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Background: To explore the effectiveness of radiomics features based on routine CT
to reflect the difference of cerebral hemispheric perfusion.

Methods: We retrospectively recruited 52 patients with severe stenosis or occlusion
in the unilateral middle cerebral artery (MCA), and brain CT perfusion showed an MCA
area with deficit perfusion. Radiomics features were extracted from the stenosis side
and contralateral of the MCA area based on precontrast CT. Two different region of
interest drawing methods were applied. Then the patients were randomly grouped into
training and testing sets by the ratio of 8:2. In the training set, ANOVA and the Elastic
Net Regression with fivefold cross-validation were conducted to filter and choose the
optimized features. Moreover, different machine learning models were built. In the testing
set, the area under the receiver operating characteristic (AUC) curve, calibration, and
clinical utility were applied to evaluate the predictive performance of the models.

Results: The logistic regression (LR) for the triangle-contour method and artificial
neural network (ANN) for the semiautomatic-contour method were chosen as radiomics
models for their good prediction efficacy in the training phase (AUC = 0.869, 0.873) and
the validation phase (AUC = 0.793, 0.799). The radiomics algorithms of the triangle-
contour and semiautomatic-contour method were implemented in the whole training
set (AUC = 0.870, 0.867) and were evaluated in the testing set (AUC = 0.760, 0.802).
According to the optimal cutoff value, these two methods can classify the vascular
stenosis side class and normal side class.

Conclusion: Radiomic predictive feature based on precontrast CT image could reflect
the difference of cerebral hemispheric perfusion to some extent.

Keywords: cerebral ischemia, computed tomography, machine learning, middle cerebral artery, different region
of interest

INTRODUCTION

The brain is an oxygen-consuming organ and consumes 20% of the body’s oxygen to meet its
high-energy demands (Farrell et al., 2017). This physiological characteristic makes the brain the
most vulnerable organ to ischemia and cerebral hypoxia, for all that the brain has a self-protective
and self-repairing mechanisms against these conditions. Ischemic tolerance or preconditioning is
an endogenous neuroprotective phenomenon (Koizumi et al., 2018). Such as, severe stenosis or
occlusion of the internal carotid artery (ICA) may lead to cerebral ischemic damage, but the cerebral
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blood flow (CBF) is redistributed toward the affected
hemisphere to maintain adequate perfusion, as a result,
cerebral autoregulation can compensate for a fall in cerebral
perfusion pressure through vasodilation (van Everdingen et al.,
2000). For another aspect, occlusion or stenosis of the middle
cerebral artery (MCA) is considered to be the most common
vascular cause of stroke in Asian populations (Sacco et al., 1995).
A recent report showed that cerebral hemodynamic disturbance
can be found frequently in patients with symptomatic unilateral
MCA high-grade stenosis or occlusion (Lu et al., 2007).

Computed tomography perfusion (CTP) has been a well-
developed method to detect and evaluate cerebral hemodynamic
disturbance and the CTP pattern downstream from
cerebrovascular stenosis yields important information about the
hemodynamic significance of this stenosis. This information
may be more relevant than merely measuring the degree of
luminal narrowing. Chronic cerebral hypoperfusion is a key
mechanism of neurodegeneration including vascular cognitive
impairment and dementia (Duncombe et al., 2017; Washida
et al., 2019) and it could be minified by CTP. Neurodegeneration
from hypoperfusion involves intracellular Ca2+ dyshomeostasis
and excitotoxic activation of neuronal glutamate receptors
(Diemer et al., 1993). Cytoskeletal disintegration occurring
in dendrites and degeneration of neuronal cell bodies persist
during the process of neurodegeneration (Martin et al., 1998).
Any sustained reduction in regional CBF may reduce tissue
function and cause regional cerebral damage even neuronal
and non-neuronal cells death (Martin et al., 2000). However,
patients must be exposed to ionizing radiation when they
undergo this examination. During the past decade, radiomics
have developed rapidly not only in oncology studies but also
for many other diseases due to its cost-effectiveness and non-
invasive nature (Ren et al., 2021). Radiomics are the processes for
high-throughput extraction of quantitative features that result in
the conversion of images into mineable data and the subsequent
analysis of these data for decision support. These are different
from the traditional practices of treating medical images as
pictures intended solely for visual interpretation and potentially
improve diagnostic, prognostic, and predictive accuracy (Gillies
et al., 2016). A recent study showed that radiomics features
extracted from the image of coronary CT angiography act as a
non-invasive tool for predicting chronic myocardial ischemia can
help to identify high-risk patients with coronary artery disease
(Shu et al., 2020). In our study, the patients with unilateral
MCA occlusion were selectively collected. To our knowledge,
whether the radiomics features based on routine CT images
could reflect abnormal brain perfusion state has not been
reported before.

Radiomics is a promising field in medical imaging research;
however, the clinical implementation of radiomics has been
challenging because of concerns about reproducibility. On
general idea, the region of interest (ROI) drawing was based
on the easily identifiable boundary of the anatomical structure
or lesion area in previous radiomic research. Previous research
(Leijenaar et al., 2013) reported the variability according to the
enlargement of the lesion area within five different independent
tumor delineations by multiple observers, the results showed

that the majority of assessed features had both a high test-
retest and interobserver stability in terms of their intraclass
correlation coefficient (ICC), which means the interobserver
differences in delineations affected feature reproducibility to
some degree. Park et al. (2021) reported that MR radiomic
features showed good robustness with different slice thicknesses
and pixel spaces in patients with cervical cancer. These researches
focused on the same task with different methods, but the
outline of the ROIs was roughly similar in shape, and with
good reproducibility, especially in the first-order feature. In
actuality, the boundary of MCA territory on routine CT could
not be easily recognized, even in previous CTP researches the
drawing of MCA territory was still inconsistent (Kim et al., 2000;
Trojanowska et al., 2006; Shi et al., 2021). In this study, we
proposed two quite different ROI drawing methods to verify the
stability of our results.

MATERIALS AND METHODS

Data Collection
We obtained study approval from the ethics committee of the
Qilu Hospital (Qingdao, Shandong Province, China) with a
waiver for obtaining informed consent from the patients. We
retrospectively analyzed data of patients who underwent both
brain precontrast CT and CTP at our hospital from April 2015
to July 2021. Inclusion criteria were as follows: (1) severe stenosis
or occlusion in unilateral MCA certified by digital subtraction
angiography (DSA), CT, or MR angiography; (2) CTP showed
the MCA blood supply area with deficit perfusion (prolonged
mean transit time with or without decreased CBF); (3) without
obvious abnormal finding or artifacts; and (4) angiography, CTP,
and routine CT were finished in 2 weeks. Exclusion criteria were
as follows: (1) severe stenosis or occlusion of contralateral MCA
or internal carotid artery and (2) obvious low-density areas in
the brain parenchyma. At last, a total of 52 cases of patients were
included in this study and all the samples were randomly divided
into the training (41 cases, 78.8%) and testing (11 cases, 21.2%)
sets. The testing set was only independently used for the model
evaluation and comparison.

Scanning Parameters
All the patients were scanned on the Siemens Definition Flash
64-slice CT scanner (Siemens, Somatom, Germany). For routine
CT, scanning parameters were as follows: spiral scanning type
with scan field-of-view 30 cm; tube current–time products, 320
mAs; tube voltage, 120 kVp; and matrix size 512 × 512. For
CTP, scanning parameters were as follows: dynamic volume
scanning with 21 phases of 40 s scanning time; scan field-of-
view 30 cm; tube current–time products, 140 mAs; tube voltage,
80 kVp; slice thickness, 1.0 mm; matrix size 512 × 512; and the
CTP was scanned 5 s after intravenous bolus injection of non-
ionic iodine contrast agent with 5 ml/s injection rate (0.6 ml/kg
body weight, Ultravist 300, Bayer, Germany) with 40 ml normal
saline after that.
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FIGURE 1 | (A) Determination of the three vertexes in triangular contour was
selected in the semioval center level. The anterior vertex was selected at the
intersection of the longitudinal centerline of the unilateral cerebral hemisphere
and the frontal cortex, the posterior vertex at the parietal cortex, and the
middle vertex was selected at the midpoint of the convex surface of the brain,
then the three points were connected in a straight line to form a triangular
contour. (B) Determination of the semiautomatic contour was also selected in
the semioval center level. The anterior and posterior points were selected with
the same method as triangular contour and then the two points were
automatically connected and the convex edge of the cerebral hemisphere was
automatically outlined to form a semiautomatic contour.

Region of Interest Segmentation and
Radiomic Feature Extraction
We downloaded the original Digital Imaging and
Communications in Medicine (DICOM) images of routine
CT sequence and imported them to the Deepwise multimodal
research platform (V1.6.2)1 for image annotation. One
experienced radiologist (PAn) manually sketched a triangular
contour and a semiautomatic contour of the MCA blood supply
area at the semioval center slice, as shown in Figure 1. We chose
the centrum semiovale as the standard slice for ROI drawing
which is the classic level for measuring cerebral ischemic changes
in the MCA territory according to the previous study (van
Everdingen et al., 2000), and used a triangular-contour ROI
drawing method trying to avoid the cortical areas sensitive to
cerebral perfusion changes (Virley et al., 2004; Kazumata et al.,
2017), to verify our hypothesis that imaging omics can also
detect the perfusion differences in the white matter areas of
both hemispheres that are not sensitive to perfusion changes.
Intelligent Scissors (Mortensen and Barrett, 1998) algorithm was
implemented as our semiautomatic segmentation method which
can quickly locate the edge of the image area at runtime, and
more accurately complete the outline and segmentation of the
entire ROI by interacting with the user.

To utilize the information in the image as much as possible,
data were preprocessed by 8 kinds of filters (wavelet, Laplacian of
Gaussian, square, square root, logarithm, exponential, gradient
transform, and local binary pattern transform) instead of just
using the original image. Respectively, we extracted radiomic
features from the two-dimensional slices of the triangular and
the semiautomatic sketching ROI. For each delineation method,
a total of 1,379 features were extracted, namely, 270 first-order

1http://keyan.deepwise.com

features, 14 shape features, 330 gray level co-occurrence matrix
(GLCM) features, 240 gray level size zone matrix (GLSZM)
features, 240 gray level run length matrix (GLRLM) features,
210 gray level dependence matrix (GLDM) features, and 75
neighboring gray-tone difference matrix (NGTDM) features. For
the training set, the values of each feature were standardized using
Z-score and the means and the variances of them were reused for
the standardized procedures on the testing set.

Feature Selection and Model
Construction
The ANOVA was performed to filter the extracted radiomic
features (p ≤ 0.1). It is a classical statistical technique that is
used to compare the differences among means based on F-test.
And then, elastic net regression with fivefold cross-validation
(CV) was conducted to further filter and choose the optimized
subset of features in the training set. Elastic net overcomes the
limitations of the least absolute shrinkage and selection operator
(LASSO) by combining its L1 penalty with the L2 penalty of the
ridge regression. After that, we implemented 9 different machine
learning algorithms—logistic regression (LR), support vector
machine (SVM), K-nearest neighbors (KNN), linear discriminant
analysis (LDA), quadratic discriminant analysis (QDA), Gaussian
naive Bayes (GNB), artificial neural network (ANN), random
forest (RF), and XGBoost and CatBoost—in the training dataset
and tuned the hyperparameters of these models using grid
search method and fivefold CV. We used the receiver operating
characteristic (ROC) analysis to evaluate the performance of the
algorithms to determine the optimal one. And then the best
models of triangular contour and semiautomatic contour were
retrained in the whole training set to establish the radiomics
score (rad-score) and evaluated in the testing set. In the training
set, Youden index (Youden, 1950) analysis was constructed to
determine the optimal threshold (cutoff value) of classification
probability which was then used to predict in the testing set.
Metrics like the area under the ROC curve (AUC), accuracy, F1
score, sensitivity, and specificity were calculated. Finally, we used
the decision curve and calibration curve to measure the clinical
usefulness of the model.

Statistical Analysis
When the differences between the samples from the two groups
were normally distributed, we performed the paired t-test;
otherwise, the Wilcoxon signed-rank test was performed. In
addition, since the scale of the testing set is quite small, the
paired permutation test was applied. All the statistical analyses
were performed using Python programming language (version

TABLE 1 | The clinical and demographic characteristics of the subjects.

Clinical and demographic characteristics Statistical value

Age (y, mean ± SD, range) 59.48 ± 13.01 (32–87)

Gender (male/female) 26/26

Symptoms (dizziness, fatigue, limb numbness, or barylalia,
yes/no)

45/7
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FIGURE 2 | (A,C) Radiomics feature selection and rad-score construction of triangular contour (red, left) and semiautomatic contour (blue, right). The coefficient
lambda of the penalty term in elastic net was seen as a hyperparameter and tuned via the fivefold cross-validation (CV) method. The black curve showed the average
mean square error (MSE) for each model given lambda. The x-axis indicated the values of lambda. The vertical lines marked the values of the best lambda which
were 0.032 and 0.051. (B,D) Radiomics features coefficients reduction-path curves. Finally, 14 non-zero factors for triangle contour and 19 for semiautomatic
contour were selected. (E,F) The retained non-zero-coefficient features were plotted on the y-axis and their coefficients in the elastic net were plotted on the x-axis.
(G–J) The receiver operating characteristic (ROC) curves of the 9 radiomics machine learning models. (K–N) Paired samples tests showed that there were significant
differences in the rad-score which would be used to discriminate the patients into the two classes.

3.8.8)2 and its open-source package. First, the “PyRadiomics”
package was used to extract radiomics features from the original
images and transformed images. Second, the tools in “Scikit-
learn” were used to implement the machine learning algorithm,
perform the fivefold CV and construct the rad-score. Third,
all visualizations were done using packages “Matplotlib” and
“Seaborn.” At last, we use the classic statistical library “Stats” from
“Scipy” to complete all the tests.

RESULTS

Demographic Characteristics
The clinical and demographic characteristics of the subjects are
shown in Table 1. Unilateral MCA occlusion can be seen not only
in the elderly, but also in young and middle-aged people. Most

2http://www.python.org

of the patients have clinical symptoms, such as dizziness, fatigue,
limb numbness, or bradylalia.

Radiomics Signature Construction and
Validation
At first, a total of 1,379 radiomic features were extracted from
each cerebral hemisphere of the subject. In the training set,
the ANOVA was performed to select the features that were
significantly different between vascular stenosis side class and
normal side class and 57 features were retained for triangle
contour and 86 features were retained for semiautomatic contour.
After screening by the elastic net regression method with fivefold
CV, 14 features were retained for triangle contour and 19 features
were retained for semiautomatic contour (Figures 2A–D). The
features with non-zero coefficients are shown in Figures 2E,F
and the weight of each feature that contributed to the established
signature was also displayed. Figures 2G–J and Table 2 illustrate
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TABLE 2 | Performance of 9 machine learning models in the fivefold CV training and validation phase.

Model CV-training CV-validation

AUC (95% CI) SD Accuracy F1-score Sensitivity Specificity AUC (95% CI) SD Accuracy F1-score Sensitivity Specificity

Triangular-contour
LR 0.869 (0.837–0.901) 0.019 0.796 0.774 0.817 0.791 0.793 (0.714–0.871) 0.050 0.744 0.780 0.707 0.753
SVM 0.913 (0.887–0.938) 0.016 0.857 0.787 0.927 0.846 0.776 (0.691–0.864) 0.054 0.768 0.732 0.805 0.759
KNN 0.852 (0.816–0.886) 0.021 0.787 0.793 0.780 0.788 0.740 (0.657–0.832) 0.053 0.707 0.927 0.488 0.760
LDA 0.834 (0.797–0.870) 0.022 0.750 0.738 0.762 0.747 0.751 (0.657–0.840) 0.056 0.695 0.805 0.585 0.725
GNB 0.820 (0.783–0.860) 0.023 0.738 0.762 0.713 0.744 0.739 (0.648–0.830) 0.055 0.707 0.561 0.854 0.657
ANN 0.913 (0.888–0.936) 0.015 0.835 0.829 0.841 0.834 0.789 (0.711–0.866) 0.048 0.732 0.902 0.561 0.771
RF 1.000 (1.000–1.000) 0.000 1.000 1.000 1.000 1.000 0.672 (0.576–0.773) 0.060 0.634 0.390 0.878 0.516
XGB 1.000 (1.000–1.000) 0.000 1.000 1.000 1.000 1.000 0.785 (0.695–0.864) 0.050 0.732 0.659 0.805 0.711
CATB 1.000 (1.000–1.000) 0.000 1.000 1.000 1.000 1.000 0.715 (0.620–0.807) 0.056 0.659 0.805 0.512 0.702
Semiautomatic-contour
LR 0.874 (0.841–0.904) 0.019 0.787 0.817 0.756 0.793 0.733 (0.644–0.826) 0.055 0.683 0.561 0.805 0.639
SVM 0.832 (0.793–0.867) 0.022 0.759 0.689 0.829 0.741 0.767 (0.681–0.851) 0.051 0.720 0.537 0.902 0.657
KNN 0.841 (0.807–0.872) 0.020 0.759 0.774 0.744 0.763 0.761 (0.678–0.853) 0.054 0.720 0.780 0.659 0.736
LDA 0.867 (0.833–0.897) 0.020 0.780 0.738 0.823 0.771 0.763 (0.677–0.848) 0.052 0.720 0.732 0.707 0.723

GNB 0.743 (0.698–0.784) 0.026 0.695 0.640 0.750 0.677 0.682 (0.584–0.778) 0.060 0.683 0.659 0.707 0.675
ANN 0.873 (0.841–0.902) 0.019 0.799 0.732 0.866 0.784 0.799 (0.718–0.876) 0.048 0.744 0.537 0.951 0.677
RF 1.000 (1.000–1.000) 0.000 1.000 1.000 1.000 1.000 0.699 (0.604–0.793) 0.057 0.671 0.634 0.707 0.658
XGB 0.955 (0.937–0.972) 0.011 0.899 0.890 0.909 0.898 0.635 (0.532–0.737) 0.062 0.671 0.707 0.634 0.682
CATB 1.000 (1.000–1.000) 0.000 1.000 1.000 1.000 1.000 0.685 (0.585–0.787) 0.060 0.683 0.707 0.659 0.690

SD, standard deviation of AUC; LR, Logistic Regression; SVM, Support Vector Machine; KNN, K-Nearest Neighbors; LDA, Linear Discriminant Analysis; GNB, Gaussian
Naive Bayes; ANN, Artificial Neural Network; RF, Random Forest; XGB, XGBoost; CATB, CatBoost. Bold values highlight the best results of each indicator in different
models in the validation set.

the performance of 9 machine learning algorithms. In the
triangle-contour part, LR, with an L2 penalty term whose
coefficient was 28.031, had the best performance because its AUC
(0.793) was highest in the CV phase and its AUC (0.869) in
CV training indicated without overfitting. For semiautomatic
contour, ANN, which had the learning rate of 0.000812, a
penalty term whose coefficient is 19.490, and just one hidden
layer with 100 units, was considered the optimal model for
the same reason (0.873 AUC in the CV-training phase and
0.799 AUC in the CV). Based on these two best algorithms
with optimal hyperparameters, the classifiers were retrained
using the whole training data and radiomics signatures were
established, respectively.

Comparison of Radiomic Score With Two
Sketched Contour Methods
For semiautomatic contour, the radiomics signature showed good
predictive performance with an AUC value of 0.867 in the
training set (Figure 3A) and a value of 0.802 in the testing set
(Figure 3B). According to the optimal cutoff value of 0.568, the
cerebral hemispheres were classified into vascular stenosis side
class and normal side class. Both in the training and testing sets,
rad-score was significant difference between in vascular stenosis
side class and normal side class (Figures 2M,N).

For triangle contour, the radiomics signature showed good
predictive performance with an AUC value of 0.870 in the
training set and a value of 0.760 in the testing set. According
to the best cut-off value of 0.507, the cerebral hemispheres
were classified into vascular stenosis side class and normal side
class. Figures 2K,L indicated that the rad-score was significant

difference between in both the training set (p < 0.001) and
validation set (p = 0.041).

Except for the sensitivity, in the testing set, the metrics
of the semiautomatic-contour model were better than the
triangular-contour model although the two classifiers had similar
performances in the training set (Table 3). The ROC curves
were analyzed by the DeLong test, which showed that there was
no significant difference in both the training set and testing
set (P-values are 0.3242 and 0.8057, respectively). As shown in
Figures 3E,F, we used the decision curves to evaluate the clinical
usefulness of the model. It showed that the semiautomatic-
contour model would be more beneficial than the triangular
counterpart. From the perspective of the calibration curve
analysis (Figures 3C,D), the semiautomatic-contour model was
closer to the ideal in both of the training and testing sets.

DISCUSSION

In this study, we investigated the difference of the two sides of
the hemisphere based on routine CT in the patients with lateral
MCA stenosis and the CTP showed abnormal cerebral perfusion
in the vascular stenosis side. For semiautomatic contour, a
radiomics signature constructed by 16 predictive features in this
study showed good predictive efficacy in distinguishing vascular
stenosis side from normal side in the training set (AUC = 0.867,
95% CI: 0.801–0.927) and validated the testing set (AUC = 0.802,
95% CI: 0.616–0.971); for triangular contour, good predictive
efficacy could also be found in the training set (AUC = 0.870, 95%
CI: 0.806–0.929) and validated the testing set (AUC = 0.760, 95%
CI: 0.580–0.923). Based on the Youden index for semiautomatic
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FIGURE 3 | Performance of triangular-contour (red) and semiautomatic-contour (blue) models. (A,B) The ROC curves of the training and testing sets. (C,D)
Calibration curves. (E,F) Decision curves.

TABLE 3 | Comparisons of radiomics models for semiautomatic and triangular contour in the training and testing set.

Model AUC (95% CI) SD Accuracy F1-score Sensitivity Specificity Threshold

Training set

Semiautomatic-contour 0.867 (0.801–0.927) 0.039 0.805 0.784 0.707 0.902 0.568

Triangular-contour 0.870 (0.806–0.929) 0.038 0.805 0.800 0.780 0.829 0.507

Testing set

Semiautomatic-contour 0.802 (0.616–0.971) 0.103 0.818 0.818 0.818 0.818 /

Triangular-contour 0.760 (0.580–0.923) 0.109 0.545 0.667 0.909 0.182 /

contour, the sensitivity and specificity of the radiomics signature
in the testing set were both 81.8% for stenosis side vs. normal
side, but for triangular contour, the specificity was low in
the testing set.

Considerable interest has grown in the recent years
concerning the role of chronic cerebral hypoperfusion on
the development and progression of neurocognitive disorders
(Ciacciarelli et al., 2020). But, it is not very clear whether the
changes in CBF precede the neurovascular dysfunction, whether
the hypoperfusion is a cause or a consequence, or just an
epiphenomenon. Previous study has shown the susceptibility of
different animal models to developing Alzheimer-like pathology
under conditions of reduced cerebral perfusion (Farkas et al.,
2007). For another aspect, epidemiological data showing the
coexistence of vascular risk factors and cognitive disorders
(Breteler et al., 1994), supported the causal relationship between
cerebral vascular and neurodegenerative disorders. In large
population-based studies, the CBF reduction precedes cognitive
decline and hippocampal atrophy (Ruitenberg et al., 2005)
as to suggest causality. Besides that, a significant amount
of attention has been paid to using neuroimaging to assess
potential benefits by identifying areas of ischemia that have
not yet experienced cellular death. On general idea, the

perfusion–diffusion mismatch is used as a simple metric for
potential benefit with timely intervention, yet penumbral
patterns provide an inaccurate predictor of clinical outcome
(Feng et al., 2018). So as an important aspect, hypoperfusion is a
metabolic state that should attract clinical attention. But CTP has
its limitation for one of the important reasons is the radiation
dose. Our results showed the radiomic feather based on routine
non-contrast CT could distinguish stenosis side and normal side
properly which has perfusion difference manifested by CTP.

Although radiomics had promising applications in many
diseases and not only in tumor issues, a major obstacle to its
clinical application is that the robustness of extracted radiomic
features is not very clear. The research on the stability of
radiomic features in CTP maps showed that the voxel size, image
discretization, HU threshold, and temporal resolution have to
be standardized to build a reliable predictive model based on
CTP radiomics analysis (Bogowicz et al., 2016). On the other
hand, interrater variability and stability of the extracted radiomic
features are one of the limitations (Elshafeey et al., 2019), and it is
difficult to standardize the parameters during image acquisition
for all patients in clinical settings (Park et al., 2021). Such as,
several studies have reported that pixel size resampling and
interpolation improved reproducibility in CT radiomic features
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(Mackin et al., 2015; Shafiq-Ul-Hassan et al., 2017). In fact,
the manual sketch is usually considered a poorly reproducible,
boring, and time-consuming method in medical imaging.
This situation imposed the development of autosegmentation
methods. At present, most published methods have been
optimized and validated on a specific, usually homemade dataset.
The various methods under comparison often provide different
segmentation. Therefore, the approaches combining different
segmentation paradigms, either through consensus or by learning
automatically to choose the most appropriate method appear as
promising developments for the future (Hatt et al., 2018). In this
study, we used two different shapes of ROI for radiomic feature
extraction, our results showed both methods could distinguish
the stenosis side and normal side which has perfusion difference
manifested by CTP, but for triangular contour, the specificity was
low in the testing set. We concluded that the autosegmentation
method had more benefits than that of the manual method.

Based on MR perfusion images, radiomic features had shown
good performance in differentiating pseudoprogression and
progressive disease; on another aspect, the radiomic features of
arterial spin labeling (ASL) and dynamic susceptibility contrast
imaging-derived parameters (CBF) had a similar ability for
low-grade gliomas (LGGs) and high-grade gliomas (HGGs)
differential diagnoses (Hashido et al., 2020). MR perfusion
was not only used in the tumor, previous animal tests
showed the CBF of the neocortex decreased obviously than
brain stem and hippocampus in hypothermic selective cerebral
perfusion (Strauch et al., 2004). C-arm flat detector CT (FDCT)
parenchymal blood volume (PBV) imaging showed the cerebral
cortex had higher blood volume than cerebral white matter, the
PBV values were relatively high for the white matter and relatively
low for the cortical gray matter compared with PET results
(Kamran and Byrne, 2016). Significant reductions in CBF were
seen in all the white matter regions of radiological leukoaraiosis
and clinical lacunar stroke patients, there was no significant
difference in white matter CBV between cases and controls, but
gray matter CBV was significantly higher in patients than in
controls (Markus et al., 2000). In our study, based on different
shapes of ROI for radiomic feature extraction, our results showed
the AUC of autosegmentation methods was high than triangular
contour in the testing set for distinguishing the stenosis side and
normal side. Because the more cerebral gray matter was included
in autosegmentation methods, we concluded that the effect of
cerebral gray matter is greater in the state of hypoperfusion.

Several limitations in our primary and exploratory study
should be noted: (a) the sample size is relatively small because

of the low prevalence of MSA and the fact that this was a
single-center study and (b) the retrospective study did not relate
radiomic features to the patient’s clinical scales, such as the
motor and activities of daily living (ADL) scale. Larger and more
randomized samples are needed in the future.

Despite these limitations, we constructed a fine model using
radiomic features to reflect the difference of the two sides of
the hemisphere in the patients with lateral MCA stenosis. What
is encouraging is that our results indicated that radiomics on
precontrast CT images could reflect perfusion difference between
left and right cerebral hemispheres to some extent.
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