DNA sequences (100–500 bp) that allow precise spatiotem-
poral control of gene expression levels [151]. Promoter and distant enhancer regions
interact with each other via chromosomal looping, allowing the recruitment of transcrip-
tional machinery. Alternatively, insulators can block the interactions between promoters
and enhancers. An enhancer element can be located up to one Mb away from its target
gene and can serve as the transcriptional regulator of one or more genes [151,153–155].
Usually, an enhancer displays a spatiotemporal pattern of activity. Transcription factors
that bind enhancer or promoter elements are the key regulators of these processes, and
they modulate gene expression. Pathogenic variants in cis-regulatory elements can alter
transcription factor binding sites or the chromatin landscape and, therefore, the activity
of the enhancer or promoter [151,152]. Databases such as JASPAR [156], which contain
consensus sequences of transcription factor binding sites, can be used to predict the effect
of a potential regulatory variant on transcription factor binding.

Regulatory variants that impact transcription initiation usually lead to subtle changes
in gene expression and are difficult to assess [152]. Therefore, context-specific profiling
of the tissue- and cell-type-specific cis-regulatory architecture is essential [157]. Enhancer
databases such as the ENCODE portal [158], GeneHancer [159], and EnhancerAtlas [160]
contain an overview of reported cis-regulatory elements that are widespread throughout the
genome. Potential interactions between promoter and enhancer elements can be assessed
by evaluating available chromosome conformation capture data like Hi-C. Additionally,
the presence of context-specific active enhancer hallmarks should be assessed. These
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include (1) the confirmed binding of transcription factors, (2) the production of noncoding
enhancer RNA, (3) an open chromatin conformation, and (4) the presence of histone-
modification marks that are associated with enhancer activity, such as histone 3 lysine
27 acetylation [151,157]. Figure 4 provides an overview of these hallmarks, the suitable
techniques to assess these, and a selection of relevant publicly available (epigenetic) datasets
used to interrogate the recently resolved autosomal dominant retinitis pigmentosa RP17
locus [161]. Once a candidate regulatory variant has been identified, experiments such as
an in vitro luciferase reporter assay could be applied to confirm its effect on enhancer or
promoter activity [151].
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database: GSE137311) [151]. (C) Secondly, cap analysis gene expression (CAGE) allows 5′ end sequencing of cDNAs,
confirming the expression of the enhancer element, as shown by the FANTOM5 CAGE human dataset (Data available
from https://fantom.gsc.riken.jp/data/) (accessed on March, 2021) [162]. (D) Thirdly, an open chromatin conformation
of the enhancer element is confirmed by ATAC-sequencing of a human retina sample (GSE137311) [151]. (E) Lastly, the
enhancer element is enriched for histone-modification marks that are associated with enhancer activity, such as H3K27Ac,
as determined using ChIP-sequencing performed on human retina (GSE137311) [151].
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3.2.4. Structural Variants

SVs are defined as genomic rearrangements that are larger than 50 bp [131]. SVs
include deletions and duplications, also referred to as copy number variations, as well
as inversions, translocations, and insertions [153]. In 2020, an amendment of the ACMG
guidelines was published to aid in the classification of SVs [163]. SVs can have direct
consequences on gene dosage levels when (partially) overlapping with coding regions
of a gene or can cause changes in gene expression levels or patterns when overlapping
with regulatory elements such as enhancers. Additionally, SVs that are limited to the
noncoding regions of the DNA can interfere with the 3D genome structure and disrupt cis-
regulatory architecture [131]. Each chromosome is compartmentalized in regulatory units,
so-called topologically associating domains (TADs). Within each TAD, enhancers and gene
promoters can interact. Neighboring TADs are shielded from each other by boundaries,
which are typically occupied by the transcription factor CTCF [164]. Disruption of TAD
architecture by SVs can have severe pathogenic consequences. Deletions can lead to the
fusion of neighboring TADs, inversions can result in the exchange of regulatory sequences,
and duplications can generate novel TAD compartments, leading to ectopic enhancer-
promoter contacts (neo-TADs) [153,165–167]. These genomic rearrangements can result
in pathogenic alterations of gene expression levels. Recently, it was shown that TAD
rearrangements caused by SVs are an important cause of autosomal dominant retinitis
pigmentosa (RP17) [161]. Additional studies, focused on the identification of copy number
variants involved in HL or RD, have also suggested a prominent role for pathogenic
SVs [168,169]. To predict the potential consequences of structural rearrangements, the
epigenetic landscape of the region, including the presence of CTCF sites, interactions, and
directionality, should be evaluated.

3.3. Segregation Analysis

Once a candidate disease-causing variant is identified, segregation analysis should be
performed, if possible, to confirm that the observed inheritance of the variant matches the
family history. If a variant is segregating with the phenotype within the family, this could
serve as supportive evidence for linkage of the identified variant to the disorder. However,
the variant might still be in linkage equilibrium with the true pathogenic variant, and the
genetic locus should always be carefully screened for missed variants. Additionally, a
careful clinical evaluation of all family members is essential to exclude mild symptoms
of reportedly unaffected individuals as well as possible phenocopies, whose phenotype
can be explained by other (nongenetic) factors. The latter is especially relevant for cases
diagnosed with inherited HL, as both genetic and environmental factors are significant
contributors to the development of HL [3].

Other factors that might complicate the interpretation of segregation analysis results
are age-related or reduced penetrance, modifiers, carrier females in X-linked diseases, and
multigenic inheritance. Several studies have indicated that modifying variants can have
higher allele frequencies than fully penetrant alleles and, therefore, are not recognized
by diagnostic pipelines [170,171]. Despite their high allele frequencies, it has been shown
that these variants can still significantly modify Mendelian genotypes. For instance, the
variants p.(Ser192Tyr) and p.(Arg402Gln) in TYR have an individual allele frequency of
36.4% and 27.3% in the gnomAD database (non-Finnish Europeans), respectively, while the
p.[Ser192Tyr;Arg402Gln] allele has an allele frequency of 1.9%. Despite the relatively high
population frequency, the pathogenicity of the p.[Ser192Tyr;Arg402Gln] allele has been
suggested when present in a homozygous state or in a triallelic genotype with a known
pathogenic TYR variant in trans [172,173]. Studies suggest that one in six genes implicated
in RD is possibly associated with variable penetrance due to variability in expression lev-
els [174,175]. Examples of strong evidence for variants with reduced penetrance, implicated
in RD or HL, have been reported for ABCA4 [113,176], COCH [177], PRPF31 [178], and
RIPOR2 [179].
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Another complicating factor is uniparental disomy (UPD), where two homologous
chromosomes are inherited from the same parent due to errors during meiosis. In 2020,
Yauy et al. investigated the presence of UPD in exome sequencing data of 4912 trios [180].
The authors detected UDPs in 0.05–0.2% of these trios, amongst which was a chromosome
1 UPD (ABCA4) in a Stargardt disease case, suggesting minimal contribution to the genetic
diagnostic yield [180]. Thus far, there are four reported Stargardt disease cases showing
UPD in chromosome 1 [46,180–182]. Moreover, in 2013, Roosing et al. described maternal
UPD of chromosome 6, which included a pathogenic TULP1 variant responsible for the
cone dystrophy phenotype of the proband. For HL, several cases of UPD have been
described as well, affecting chromosome 1 (USH2A) [183], chromosome 13 (GJB2) [182],
and chromosome 18 (LOXHD1) [182,184].

3.4. Functional Evaluation of Variants

Functional assays can provide an extra line of evidence that can aid in the discrim-
ination between (likely) pathogenic variants, (likely) benign variants, or variants with
unknown significance. For proteins with a well-characterized subcellular localization or
function, in vitro approaches can be considered to assess the impact of the variant on
protein localization or function. Examples of the latter are assessments of transporter
function, enzymatic activity, or activity of metabolic pathways. In vivo experiments are
ideal for studying the true biological context. However, as it is not always feasible to
perform such studies, in vitro research can, instead, provide valuable information. Bio-
chemical data obtained from patient-derived biopsies might be more informative. However,
for both HL and RD, samples derived from the tissues of interest are usually not avail-
able. For these purposes, animal models could provide a valuable alternative. Over the
years, several studies have proven the suitability of studying ear- or eye-related disease in
nonhuman primates and mouse models [38,185]. The International Mouse Phenotyping
Consortium (IMPC) aims to generate mouse knockout models for all known genes in the
mouse genome [186]. Furthermore, the zebrafish has proven its suitability as an animal
model. In this model, retinal and inner ear function can already be studied five days
postfertilization [185,187]. Limitations in the usage of animal models include ethical, time,
and financial considerations, in addition to the level of gene conservation.

Stem cell technology and the development of differentiation protocols over the past
decades have enabled the in vitro generation of patient-derived cells, resembling retinal
photoreceptors or inner ear hair cells [188,189]. These models can provide an alternative
method of studying the tissue of interest. Research has shown that differentiated cells can
resemble the patient’s retina or inner ear. Several 2D- and 3D-differentiation protocols
have been successfully applied to study both HL and RD. Differentiation approaches are
rapidly being optimized, as the involved processes are still very time-consuming and
expensive [188,189]. More so, variability and cell heterogeneity are important hurdles, and
these should be overcome in order to fully replace animal model studies.

4. Future Developments
4.1. Development of New Technologies

Chromosomal abnormalities and SVs are among the main causes of genetic diseases,
which are being addressed in clinical application using routine cytogenetics methods
such as karyotyping and fluorescent in-situ hybridization (FISH), comparative genomic
hybridization (CGH), and SNP microarrays [190,191]. However, these methods manifest
significant limitations in the identification of SVs. For example, karyotyping allows the
identification of different chromosomal abnormalities with a 5–10 Mb resolution. Although
microarrays and CGH arrays are able to identify the gain and loss of chromosomal material
as small as 10 kb, balanced rearrangements cannot be detected by these methods nor the
exact location of the structural variation [192,193]. It is estimated that only 15–20% of
chromosomal abnormalities can be detected by the application of these techniques, which
indicates the great need for new technologies in the field of cytogenetics [194].
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Although LRS techniques are rapidly developing and show a great ability to identify
SVs, their routine application in clinical diagnostics still requires several improvements
in terms of sequencing and variant interpretation; it also requires a cost reduction. In
addition, despite the fact that these technologies can provide substantial read length, the
reads can only be assembled to the scaffold level and not to the chromosome level [195].
Complementary approaches to identify SVs can be offered by cytogenetics [193]. One
of these recent technologies is optical mapping (Bionano Genomics), which is a de novo
assembly-based method that allows the visualization of the genomic structure in high
resolution [196]. The approach is based on ultra-long dsDNA molecules that are fluores-
cently labeled at CTTAAG hexanucleotide motifs, which are found, on average, 15 times
per 100 kb across the human genome. The distances and patterns of these labels can be
compared to those in a reference genome. Therefore, copy number aberrations and other
SVs, including insertions, inversions, and translocations, can be detected (Figure 5).
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Figure 5. Overview of optical mapping technology. (A) High-quality DNA is isolated and later labeled at a 6-mer motif
across the genome. (B) The labeled DNA is linearized in order to take images of the label patterns in the DNA molecules,
and, subsequently, the images are converted to the molecules. (C) These molecules are then utilized for genome assembly to
generate consensus genome maps. The pattern of labels can be compared between the reference genome and the affected
individuals to identify structural variants. The shorter or longer distance between two labels indicates deletion or insertion,
respectively. Translocations can be identified by the mapping of a single region in the patient genome to two genomic
regions in the reference. The inverted pattern of labels in a patient, compared to that in the reference genome, indicates the
presence of an inversion.

Optical mapping has a much higher resolution compared to standard karyotyping
and microarray technologies and, therefore, enables much more precise data analysis. As it
is an imaging method and not a sequencing method, SNVs cannot be detected. However,
for the analysis of SVs, optical mapping can be used in a complementary manner to
sequencing techniques [193]. With the ability to map ultra-long dsDNA molecules at a
low cost, optical mapping has facilitated SV detection, haplotype phasing, and genome
assembly [195]. In a recent study, researchers utilized optical mapping to identify a 48-kb
duplication at the LAMA1 locus that causes Poretti–Boltshauser syndrome (OMIM: 615960).
Affected individuals present with ataxia, cognitive impairment, and language delay, as
well as ocular phenotypes such as ocular motor apraxia, abnormal eye movement, and
RD. WES and chromosome microarray prescreening methods failed to reveal the large SV
in the studied family [197]. The authors reasoned that LRS technologies offer promising
applications in comprehensive SV analysis; however, the costs and accuracy may represent
a burden. Therefore, they suggested that a combination of different technologies, such as
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optical mapping and SRS, provides a more comprehensive understanding of SVs when
considering cost, time, and throughput [197].

4.2. Multiomic Approaches

Besides genome sequencing, other omic technologies, such as transcriptomics, pro-
teomics, metabolomics, or epigenomics, hold the promise to further close the diagnostic
gap for RD and HL. It is evident that for each identified disease-associated gene, the iso-
form landscape and levels of involved gene regulation are more complex than initially
thought. A quantitative (gene expression levels) or qualitative (isoform structures, novel
exons) analysis of the transcriptomic landscape is valuable in enhancing diagnostic yield,
as shown by several studies [198,199]. In combination with genome sequencing, RNA
sequencing can improve the interpretation of variants with unknown significance, although
inaccessibility of cell types for RD- and HL-associated genes is a major limitation.

LRS offers the potential for RNA analysis as well: for example, the Iso-Seq method of
PacBio enables the sequencing of full transcripts, and nanopore sequencing offers direct
sequencing of RNA molecules [64]. LRS techniques have already shown to be successful in
the identification of novel full-length transcripts. In a study performed by Ray et al., an
abundant retina-specific CRB1 transcript (CRB1-B) was detected, which was not annotated
in genome databases such as the UCSC genome browser [200,201]. The authors showed
that the expression of the CRB1-B transcript is significantly higher in photoreceptors than
the canonical CRB1 transcript (CRB1-A). The newly identified transcript includes unique
exons that are not present in CRB1-A and, thereby, represent important candidate regions
for potentially missed pathogenic variants [201]. In addition, developments in the single-
cell RNA sequencing field allow the identification and characterization of tissue-specific
isoforms and regulatory events. The Single Cell Portal (Broad Institute) offers a valuable
resource of tissue-specific single-cell RNA sequencing datasets [202].

Epigenomics is an emerging and promising development in the field of medical genet-
ics. Analysis of epigenomic signatures can aid in the understanding of the 3D organization
of the genome. Since base modifications remain captured in native DNA molecules that
are used for SMRT and nanopore sequencing, investigation of the methylome and DNA
base modification is possible [64,67]. Ideally, multiomic layers (e.g., genomics, transcrip-
tomics, and epigenomics) should be integrated (the so-called multiomics), which aids in
an ultimate understanding of the genomic landscape and provides valuable insights for
(candidate) disease-associated genes.

5. Conclusions and Discussion

Fifty years after the arrival of the Sanger sequencing technique, the sequencing tech-
nology landscape is still rapidly evolving. However, genetic diagnostic yield still varies
between 40–70% for inherited HL and RD, indicating that there are still opportunities for
further improvement [8,9,52]. Although novel disease-associated genes are being discov-
ered, disease–gene identification curves are slowly reaching a plateau phase, suggesting
more attention should be paid to currently missed or misinterpreted variants within known
HL- or RD-associated genes that reside within complex (noncoding) regions of the genome.
Recent developments of LRS techniques and optical mapping and improvements in WGS
techniques offer valuable opportunities to investigate the noncoding landscape of the
genome in more detail. Furthermore, the interpretation of SVs has been greatly advanced
by developments in computational analysis and bioinformatics tools. Therefore, the em-
phasis will be on overcoming the limitations of sequencing and bioinformatic techniques
in the near future. Additionally, evidence suggests that complex factors, such as modifiers,
digenic inheritance, and variable penetrance, play an important role in disease-causing
mechanisms in inherited HL and RD. The generation of larger, high-quality datasets will
allow a better understanding of these events as well.

We foresee that, in the near future, the new technologies and improved analytical
tools will reinforce the clinical diagnostic setting in order to close diagnostic gaps, as it



Int. J. Mol. Sci. 2021, 22, 2943 19 of 27

is of utmost importance for both the affected individuals and the involved clinicians and
researchers. It will help to provide guidance to affected families with regard to family
planning, providing them with an optimal prognosis and counseling. In addition, with
recent developments in the field of genetic therapies, the importance of genetic diagnostics
can no longer be underestimated. We have come a long way from linkage analysis, starting
in the early 90s, to the more recent LRS of single DNA molecules to unravel the genetic
causes of HL and RD. Clinical diagnostics has significantly improved over these years,
and the diagnostic yield is still increasing. We anticipate an extensive application of new
technologies in the future, which will redirect traditional therapies towards precision or
personalized medicine to improve treatments for HL and RD.
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