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Abstract The level of copy number alteration (CNA), termed CNA burden, in the tumor genome

is associated with recurrence of primary prostate cancer. Whether CNA burden is associated with

prostate cancer survival or outcomes in other cancers is unknown. We analyzed the CNA landscape

of conservatively treated prostate cancer in a biopsy and transurethral resection cohort, reflecting

an increasingly common treatment approach. We find that CNA burden is prognostic for cancer-

specific death, independent of standard clinical prognosticators. More broadly, we find CNA

burden is significantly associated with disease-free and overall survival in primary breast,

endometrial, renal clear cell, thyroid, and colorectal cancer in TCGA cohorts. To assess clinical

applicability, we validated these findings in an independent pan-cancer cohort of patients whose

tumors were sequenced using a clinically-certified next generation sequencing assay (MSK-

IMPACT), where prognostic value varied based on cancer type. This prognostic association was

affected by incorporating tumor purity in some cohorts. Overall, CNA burden of primary and

metastatic tumors is a prognostic factor, potentially modulated by sample purity and measurable

by current clinical sequencing.
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Introduction
Somatic copy number alterations (CNAs) are nearly ubiquitous in cancer (Zack et al., 2013;

Heitzer et al., 2016) and alter a greater portion of the cancer genome than any other type of

somatic genetic alteration (Heitzer et al., 2016). Different cancer types vary in their balance of copy

number alterations to somatic point mutations, with prostate cancer having relatively high rates of

CNA compared to point mutation. Given the prevalence of CNAs in cancer, significant effort has

been directed towards identifying specific CNAs associated with cancer clinical characteristics and

prognosis as well as the potential driver genes they contain (Liang et al., 2016; Wang et al., 2016;

Nibourel et al., 2017). There are well demonstrated associations between specific CNAs and CNA

signatures to cancer state and characteristics (Visakorpi et al., 1995; Williams et al., 2014;

Taylor et al., 2010). CNV patterns or clusters have been associated with high Gleason prostate can-

cer (Gleason 8 + compared to Gleason 6–7 [Williams et al., 2014]) and recurrent disease (compared

to primary [Visakorpi et al., 1995; Cancer Genome Atlas Research Network, 2015;

Viswanathan et al., 2018]). Nonetheless, most CNAs are large, (Zack et al., 2013;

Beroukhim et al., 2010) and their associations with cancer outcome may not be well identified by

gene-specific approaches. Increasing evidence indicates that large CNAs harbor multiple drivers

(Tschaharganeh et al., 2016; Liu et al., 2016), emphasizing the need to study their biological and

clinical significance beyond individual gene-focused standpoints.

The CNA burden of a tumor is the degree to which a tumor’s genome is altered as a percentage

of genome length and represents a fundamental measure of genome copy number alteration level.

As such, tumor CNA burden, rather than individual CNAs, may be associated with cancer outcomes.

While tumor mutational burden (TMB) predicts response to immunotherapy across multiple cancer

types (Bergerot et al., 2018; Goodman et al., 2017), tumor CNA burden may be prognostic for

outcomes such as recurrence and survival. Indeed, we and others have previously found CNA burden

and genome-wide CNA patterns to be associated with biochemical recurrence and metastasis in pri-

mary prostate cancer, the most common cancer in men, across multiple cohorts (Taylor et al., 2010;

Hieronymus et al., 2014; Camacho et al., 2017). This prognostic significance of tumor CNA burden

extends to low and intermediate risk prostate cancer (Gleason scores of 7 and less)

(Hieronymus et al., 2014) and has the potential to better stratify risk in patients who are consider-

ing conservative treatment approaches such as active surveillance to reduce overtreatment

(Chen et al., 2016; Tosoian et al., 2016).

In addition to questions about the prognostic potential and overall landscape of CNA in conser-

vatively treated prostate cancer, it is unknown whether CNA burden is prognostic for prostate

eLife digest Cancer cells carry different types of mutations that are associated with the cell

starting to multiply uncontrollably. Certain changes only affect one or a few letters of the genetic

code. Others, known as copy number alterations, or CNA, involve larger portions of the genome

that can either be lost (deletions) or duplicated (amplifications). Tumors in different patients carry

variable amounts of these deletions or amplifications, which together are known as the CNA burden.

New technologies allow scientists to scan the genomes of tumors and examine the type of

mutations present in each patient. The results can help to decide on the best course of action. For

example, in prostate cancer, patients whose tumors have a high CNA burden are at greater risk of

relapse after treatment. However, it has been unclear whether these people also have lower survival

rates, and if CNA burden can predict outcome of other types of cancers.

Hieronymus et al. conducted genetic analyses on over a hundred samples from prostate cancer

patients who were not treated with surgery or radiation. The results showed that a higher CNA

burden in the tumors is correlated with more deaths due to the disease. The findings in prostate

cancer were also true across different types of cancers. These conclusions also emerged when

Hieronymus et al. then looked at genomic data obtained from patients with various cancers using a

different DNA sequencing test, which is certified for clinical use. This demonstrates that CNA

burden could be a useful marker in clinical settings to help assess risk in cancer patients.
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cancer survival, rather than only recurrence and metastasis. Nor is it known whether the prognostic

significance of tumor CNA burden extends to other cancer types. Here we set out to address these

questions, as well as whether tumor CNA burden can be prognostic in a clinical practice setting,

including (i) in cancers treated conservatively rather than through immediate surgery or radiation, (ii)

in biopsy or resection samples, and (iii) using a clinical targeted sequencing that allows rapid and

cost-effective measurement of tumor CNA burden.

To address these questions, we first examine the genomic CNA landscape of conservatively

treated prostate cancer in more than a hundred diagnostic biopsy and resection specimens from a

conservatively treated cohort; this cohort consisted of patients with localized prostate who were not

treated with surgery or radiation within six months of diagnosis. We demonstrate that tumor CNA

burden is associated with cancer-specific death, independent of standard clinical predictors. To

explore the prognostic significance of tumor CNA burden more broadly in other cancer types, we

find that tumor CNA burden is also associated with disease-free and overall survival in TCGA cohorts

of primary breast, endometrial, renal clear cell, thyroid, and colorectal cancer in addition to prostate

cancer, with the degree of association varying in some cancer types. We then establish the clinical

feasibility of measuring tumor CNA burden using the FDA-cleared MSK-IMPACT clinical next gener-

ation sequencing (NGS) assay and confirm that tumor CNA burden is associated with overall and dis-

ease-specific survival in both primary and metastatic tumors across cancer types. In all, we

demonstrate that tumor CNA burden is a prognostic factor associated with cancer recurrence and

death in multiple cancer types, including in conservatively treated prostate cancer which would ben-

efit from increased risk stratification.

Results

The genomic copy number landscape of conservatively treated prostate
cancer
To explore the genomic copy number landscape of conservatively treated prostate cancer, we set

out to analyze copy number alteration (CNA) in cancer obtained non-surgically through biopsy and

transurethral prostate resection (TURP) using a widely studied, conservatively treated primary pros-

tate cancer cohort (Cuzick et al., 2006). This retrospective Transatlantic Prostate Group 1 (TAPG1)

cohort (n = 1675) consists of men below age 76 with clinically localized prostate cancer and pros-

tate-specific antigen (PSA) below 100 ng/ml who did not receive surgery or radiation within 6

months of diagnosis (Cuzick et al., 2006). This population-based cohort was drawn from six cancer

registries in Great Britain, and the majority of the cohort was followed without treatment, while a

subset received hormonal therapy. The original diagnostic samples, either biopsy or TURP, were

obtained and centrally reviewed to obtain consistent pathological evaluation to the current stand-

ards. Drawing from this cohort, we carried out genome-wide CNA analysis by array-based compara-

tive genomic hybridization (aCGH) of 107 biopsies or TURP samples from the TAPG1 cohort, as

tissue availability is limited for much of the full cohort. The subset of cases used for CNA analysis,

which make up our conservative treatment CNA cohort, have similar clinical characteristics to the full

TAPG1 cohort, including median diagnosis age, baseline PSA, hormonal treatment, and clinical

stage, with the exception of higher Gleason score distribution, likely due to selection for cases with

sufficient DNA for analysis (Supplementary file 2). As expected for a cohort not subject to PSA

screening, the patients are older and have higher grade at diagnosis than is typical for contemporary

US cohorts. Among the cohort, 47 patients developed metastasis and 43 died of prostate cancer.

The median follow-up time for survivors was 10.3 years from diagnosis.

The copy number alteration landscape of the conservative treatment cohort revealed canonical

copy number alterations of prostate cancer, including gain of chromosome 8q and losses on chro-

mosomes 6 p, 8 p, 13q and 16 p, though with lower frequency than seen in prostate cancer cohorts

analyzed by our group (MSKCC cohort) (Taylor et al., 2010) and TCGA (Cancer Genome Atlas

Research Network, 2015) (Figure 1a). The percentage of the cancer genome showing copy number

changes, termed tumor CNA burden (TCB), is similar between the conservative treatment CNA

cohort and other cohorts (Figure 1b), with a mean tumor CNA burden of 5.7% (median 1.5%, IQR

0.05–8.5%) compared to 5.2% (median 3.0%, IQR 0.04–6.9%) for the 2010 MSKCC primary prostate

cancer cohort (Taylor et al., 2010) and 4.0% (median 0.7%, IQR 0.08–5.1%) for the 2014 MSKCC
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primary prostate cancer cohort (Hieronymus et al., 2014). The tumor CNA burden of the conserva-

tive treatment CNA cohort is, however, somewhat lower than the 8.7% average tumor CNA burden

of the TCGA prostate cohort (Cancer Genome Atlas Research Network, 2015) (mean 8.7%,

median 6.2%, IQR 1.7–11.9%).
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Figure 1. Tumor copy number landscape of conservatively treated primary prostate cancer, compared to other

primary prostate cancer cohorts. (a) Heat map of copy number alterations in conservative treatment CNA cohort,

as well as TCGA, MSKCC, and IMPACT primary prostate cancer cohorts. (b) Frequency distribution of CNA

burden, as log of percentage of genome copy number altered, for the conservative treatment prostate cancer

cohort and three other primary prostate cancer cohorts.
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Tumor CNA burden is prognostic for prostate cancer-specific death
Since tumor CNA burden is associated with prostate cancer recurrence and metastasis in prostatec-

tomy cohorts (Taylor et al., 2010; Hieronymus et al., 2014), we sought to determine whether

tumor CNA burden was prognostic for cancer-specific death in biopsies of conservatively treated

prostate cancer. In our conservative treatment CNA cohort, we find that tumor CNA burden as a

continuous variable is significantly associated with prostate cancer-specific death (per 5% tumor

CNA burden, HR 1.49; 95% CI 1.30, 1.70; p<0.0001; Table 1). Greater tumor CNA burden correlates

with an increase in death from disease compared to a lower tumor CNA burden (Figure 2a). The risk

of death due to prostate cancer within 5 years of diagnosis increases with tumor CNA burden over

the majority of the tumor CNA burden distribution (Figure 2b). For example, the 5 year risk of death

due to prostate cancer would be 13% for patients with a 2% tumor CNA burden and 28% for

patients with a 10% tumor CNA burden (Figure 2b). Tumor CNA burden may therefore serve as a

prognostic factor for cancer-specific death in patients who undergo increasingly common conserva-

tive treatment approaches.

We next asked whether tumor CNA burden was associated with outcome after adjusting for

established prognostic variables, including Gleason sum score and the UCSF Cancer of the Prostate

Risk Assessment (CAPRA) score (Cooperberg et al., 2005; Brajtbord et al., 2017) which combines

PSA, Gleason score, percentage positive biopsy cores, clinical stage, and age (Figure 2c). Tumor

CNA burden is significantly associated with cancer-specific death even after adjusting for biopsy

Gleason score (per 5% tumor CNA burden, HR 1.44; 95% CI 1.24, 1.67; p<0.0001) or CAPRA score

(per 5% tumor CNA burden, HR 1.44; 95% CI 1.24, 1.68; p<0.0001) (Table 1, Figure 2c). The addi-

tion of tumor CNA burden into the model with the CAPRA score increased Harrell’s concordance

index from 0.756 to 0.805 for cancer-specific survival in our cohort of men with conservatively

treated prostate cancer.

Tumor CNA burden is prognostic for cancer-free and overall survival in
multiple cancer types
Large, clinically annotated cancer genomic efforts such as TCGA now provide an opportunity to

examine whether CNA burden is prognostic for primary cancer outcomes across many cancer types.

In the TCGA primary prostate cancer cohort (Cancer Genome Atlas Research Network, 2015),

tumor CNA burden is significantly associated with biochemical recurrence individually (p<0.0001;

per 5% tumor CNA burden, HR = 1.27; 95% CI, 1.13, 1.42) and after adjustment for Gleason score

and mutation burden (p=0.015; per 5% tumor CNA burden, HR = 1.18; 95% CI, 1.03, 1.35), validat-

ing our findings from other prostate cancer cohorts (Figure 2c, Figure 2—figure supplement 1,

Table 2). There were insufficient deaths in this cohort to analyze survival. CNA burden was still signif-

icantly associated with biochemical recurrence after adjusting for tumor sample purity determined

by ABSOLUTE (p<0.003; per 5% CNA burden, HR = 1.22; 95% CI, 1.07, 1.40; Table 2). Since tumor

CNA burden could potentially reflect simply the prognostic significance of aneuploidy as determined

by cytometric DNA index in various cancers (Walther et al., 2008; Danielsen et al., 2016), we

examined the tumor CNA burden in a multivariable model together with ploidy. Ploidy, generated

by CLONET and previously published for this cohort, estimates the average DNA index of the tumor

cells (Carter et al., 2012; Prandi et al., 2014). Tumor CNA burden was associated with recurrence

Table 1. Tumor CNA burden is associated with prostate cancer-specific death in conservative treatment cohort independent of

Gleason sum score and CAPRA score.

Cox Regression model assessing the association between CNA burden (per 5%) and cancer specific survival. N = 107*

Model HR 95% CI P-value

Univariate, tumor CNA burden 1.49 1.30, 1.70 <0.0001

Multivariable – adjusting for Gleason sum (�6, 7, �8) 1.44 1.24, 1.67 <0.0001

Multivariable – adjusting for UCSF-CAPRA score utilizing multiple imputation 1.44 1.24, 1.68 <0.0001

Multivariable – adjusting for UCSF-CAPRA score without utilizing multiple imputation
* N = 60 (excludes 47 patients with unknown stage)

1.57 1.29, 1.92 <0.0001

DOI: https://doi.org/10.7554/eLife.37294.010

Hieronymus et al. eLife 2018;7:e37294. DOI: https://doi.org/10.7554/eLife.37294 5 of 18

Research article Cancer Biology Human Biology and Medicine

https://doi.org/10.7554/eLife.37294.010
https://doi.org/10.7554/eLife.37294


0.10 

0.20 

0.30 

0.40 

0.50 

0.60 

0.70 

0 2 4 6 8 
D

e
a

th
 C

u
m

u
la

ti
v
e

 I
n

c
id

e
n

c
e

  

Time from diagnosis (years) 

A                                                                    

 

 

 

 

 
 
 
 
 

B 

 

 

 

 

 

 

 

 

 

 

C 

10 
R

is
k
 o

f 
D

e
a

th
 f
ro

m
 P

ro
s
ta

te
 C

a
n

c
e

r 

w
it
h

in
 5

 Y
e

a
rs

 o
f 
D

ia
g

n
o

s
is

 

CNA Burden (percent) 

100 

80 

60 

40 

20 

0 
0 10 20 30 40 

D
e

n
s
ity

 o
f C

N
A

 b
u

rd
e

n
 (%

 c
a

s
e

s
) 

100 

80 

60 

40 

20 

0 

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 

Hazard Ratio, CNA burden (per 5%) 

Univariate 

Adjusted for Gleason 

Adjusted for CAPRA 

Univariate 
Adjusted for Gleason  
and mutation burden 

Univariate 

Adjusted for stage 

Univariate 

Adjusted for stage 

Univariate 

Adjusted for stage 

Univariate 

Adjusted for stage 

Univariate 
Adjusted for tumor 

    stage 
Univariate, primary 

Univariate, metastases 

Univariate,  primary  

Meta-analysis, primary  

Univariate, metastases 

Meta-analysis, metastases 

C
o

n
s
e

rv
a

tiv
e

 
tre

a
tm

e
n

t 
T

C
G

A
 

M
S

K
-IM

P
A

C
T

 
 

prostate 
cancer 

 
 
 
 

breast  
cancer 

 
endometrial 

cancer 
 

renal clear 
cell cancer 

 
thyroid 
cancer 

 
colorectal 

cancer 

prostate 
cancer 

 
 

pan- 
cancer 

cancer-specific survival 
overall survival 
cancer-free survival 
 

prostate cancer death - high CNA burden (≥ median) 

prostate cancer death - non-high CNA burden 
 

other causes death - high CNA burden 

other causes death - non-high CNA burden 

Figure 2. Tumor copy number alteration burden is associated with death from prostate cancer in conservatively

treated patients. (a) Cumulative Incidence of death from disease (dashed lines) and death from other causes (solid

lines) based in cases with high CNA burden (red lines, CNA Burden greater than or equal to the median CNA

burden of this cohort, 1.48) or non-high CNA burden (black lines, CNA Burden < median). (b) Risk for death from

Figure 2 continued on next page
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independent of tumor ploidy (p=0.002; per 5% tumor CNA burden, HR = 1.32; 95% CI 1.11, 1.56;

Table 2). Moreover, for a multivariable model that includes tumor CNA burden, Gleason grade, and

mutation burden, the Harrell’s C-index is 0.691. In contrast, the C-index for a model including ploidy

instead of tumor CNA burden is only 0.606, indicating that a model with clinical factors and ploidy

does not perform as well as a model with the same clinical factors and tumor CNA burden.

The prognostic significance of tumor CNA burden in prostate cancer led us to ask whether tumor

CNA burden is prognostic in other cancer types. Towards this end, we examined published TCGA

cohorts for multiple cancer types with available disease-free survival and overall survival data, includ-

ing breast (Ciriello et al., 2015), endometrial (Cancer Genome Atlas Research Network et al.,

2013), renal clear cell (Cancer Genome Atlas Research Network, 2013), thyroid (Cancer Genome

Atlas Research Network, 2014), and colorectal (Cancer Genome Atlas Network, 2012) cancers.

We found that tumor CNA burden is associated with recurrence (disease-free survival) in these can-

cer types (Figure 2c, Figure 2—figure supplement 2, Table 2). This association between tumor

CNA burden and lower disease-free survival was independent of disease stage in all cancer types

except colorectal cancer, where the association was independent of tumor stage but not disease

stage (Table 2). In addition to lower disease-free survival, higher tumor CNA burden was also signifi-

cantly associated with lower overall survival in breast, endometrial, thyroid, and colorectal cancer

(Table 2). This association with overall survival was independent of disease stage in breast and endo-

metrial cancer and independent of tumor stage in colorectal cancer (Table 2). There were insufficient

cases of thyroid cancer with stage data for this analysis. In summary, tumor CNA burden is prognos-

tic for recurrence and/or overall survival in multiple cancer types beyond prostate cancer, including

breast, endometrial, colorectal, renal clear cell, and thyroid cancer.

Tumor CNA burden determined by clinical targeted sequencing of
primary and metastatic tumors is prognostic for survival
We next wanted to determine whether CNA burden’s prognostic associations could be observed

using panel-based targeted sequencing assays that are increasingly entering clinical use, in contrast

to CGH array-based determination of tumor CNA burden. The Memorial Sloan Kettering-Integrated

Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) assay is a clinical laboratory

improvement amendments (CLIA)-certified sequencing-based assay (Cheng et al., 2015) of several

Figure 2 continued

prostate cancer within 5 years of diagnosis. Univariate risk for 5 year prostate cancer-specific death, calculated by

locally weighted Kaplan–Meier estimates (solid black line) with 95% confidence interval (dashed black lines)

overlaid on the distribution of CNA burden (gray). (c) Association of tumor CNA burden with available cancer

outcomes in the conservative treatment primary prostate cancer TAPG1 cohort, TCGA primary cancer cohorts, and

the MSK-IMPACT clinical sequencing prostate and pan-cancer cohorts of primary and metastatic tumors. Forest

plot of hazard ratio (per 5% CNA burden) with 95% confidence interval shown for cancer-specific mortality (dark

blue), overall mortality (light blue), and cancer recurrence (green). Supplementary Tables and Figures.

DOI: https://doi.org/10.7554/eLife.37294.004

The following figure supplements are available for figure 2:

Figure supplement 1. Kaplan-Meier plot of biochemical recurrence in TCGA primary prostate cohort.

DOI: https://doi.org/10.7554/eLife.37294.005

Figure supplement 2. Tumor CNA burden in multiple cancers is associated with disease free survival and overall

survival.

DOI: https://doi.org/10.7554/eLife.37294.006

Figure supplement 3. Correlation between CNA burden from IMPACT targeted sequencing assay and whole

exome sequencing (WES) of same samples, pan-cancer.

DOI: https://doi.org/10.7554/eLife.37294.007

Figure supplement 4. Tumor CNA burden in primary prostate cancer is prognostic for overall survival when

assayed by clinically approved sequencing panel.

DOI: https://doi.org/10.7554/eLife.37294.008

Figure supplement 5. Forest Plot of Hazard Ratios (individual and pooled) for meta-analysis assessing the

association between tumor CNA burden and overall survival in (a) primary cancer and (b) patients with metastatic

cancer in the pan-cancer IMPACT cohort.

DOI: https://doi.org/10.7554/eLife.37294.009
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hundred cancer genes and 1042 common single nucleotide polymorphisms (SNPs) that has been

used to profile 504 prostate tumors (Abida et al., 2017) and more than ten thousand tumors across

other cancer types (Zehir et al., 2017). The IMPACT assay identifies both somatic point mutations

and copy number alterations in the genes included in the panel. Overall copy number burden is cal-

culated across the whole genome (Figure 1a) using segmentation derived from a combination of the

profiled SNPs to provide low resolution copy number data and the genes sequenced in the panel

(Cheng et al., 2015; Abida et al., 2017; Zehir et al., 2017). To address the possibility that CNA

burden from the IMPACT panel might differ from that derived from more comprehensive sequenc-

ing, we directly compared CNA burden calculations from 1005 tumors that were profiled using both

IMPACT and whole exome sequencing. CNA burden determined by the two methods were highly

correlated (p-value<0.0001, rho = 0.88, n = 1005), indicating that CNA burden is not significantly

affected by the reduced resolution in moving from whole exome to targeted panel sequencing (Fig-

ure 2—figure supplement 3).

We find that tumor CNA burden assayed by targeted clinical sequencing is significantly associ-

ated with overall survival in primary prostate tumors (per 5% tumor CNA burden, HR = 1.17; 95% CI,

1.04, 1.3; p=0.007; Table 3, Figure 2c, Figure 2—figure supplement 4) in the IMPACT prostate

cohort (Abida et al., 2017). As clinical sequencing assays such as MSK-IMPACT are principally used

in the metastatic patient population, the IMPACT cohorts also provide an opportunity to investigate

the prognostic significance of tumor CNA burden in late stage disease. We find that tumor CNA

Table 2. Tumor CNA burden is associated with recurrence and overall survival independent of disease stage in multiple cancer types

Cohort Model

Disease free Time Overall Survival

Cases HR 95% CI P Cases HR 95% CI P

Prostate cancer TCGA Tumor CNA burden, per 5% tumor CNA burden,
univariate

280 1.27 1.13, 1.42 <0.0001 Insufficient events

Tumor CNA burden, per 5% tumor CNA burden,
adjusted for Gleason grade and mutation burden

279 1.18 1.03, 1.35 0.015

Tumor CNA burden, per 5% tumor CNA burden,
adjusted for purity (ABSOLUTE)*

243 1.22 1.07, 1.40 0.003

Tumor CNA burden, per 5% tumor CNA burden,
adjusted for ploidy

243 1.32 1.11, 1.56 0.002

Breast cancer TCGA Tumor CNA burden, per 5% tumor CNA burden,
univariate

709 1.07 1.01, 1.14 0.028 794 1.08 1.03, 1.13 0.0005

Tumor CNA burden, per 5% tumor CNA burden,
Multivariable, adjusted for disease stage

695 1.07 1.00, 1.14 0.049 777 1.08 1.03, 1.13 0.002

Endometrial Cancer TCGA Tumor CNA burden, per 5% tumor CNA burden,
univariate

496 1.10 1.06, 1.14 <0.0001 536 1.13 1.08, 1.17 <0.0001

Tumor CNA burden, per 5% tumor CNA burden,
multivariable, adjusted for disease stage

496 1.08 1.04, 1.13 <0.0001 536 1.10 1.05, 1.15 <0.0001

Renal clear cell cancer TCGA Tumor CNA burden, per 5% tumor CNA burden,
univariate

425 1.05 1.01, 1.09 0.028 525 1.02 0.98, 1.06 NS (0.4)

Tumor CNA burden, per 5% tumor CNA burden,
multivariable, adjusted for disease stage

423 1.05 1.00, 1.11 0.035 522 1.01 0.97, 1.06 NS (0.7)

Thyroid cancer TCGA Tumor CNA burden, per 5% tumor CNA burden,
univariate

483 1.17 1.01, 1.35 0.033 497 1.30 1.04, 1.63 0.021

Tumor CNA burden, per 5% tumor CNA burden,
multivariable, adjusted for disease stage

481 1.18 1.00, 1.39 0.048 Insufficient events

Colorectal cancer TCGA Tumor CNA burden, per 5% tumor CNA burden,
univariate

512 1.05 1.00, 1.11 0.037 587 1.06 1.01, 1.12 0.012

Tumor CNA burden, per 5% tumor CNA burden,
multivariable, adjusted for disease stage

496 1.03 0.98, 1.09 NS (0.3) 567 1.03 0.97, 1.09 NS (0.3)

Tumor CNA burden, per 5% tumor CNA burden,
multivariable, adjusted for tumor stage

511 1.06 1.01, 1.12 0.028 585 1.07 1.02, 1.13 0.009

*Result differed with similar adjustment in IMPACT prostate cancer cohort utilizing FACETS, see Supplementary file 3.

DOI: https://doi.org/10.7554/eLife.37294.011
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burden of metastatic prostate tumors assayed by clinical sequencing is also significantly associated

with survival (per 5% tumor CNA burden, HR = 1.07; 95% CI, 1.01, 1.14; p=0.020; Table 3,

Figure 2c, Figure 2—figure supplement 4).

Since clinical sequencing assays also provide point mutation information for several hundred can-

cer genes, we asked if tumor CNA burden is prognostic after adjusting for known prostate cancer

driver alterations. In separate multivariable regression models adjusting for TP53, RB1, or PTEN loss

and/or mutation, tumor CNA burden is still associated with overall survival independent of these

alterations in primary prostate tumors (Table 3). In metastatic tumors, these specific gene mutations

do not reach prognostic significance when combined with tumor CNA burden (Table 3). Notably,

tumor CNA burden remains significant in metastatic tumors after adjusting for overall tumor muta-

tion burden (per 5% tumor CNA burden, HR = 1.08; 95% CI = 1.02, 1.15; p=0.011; Table 3).

As targeted clinical sequencing is applied to a wide range of cancer types, we expanded our sur-

vival analysis to a pan-cancer cohort, consisting of 6610 primary tumors and 4864 metastatic tumors

Table 3. Tumor CNA burden determined by clinically approved sequencing panel is associated with overall survival in primary and

metastatic tumors

Model

Overall Survival

Primary tumors Metastatic tumors

HR 95% P HR 95% P

Prostate Cancer*,†

Univariate, tumor CNA burden, per 5% 1.17 1.04, 1.31 0.007 1.07 1.01, 1.14 0.020

Multivariable
Tumor CNA burden, per 5%
Mutation burden (per mutation)

1.11
1.22

0.98, 1.26
1.12, 1.33

0.10
<0.0001

1.08
1.05

1.02, 1.15
1.02, 1.08

0.011
0.001

Multivariable
Tumor CNA burden, per 5%
TP53 CN loss or mutation

1.17
4.12

1.04, 1.31
2.02, 8.41

0.007
<0.0001

1.06
1.24

1.00, 1.13
0.76, 2.02

NS (0.069)
NS (0.4)

Multivariable
Tumor CNA burden, per 5%
RB1 CN loss or mutation

1.15
3.24

1.02, 1.30
0.70, 14.98

0.026
NS (0.13)

1.06
1.68

0.99, 1.13
0.94, 2.99

NS (0.091)
NS (0.080)

Multivariable
Tumor CNA burden, per 5%
PTEN CN loss or mutation

1.17
2.38

1.04, 1.32
1.03, 5.51

0.008
0.042

1.07
1.15

1.01, 1.14
0.70, 1.89

0.023
NS (0.6)

Pan- Cancer

Univariate, tumor CNA burden, per 5%‡§ 1.04 1.02, 1.05 <0.0001 1.02 1.01, 1.03 0.005

Univariate, mutation burden (per five units)‡§ 0.98 0.97, 1.00 NS (0.072) 0.99 0.97, 1.01 NS (0.4)

Meta-analysis, tumor CNA burden (per 5%)# 1.04 1.02, 1.05 <0.0001** 1.02 1.01, 1.04 0.005††

Meta-analysis, tumor CNA burden (per 5%),
excluding outlier cancer types‡‡

1.05 1.03, 1.07 <0.0001§§ 1.03 1.01, 1.04 0.002##

*Prostate primary tumors: patient n = 261 for all models except multivariable model with mutation burden, where n = 227; event n = 33; median follow-up

time for survivors 40 (IQR 25,81) months.

†Prostate metastatic tumors: patient n = 216 for all models except multivariable model with mutation burden, where n = 205; event n = 80; median follow-

up time for survivors 59.5 (IQR 32, 129) months.

‡Pan-cancer primary tumors, univariate models: patient n = 6610, event n = 1535, median follow-up time for survivors 24 (IQR 11, 61) months

§Pan-cancer metastatic tumors, univariate models: patient n = 4864, event n = 1467, median follow-up time for survivors 51 (IQR 23, 109) months.

#Pan-cancer meta-analysis, among ten most prevalent cancer types: primary tumor patient n = 4863, metastatic tumor patient n = 3676. Estimates are

based on overall fixed effects.

**p-value corresponds with test of effects size. Chi-square test for heterogeneity p-value=0.003.

††p-value corresponds with test of effects size. Chi-square test for heterogeneity p-value=0.024.

‡‡Exclusion of cancer types to reduce heterogeneity: primary tumor patient n = 3887, metastatic tumor patient n = 3098. Estimates are based on overall

fixed effects.

§§Excluding pancreatic and colorectal cancer, test of effects size p-value. Chi-square test for heterogeneity p-value=0.3.

##Excluding pancreatic and prostate cancer, test of effects size p-value. Chi-square test for heterogeneity p-value=0.8.
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across 53 cancer types assayed by MSK-IMPACT sequencing panel (Materials and methods and

Supplementary file 2). We find that tumor CNA burden is prognostic for overall survival pan-cancer

in primary tumors (p<0.0001; per 5% tumor CNA burden, HR = 1.04; 95% CI, 1.02, 1.05) and in met-

astatic tumors (p=0.005; per 5% tumor CNA burden, HR = 1.02; 95% CI, 1.01, 1.03) in a univariate

analysis of these pan-cancer cohorts (Table 3, Figure 2c). Tumor CNA burden is also prognostic for

cancer-specific death in the metastatic tumor cohort (p=0.026; per 5% tumor CNA burden,

HR = 1.05; 95% CI, 1.01, 1.10). Adjustment for sample tumor purity determined by FACETS

(Shen and Seshan, 2016) found that CNA burden was still significantly associated with overall sur-

vival in primary tumors in the pan-cancer analysis and approached significance for metastatic tumors

(p=0.06; Supplementary file 3), though purity-adjusted CNA burden was no longer significantly

associated with overall survival in the prostate tumor subsets (Supplementary file 3). Adjustment for

sample tumor purity determined by FACETS (Shen and Seshan, 2016) found that CNA burden was

still significantly associated with overall survival in primary tumors in the pan-cancer analysis

approached significance for metastatic tumors (p=0.06; Supplementary file 3), though purity-

adjusted CNA burden was no longer significantly associated with overall survival in the prostate

tumor subsets (Supplementary file 3). Tumor mutation burden (TMB), in contrast to tumor CNA bur-

den, was not associated with overall survival or cancer-specific survival (p=0.4 and p>0.9, respec-

tively; Table 3).

Since the pan-cancer prognostic significance of tumor CNA burden is likely to be influenced by

the distribution of cancer types within the IMPACT cohorts, we stratified the primary and metastatic

pan-cancer IMPACT cohorts by their ten most prevalent cancer types, which make up nearly three-

quarters of the cohort (Supplementary file 2). A multivariable Cox model was used for each cancer

type to adjust for mutation burden and extract the effect size, which was then entered into a meta-

analysis. After stratifying by cancer type, the CNA burden of primary tumors measured by the MSK-

IMPACT assay is still significantly associated with death (overall fixed effects HR = 1.04; 95% CI 1.02,

1.05; test of effects size p<0.0001; Table 3; Figure 2c). Similarly, metastatic tumor CNA burden was

associated with death (overall fixed effects HR = 1.02; 95% CI 1.01, 1.04; test of effects size

p=0.005; Table 3; Figure 2c).

A closer look at the pan-cancer analysis reveals statistically significant heterogeneity in the rela-

tionship between tumor CNA burden and survival across tumor types (p=0.003 and p=0.024 in pri-

mary and metastatic tumor cohorts respectively, Figure 2—figure supplement 4). In primary

tumors, heterogeneity appears to be driven by colorectal and pancreatic cancers, where an inverse

association between tumor CNA burden and death is seen (Figure 2—figure supplement 5a). After

excluding colorectal and pancreatic cancers, heterogeneity is no longer statistically significant (over-

all fixed effects HR = 1.05; 95% CI 1.03, 1.07; test of effects size p<0.0001; test for heterogeneity

p=0.3; Figure 2—figure supplement 5a). In metastatic tumors, two outlying cancer types drive this

heterogeneity: pancreatic cancer, which shows the same inverse association of tumor CNA burden

with death as in primary pancreatic tumors, and prostate, which shows the opposite effect (Fig-

ure 2—figure supplement 5b). Exclusion of either cancer type eliminates the significant heteroge-

neity in effects size, such that higher tumor CNA burden is associated with increased death in the

remaining homogenous set of cancer types (overall fixed effects HR = 1.03; 95% CI 1.01, 1.04; test

of effects size p=0.002; test for heterogeneity p=0.8, Figure 2—figure supplement 5b). These

results indicate that tumor CNA burden can have differing levels of prognostic effect depending on

the cancer type, while a core set of cancer types show a statistically similar association between

overall survival and tumor CNA burden assayed by targeted sequencing. More generally, we find

that tumor CNA burden determined by a clinically-certified sequencing panel is associated with

overall and disease-specific mortality in a large multi-cancer population, including in patients with

metastatic cancer where clinical sequencing is increasingly applied.

Discussion
Many specific genes altered by CNA have been associated with cancer outcomes (Liang et al.,

2016; Wang et al., 2016; Nibourel et al., 2017), however the relationship between outcome and

the overall level of CNA harbored by a tumor is less well studied. Here we expanded on our previous

work showing that tumor CNA burden is associated with recurrence in surgically treated primary

prostate cancer (Taylor et al., 2010; Hieronymus et al., 2014) by showing a significant association
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with death from prostate cancer, including in conservatively treated patients where the tumor CNA

burden measurement was made from biopsies. Importantly, this association remains significant even

after adjusting for Gleason score or for CAPRA score, demonstrating that CNA burden is indepen-

dent of previously identified associations with these measures of cancer pathology or disease state.

Thus, tumor CNA burden assessment from prostate biopsies could have a role in deciding between

surgery and surveillance for men at the low end of intermediate risk. Conversely, it may also have

role in men at high risk where multimodal treatment may be needed.

An unanticipated outcome of our analysis beyond prostate cancer is the prognostic role of tumor

CNA burden across a range of tumor types. The pan-cancer tumor CNA burden association is signifi-

cant but also heterogeneous depending on cancer type. Recent work has similarly found that the

presence of any CNA, regardless of gene identity, is associated with overall and event-free survival

in pediatric AML (Vujkovic et al., 2017) and that the percentage of subclonal CNAs but not subclo-

nal somatic point mutations is associated with overall survival in non-small cell lung cancer (Jamal-

Hanjani et al., 2017). Moreover, survival time was associated with a CNA signature derived from

supervised analyses in prostate cancer and extended to breast and lung cancer (Pearlman et al.,

2018). Prognostic individual CNAs or sets of CNAs, as opposed to the broader measure of genome-

wide CNA level examined here may be specific to individual cancer types, whereas we have demon-

strated the prognostic potential of a generalized measure of overall copy number dysregulation. Fur-

ther work will be needed to address the trade-offs between generalizability of CNA burden and

discriminatory power. In addition, it will be important to investigate whether the prognostic associa-

tions of CNA burden from the pan-cancer analysis are independent of known cancer- or subtype-

specific prognostic factors, such as ER receptor status in breast cancer, ultra- and hypermutated

(POLE and MSI+) status in endometrial cancer and MSI-positive/CIN-negative status in colorectal

cancer (Walther et al., 2008).

We find it notable that tumor CNA burden assessment using a targeted sequencing can serve as

a surrogate for tumor CNA burden calculated using more comprehensive genomic assays such as

array CGH. With the proliferation of different clinical sequencing panels for mutation detection, it

will be of interest to see how much resolution, depth, and coverage can be reduced and still retain

the prognostic association of CNA burden; future work in this area will also need to incorporate the

predictive clinical utility of the point mutation data to address the multimodal uses of clinical

sequencing assays. Another important variable is tumor purity. The prognostic significance of CNA

burden can be affected by sample tumor purity, with purity being independently associated with

outcome. The effect of purity on the association between CNA burden and outcome appears com-

plex and may be influenced by the analysis platform, cancer type, and outcome type. For example,

pan-cancer CNA burden from clinical sequencing panel remained prognostic for survival after purity

adjustment in primary tumors and was just below significance for metastatic tumors, though the

CNA burden of the prostate tumor subset assayed by IMPACT sequencing panel did not. However,

the CNA burden of prostate tumors assayed by SNP array showed continued association with recur-

rence after adjustment for purity. Tumor purity alone was also independently associated with sur-

vival, revealing a complex interaction between these tumor features that will need further

exploration. As targeted sequencing moves from tumor samples to liquid biopsy in the form of cell-

free DNA (cfDNA) (Heitzer et al., 2016; Xia et al., 2015; Hyman et al., 2017), it will be important

to determine whether tumor CNA burden determined by analysis of cfDNA has similar prognostic

utility as that determined by direct analysis of tumor DNA. There is already some evidence this may

be possible, as the summed CNA level of the most highly copy number altered genes assayed from

whole genome sequencing of cfDNA in twenty metastatic prostate cancer patients correlated with

overall survival (Xia et al., 2015). As sequencing costs continue to drop and computational power

improves, it would be interesting to investigate low pass whole genome sequencing as an alternative

approach for determining tumor CNA burden that provides complete genome coverage.

Another interesting feature of the association of tumor CNA burden with outcome demonstrated

here is that it has prognostic significance independent of tumor mutation burden (TMB). This is con-

sistent with recent work in glioblastoma, breast, lung, and ovarian cancer showing that CNA-derived

signatures have more prognostic power than somatic point mutation-based signatures, as measured

by concordance index (Gómez-Rueda et al., 2015). Thus, tumor CNA burden could complement

clinical analyses of actionable driver mutations using a single panel-based sequencing assay.
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The prognostic significance of tumor CNA burden raises intriguing questions regarding the

underlying biology. Tumor CNA burden may be a simple measure that correlates with the extent of

oncogenic driver alterations. Yet, we show that tumor CNA burden retains its prognostic significance

after adjustment for a number of known oncogenic alterations in primary prostate cancer, including

PTEN loss associated with increased tumor CNA burden (Castro et al., 2015; Williams et al., 2014).

In metastatic tumors, combining tumor CNA burden with TP53 or RB1 loss in multivariable analyses

renders both slightly below conventional significance thresholds, raising the possibility of biological

interplay between these genes (particularly TP53) and subsequent copy number alteration that

develops during tumor evolution. Further, the prognostic associations of tumor CNA burden are

independent of tumor ploidy, which suggests that tumor CNA burden may not simply reflect aneu-

ploidy, defined as abnormal DNA content (Danielsen et al., 2016). It is also possible that tumor

CNA burden captures prognostic information about currently unidentified driver alterations and/or

the rate of ongoing CNA within a tumor that may generate additional driver alterations, including

those reflecting intratumoral heterogeneity, thereby affecting outcome. Ongoing work by others has

begun to develop genomic methods for identifying mechanisms of somatic CNA (Wala et al.,

2017); and identify prognostic CNA signatures and the mechanisms underlying the component CNA

(Macintyre et al., 2018). Ultimately, the biology underlying the significant association of tumor CNA

burden with multiple cancer outcomes will be a fruitful area for future investigation.

Materials and methods

aCGH copy number analysis of conservative-treatment TAPG cohort.
Of the TAPG1 cohort (Cuzick et al., 2006), FFPE prostate tumor tissue from 180 patients was mac-

rodissected from slides. DNA was isolated (Agilent FFPE DNA isolation for aCGH protocol) and

quantified by picogreen-based quantification. 107 cases yielded greater than 500 ug DNA and were

analyzed by Agilent 180K human CGH arrays (Agilent, 4 � 180K G4449A arrays, per manufacturer’s

instructions). Copy number data from patients in the TAPG copy number cohort were quantified,

normalized, segmented, and analyzed with RAE, as previously described (Taylor et al., 2010;

Hieronymus et al., 2014). The conservative treatment TAPG copy number cohort array data was

deposited in NCBI GEO under accession number GSE103665 (Gene Expression Omnibus, RRID:

SCR_007303).

Tumor CNA burden (tumor CNA burden) was analyzed as percent CNA burden, defined as the

length of the genome altered by copy number alteration multiplied by 100. For regression analyses,

tumor CNA burden was scaled as per five percent so that the estimates of our hazard ratios were

more interpretable. All statistical analyses were performed using Stata 13 (RRID:SCR_012763, Stata-

Corp, College Station, TX).

TAPG copy number cohort statistical analyses
For Cox regression analyses, the primary aim was to determine whether tumor CNA burden is asso-

ciated with cancer specific survival (CSS). First, we assessed whether there was an association

between tumor CNA burden and CSS by utilizing a univariate Cox model, censoring patients who

did not die at the date of their last follow-up and patients who died of other causes at their death

date. Secondly, in order to assess whether there is information from tumor CNA burden over and

above biopsy Gleason score, we utilized a multivariable Cox model, adjusting for biopsy Gleason

sum categorized as �6, 7, and �8. Finally, to assess whether there is an association between tumor

CNA burden and CSS after accounting for the preoperative predictors of CSS, we utilized a multivar-

iable Cox model, adjusting for the UCSF-CAPRA score, a preoperative risk score calculated by incor-

porating the patient’s age at diagnosis, PSA at diagnosis, primary and secondary Gleason score at

biopsy and clinical tumor stage. As percent of positive biopsy cores was not available for the cohort,

a modified CAPRA score was utilized not incorporating this information. Among our cohort of 107

patients, 47 patients were missing clinical tumor stage; multiple imputation was used to impute the

missing values. Statistical analyses were performed utilizing the measured and imputed values com-

bined across 10 imputations using Rubin’s method. Furthermore, to evaluate the discriminative accu-

racy of the model including tumor CNA burden, we calculated bootstrap optimism-corrected

Harrell’s C-index. It should be noted that the discrimination of the CAPRA score is lower in the
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TAPG1 conservative treatment CNA cohort than seen in some other prostate cancer cohorts, and

this may impact the degree to which tumor CNA burden increases the concordance index. All data

used for these analyses are available in Supplementary file 4.

For illustrative purposes, we utilized competing risk methods to estimate the probability of death

from prostate cancer in the setting of death from other causes. Cumulative incidence was shown for

patients who died from prostate cancer, or died from other causes, stratified on tumor CNA burden

in relation to the median tumor CNA burden among the cohort, using the stcompet command in

Stata.

Statistical analyses of IMPACT cohorts
For analysis of the prostate cancer MSK-IMPACT cohort (Abida et al., 2017), the published cases

were analyzed by Cox regression for association between overall survival and tumor CNA burden

(Supplementary file 5 and 6). The IMPACT cases were separated into groups consisting of primary

tumors or metastatic tumors, including loco-regional, non-resistant to treatment, and treatment

resistant, though primary tumor samples include cases sampled after metastatic spread. Among our

primary and metastatic IMPACT prostate cancer cohorts, we excluded men with unknown overall

survival status and unknown time until overall survival status, leaving us with a final cohort of 261 and

216 men, respectively. Among these two groups of patients, we assessed the association between

tumor CNA burden and overall survival using a univariate Cox model. Multivariable Cox models

were then used to determine whether the association between tumor CNA burden and overall sur-

vival remained after accounting for purity determined by FACETS (Shen and Seshan, 2016), the

overall point mutation burden, or specific somatic gene alterations (shallow or deep copy number

loss or mutation) occurring in prostate cancer (BRCA1, BRCA2, ATM, TP53, RB1, and PTEN), using

separate models for each alteration. As the overall point mutation burden was not available for all

patients, 34 patients with primary prostate cancer and 11 patients with metastatic prostate cancer

were excluded from this portion of the analysis in their respective cohorts.

For analysis of our pan-cancer IMPACT cohort (MSK-IMPACT cohort (Zehir et al., 2017) and

additionally accrued IMPACT samples), outcome data at time of analysis, mutation burden, and frac-

tion genome altered data used were derived and available in updated form the cBio Portal (RRID:

SCR_002877, http://www.cbioportal.org/study?id=msk_impact_2017, samples and annotation used

at time of analysis available as Supplementary file 7 and 8). A cohort of 7305 primary tumor cases

across 53 different cancer types and a cohort 5907 metastatic tumor cases, across 47 different can-

cer types, were identified. Within the primary and metastatic disease cohorts, we excluded patients

with unknown tumor CNA burden, overall survival status, unreported follow-up time, death or cen-

soring immediately after treatment, unknown cancer type, and unknown mutation burden. The final

cohort used here therefore included 6610 and 4864 patients, respectively. Within both of these

cohorts, univariate Cox models were used to determine whether CNA or mutation burden is associ-

ated with overall survival. Reported follow-up time was used. As it is probable that the association

between tumor CNA burden and survival likely varies based on the particular cancer type, we

focused on patients with the ten most prevalent cancer types in both of the respective cohorts

(Supplementary file 2, 5198 and 3886 patients with primary and metastatic disease respectively)

and proceeded with a meta-analysis in order to stratify by cancer type. In particular, we utilized a

multivariable Cox model, adjusting for mutation burden for each cancer type and extracted the

effect size. The effect size for each cancer type was then entered into a meta-analysis using the

metan command in Stata. Both fixed effects and random effects estimates were calculated. Fixed

effects weights were calculated using inverse-variance weighting, metan weights were calculated

using the DerSimonian and Laird method.

Statistical analyses of TCGA cohorts
For analyses of TCGA cohorts, the following published cohorts were filtered for only primary, non-

neoadjuvantly treated cases and analyzed: TCGA prostate adenocarcinoma (2015) (Cancer Genome

Atlas Research Network, 2015), breast carcinoma (Ciriello et al., 2015), uterine endometriod

cancer (Cancer Genome Atlas Research Network et al., 2013), renal clear cell

carcinoma (Cancer Genome Atlas Research Network, 2013), papillary thyroid

carcinoma (Cancer Genome Atlas Research Network, 2014), and colorectal
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adenocarcinoma (Cancer Genome Atlas Network, 2012). The number of cases and exclusions

based on unavailable data are detailed in Supplementary file 9. Cox regression was used to test

the association of tumor CNA burden as a continuous variable with (i) cancer free status and (ii) over-

all survival in univariate models and in multivariable models with disease stage. For the TCGA colo-

rectal cancer cohort, tumor stage was also used. For the TCGA prostate adenocarcinoma cohort,

multivariable Cox regression models that included Gleason score, mutation count, ploidy, and/or

ABSOLUTE purity (Carter et al., 2012) originally reported with this cohort were also used. Analyses

including purity exclude 37 patients without absolute tumor purity measured, resulting in analysis

with 243 men, 29 of whom had BCR, and a median followup time for survivors of 20.1 (7.0, 37.9)

months.

Data access. The conservative treatment TAPG copy number cohort array data was deposited in

NCBI GEO (Gene Expression Omnibus, under accession number GSE103665 (https://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?acc=GSE103665).
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