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Abstract
Diabetes can be associated with a reduction in functional β cell mass, which must be 
restored if the disease is to be cured or progress is to be arrested. To study the cell 
count, it is also necessary to  determine the number of nuclei within the insulin stained 
area. It can take a single experimentalist several months to complete a single study 
of this kind, results of which may still be quite subjective. In this paper, we propose a 
framework based on a novel measure of local symmetry for detection of cells. The local 
isotropic phase symmetry measure (LIPSyM) is designed to give high values at or near 
the cell centers. We demonstrate the effectiveness of our algorithm for detection of 
two types of specific cells in histology images, cells in mouse pancreatic sections and 
lymphocytes in human breast tissue. Experimental results for these two problems show 
that our algorithm performs better than human experts for the former problem, and 
outperforms the best reported results for the latter.
Key words: Beta cell mass assessment, cell nuclei detection, lymphocyte detection, 
local isotropic symmetry
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INTRODUCTION

Glucose homeostasis depends on the release of insulin 
and glucagon by β cells and α cells within the pancreatic 
islets of Langerhans, which respectively increase or reduce 
glucose disposal in peripheral tissues.[1] All major types 
of diabetes are associated with a reduction in functional 
β cell mass, which must be restored if the disease is to 
be cured or progress arrested.[2] Increasingly, drugs are 
being introduced into clinical practice which may be 
able to arrest or potentially in the future even reverse 
this decline at least in type 2 diabetes.[3] Not surprisingly, 
much research in the academic and private sectors is 
devoted to functional testing of genetic manipulations 
and therapeutic strategies aimed at interfering with 

loss of beta cell mass or that might restore or expand 
endogenous beta cell mass in animal models. Moreover, 
increasingly post-mortem analyses of β and islet cell mass 
are undertaken in patients.[4] It is not currently possible to 
measure changes in β cell or even islet mass during life as 
no sufficiently sensitive or specific imaging tools exist.[4]

Therefore, all depends on an accurate assessment of beta 
cell mass post-mortem. In all such cases it is necessary 
to estimate β cell mass by immunohistochemical 
(IHC) staining of pancreas tissue sections and then, 
for at least 5-10 levels, to measure the area of insulin 
immunoreactivity and divide this by the total pancreas 
area (mass can then be assessed by multiplying the ratio 
by the pancreas weight). To assess β cell count, it is 
necessary to also determine the number of nuclei within 
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the insulin stained area. To obtain this data is very labor 
intensive and subject to observer bias. Many hours of 
microscopy and image capture are required followed by 
very time consuming analyses, so that it is not unusual 
for a single experimentalist to take many months to 
complete a single study of this kind.

A variety of methods have been proposed in the literature 
to address the problem of nuclei detection in histology 
images. Intensity-based methods such as thresholding[5] 
and clustering[6,7] are often employed when a high 
contrast is known to exist between the background and 
foreground (i.e., cells). Another class of methods employs 
active contours to segment out the boundary of cells.

The basic idea behind such techniques is that the initial 
contour is iteratively modified based on some criterion. 
Several models based upon active contours have been 
proposed.[6-10] However, a major drawback of methods 
based on active contours is that the performance is highly 
dependent on the seed points. Majority of these methods 
struggle to resolve cell boundaries for overlapping cells. 
Bamford et al.[8] have showed that by use of dual-active 
contours, it is possible to overcome such shortcomings of 
active contours. Another approach that is often followed 
is the use of watersheds. These methods treat intensity 
profile of an image as a topological surface. Problem with 
watershed segmentation is that noisy and textured images 
have many local minima, most of them being irrelevant 
for segmentation. Using the watershed on a gray image 
without any preparation leads to an over segmentation. 
The best solution to this problem consists in initially 
determining markers for each region of interest, including 
the background of the image. This makes it semiautomated 
with subjectivity creeping in because of the choice of 
markers. Other approaches include the use of a statistical 
model[11] for cell nuclei detection, and more recently 
morphological operations[12] for detection of cell nuclei.

In this paper, we present a novel method for detection of 
cell nuclei based on the idea of isotropic phase symmetry. 
We introduce a novel measure of isotropic phase symmetry 
which quantifies symmetry around a pixel irrespective of 
the direction(s) in which the symmetry is found. Since the 
proposed measure is calculated entirely in the frequency 
domain, it is invariant to both contrast and illumination 
variations. When applied on Hematoxlyin-positive parts of 
a histology image, this measure can be used for detecting 
cells. We demonstrate the effectiveness of the isotropic 
phase symmetry measure for detection of β cells using 
a challenging dataset consisting of 20 histology images 
of mouse pancreas. To the best of our knowledge, there 
is no existing method in the literature which addresses 
this problem. We further show the effectiveness of our 
proposed measure for detection of lymphocytes in breast 
histology images, which was posed as a problem in a 
recently held contest in pattern recognition.[13]

Experimental Data
Transgenic mouse
A transgenic plns-c-MycERTAM mouse model[14] was 
employed in this study. c-MYC was switched on by daily 
intraperitoneal (IP) injection of 4-hydroxytamoxifen (4-
OHT; Sigma-Aldrich, St. Louis, MO) at 1 mg/0.1 ml. 
Three-month-old female mice were killed after 8 hours of 
IP injection, and so were their wild-type (WT) littermates, 
which applied the same volume of vehicle. WT is 
presented in this study. Mouse pancreata were dissected 
and placed into 4% formaldehyde (formaldehyde-methanol 
free 16% w/v solution; TAAB, Berks, UK) for 2 hours at 
room temperature (RT). Tissues then were transferred 
into 30% sucrose (Sigma-Aldrich, St. Louis, MO) at 4°C 
overnight. After the fixation steps, pancreata were placed 
into a cubic mode, embedded with Tissue-Tek O.C.T. 
mounting medium (Sakura, Alphen aan den Rijn, The 
Netherlands), placed on the dry ice, and stored at -80°C. 
Tissues were sectioned by a cryostat (OTF 5000 Cryostat; 
Bright, Huntingdon, UK) at the thickness of 10 µm.

DAB and hematoxylin staining
Slides were postfixed in 4% formaldehyde for 10 minutes 
at 4°C, and were washed in PBS for 2 times, 3 minutes 
for each wash on a shaker (at 50 rpm). Hydrogen peroxide 
(H2O2) (Thermo Fisher Scientific, Pittsburgh, PA) (diluted 
in sterile H2O at 1/100) was applied to each section to 
bleach the samples for 30 minutes at RT; then slides were 
washed in PBS for 5 minutes on a shaker (at 50 rpm).

A goat serum solution (150 µl goat serum (Sigma-Aldrich, 
St. Louis, MO) and 10 ml PBS) with triton (50 µl)  
(Sigma-Aldrich, St. Louis, MO) was applied to each 
tissue section for 30 minutes at RT to block tissues. 
The primary antibody (Insulin-polyclonal guinea anti-
swine; Dako, Glostrup, Denmark) was applied onto 
the sections at 1/200 and incubated for 1 hour at RT. 
Then slides were washed in PBS+0.1% Tween for 3 
times, and 5 minutes for each wash on a shaker (at 
50 rpm). The secondary antibody (Guinea pig IgG (H 
and L) preabsorbed antibody (HRP); Novus Biologicals, 
Littleton, CO) was applied for 30 minutes onto the 
treatment section at 1/500 at RT. After slides were 
washed in PBS+0.1% Tween three times, and 5 minutes 
each on a shaker (50 rpm), a DAB kit (DAB substrate 
kit for peroxidise; Vector Laboratories, Burlingame, 
CA) was applied on to each section for 2 minutes, by 
following the protocol from the producer. Then slides 
were washed in sterile H2O for 2 times, and 3 minutes 
for each on a shaker (50 rpm). The next step was the 
hematoxylin staining, which is carried out using the 
following steps: (1) bathed in the hematoxylin (Carl 
Roth, Karlsruhe, Germany) for 1.5 minutes, (2) washed 
under the running water for 10 minutes, (3) transferred 
into 70% ethanol for 1 minute, (4) transferred into 80% 
ethanol for 1 minute, (5) transferred into 90% ethanol 
for 1 minute, (6) transferred into 100% ethanol for 2 
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minutes, (7) immersed into xylene for 2 times in a hood, 
and 5 minutes for each, and (8) mounted slides with 
mount medium (Leica, Wetzlar, Germany) and applied 
coverslips. The slide images were studied by a light 
microscope (Axiostar plus; Carl Zeiss, Jena, Germany) 
with a ´40 objective, and captured by a digital camera 
(Powershot G5; Cannon, Tokyo, Japan).

The Proposed Algorithm for Detection of β Cells
The proposed scheme for detection of β cells is based 
upon the idea of phase symmetry. A schematic diagram 
of our detection algorithm is given in Figure 1. As a first 
step, the algorithm separates stains using the Ruifrok and 
Johnston method.[15] This is followed by the computation 
of local isotropic phase symmetry to identify image pixels 
that may be high in local symmetry. All pixel values in a 
local neighborhood with high values of this measure are 
then grouped together to form candidate cell centers. 
The final step ensures that the pixels surrounding 
detected cell centers satisfy certain criterion relating to 
their stain making them stain-specific cells. Figure 2 
illustrates the different steps of our algorithm with the 
aid of an example. The remainder of this section provides 
a detailed description of all of these steps.

The local isotropic phase symmetry measure
If we assume cells to be elliptical blobs, one would expect 
centers of the cells to be at the peaks of local isotropic 
symmetry. Our measure is derived from Kovesi’s pixel-wise 
symmetry measure[16] computed in the frequency domain 
using log-Gabor wavelets. Spatial domain approaches 
based on morphological properties have been surveyed as 
early as 1989. Xia[17] has made such a survey. A few other 
authors have attempted to quantify symmetry based on.[16] 
Xiao et al.[18] have also proposed a symmetry measure 
based on phase information. Loy and Zelinsky[19] have 
used a symmetry based approach for face detection and 
characterization. The log-Gabor wavelet filters have a 
Gaussian transfer function when viewed on the logarithmic 
frequency scale, and are similar to those found in the 
human visual system.[20] A detailed description of how The 
local isotropic phase symmetry measure (LIPSyM) can be 
computed using these filters is given below.

Computation of LIPSyM via the log-Gabor Transform
The first step in the computation of LIPSyM is to take 
the discrete time Fourier transform of the input image. 
This frequency information is filtered through a bank of 
log-Gabor filters. These filters are made by dividing the 
frequency domain into concentric circles, with each band 

Figure 1: A schematic diagram of the proposed algorithm for detection of β cells
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between two consecutive circles representing different 
scales, and into angular strips representing different 
orientations. Consider there are ns scales and no number 
of orientations, resulting in ns × no different filters. Let 
I denote the Fourier transform of the input image, Gs,o 
the Gabor filter at scale s and orientation o, and Vs,o the 
output of the convolution of Gs,o and I.

Vs,o=I*Gs,o (1)

Local responses of each of the Gabor filters can also be 
represented in terms of amplitude As,o(x, y) and energy 
Es,o(x, y) as defined below,

As,o=|Vs,o (x,y)|  (2)

and

Es,o (x,y) = |Real{Vs,o (x,y)}| – | Img {Vs,o (x,y)}|  (3)

where (x, y) denotes the 2D coordinates of a pixel, and 
Real and Img denote the real and imaginary parts of 
the filter response. Next, we define the median over all 
orientations for a fixed scale s for As,o and Es,o as follows,

As (x,y) = median{o=1,2...,no} As,o (x,y) (4)

and 

Es (x,y) = median{o=1,2...,no} Es,o (x,y)  (5)

The use of median in the above equations plays a critical 
role in ensuring that our symmetry measure is isotropic, 
unlike the mean over all orientations used by Kovesi[16] 
which may return high values in the case of symmetry 
found only in particular directions, as shown in Figure 3.  
Finally, the local isotropic phase symmetry measure 

Figure 3: Isotropic (red) vs. anisotropic (green) peaks of local phase 
symmetry

Figure 2: (a) Original color image; (b) H-stain; (c) Normalized median phase energy; (d) Peaks overlayed; (e) Result after clustering; 
(f) Final output of the algorithm
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(LIPSyM) η(x,y) is defined as follows,
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Grouping of the LIPSyM Peaks
The LIPSyM value η(x,y) was computed for image pixels 
located at (x,y), for all x, y. The peak values of η should 
correspond to cell centers. So we find local maxima in 
the LIPSyM image η(x,y). This process can potentially 
result in several candidate points for cell centers which 
are grouped into a single cell center by representing these 
points as a graph and using maximal cliques to partition 
the graph into smaller subgraphs in order to resolve any 
overlapping cells.

Elimination of Non-β Cells
Now that we have all the cell centers, we eliminate those 
cells which are not β cells. One characteristic of the β 
cells is that they should be stained by DAB-insulin, owing 
to their high insulin content. The percentage of local 
DAB stain was computed for each of the cell centers. 
This was done by creating a window around each cell 
center and computing the proportion of pixels found to 
be rich in DAB-insulin in that window, where the DAB 
image was obtained by using a Gaussian mixture model 
(GMM) with five modes. If the proportion of DAB-
insulin rich pixels around a cell center is above a certain 
threshold, we label the cell as a β cell.

EXPERIMENTAL RESULTS

We tested the performance of the proposed approach on 
two case studies: first one involving detection of β cells in 
Hematoxylin and DAB-insulin stained histology images, 
and another one aimed at the detection of lymphocytes 
in Hematoxylin and Eosin (H and E) stained breast 
histology images using the ICPR contest test dataset.[13]  
By using these two different datasets, we intend to 
demonstrate the generality of our proposed framework for 
detection of cell nuclei of different kinds in histology images. 
Seven measures were used for quantitative evaluation of 
performance: three standard measures in sensitivity, positive 
predictive value (PPV), and F1-score, and four measures 
used in[13] and denoted as µd, σd, µn, σn. These measures 
evaluate the ability of the algorithm to identify centers 
and the total number of specialist cells (e.g., β cells and 
lymphocytes for our two datasets) that were identified by 
the algorithm: µd and σd denote the mean and standard 
deviation respectively of the closest distances for each of 
the identified cells, while µn and σn denote the mean and 
standard deviation respectively of absolute difference of 
the number of nuclei between the ground truth and the 
result of automatic detection. Comparative results provided 
below for both the datasets highlight the challenging nature 
of specialist nuclei detection in the presence of an often 
subjective ground truth.

Detection of β Cells
Our first dataset consists of 20 images of mouse 
pancreatic sections stained with Hematoxylin and 
DAB-insulin taken at 40×, with the spatial resolution 
of each image being 1024×768 pixels. We learnt the 
Hematoxylin and DAB stain vectors, as suggested in,[15] 
in order to identify pixels containing candidate β cell 
nuclei. The proposed phase symmetry measure was then 
used to identify β cells in a given image.

How True Is the Ground Truth? 
The centers of all β cells were identified by three different 
experts, all with a biology or medicine background, two 
of them senior PhD students and a postdoctoral fellow 
with experience of working with such image data for 
several years. Due to the largely subjective nature of β cell 
identification, we found large differences in the markings of 
all pairs different experts. Therefore, we refer to the set of β 
cell center coordinates provided by each of the three experts 
as markings rather than ground truths. We conducted the 
following experiment to highlight the subjective nature of 
each of the markings. If we consider the markings provided 
by one of the experts to be the “ground truth” and those 
provided by another expert as the results of an algorithm, 
we can compute the aforementioned performance measures 
to reflect how well the two experts agree with each other. 
As shown in Table 1, there is low agreement found between 
any pair of the three experts. Such low agreement values 
also indicate the challenging nature of this problem.

Due to this reason, we resort to fusing the ground truth 
provided by three experts by first representing each 
cell marking as a round blob (a 2-D Gaussian with a 
bandwidth of eight pixels, roughly representing the size 
of an average cell). For each of the images in our dataset, 
three such images (one image per expert) containing 
round blobs around the marked cell centers are combined 
by adding them together, thresholded, resulting in a fused 
ground truth (FGT). The advantage of a Gaussian as 
opposed to just a point mark is that it makes it possible 
to give more confidence in a particular expert’s markings 
by assigning weights to respective Gaussian functions.

Last three rows in Table 1 show that while the level of 
agreement between one of the experts and the remaining 
two experts increases when we fuse the ground truth 
from the two experts, it still remains not very high. In 
the remainder of this section, we present results for the 
algorithm’s performance against the fused ground truth 
obtained by all three experts’ markings.

Detection Results for the Fused Ground Truth
Table 2 shows the results of our algorithm for β cell 
detection against the fused ground truth. As mentioned 
earlier, to the best of our knowledge, there is no existing 
method in the literature for the detection of β cells. For 
comparison purposes, therefore, we tested the performance 
of the proposed local isotropic phase symmetry measure 
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(LIPSyM) against the standard laplacian of gaussian (LoG) 
filter, as proposed by Byun et al.,[21] by replacing the second 
building block of our scheme in Figure 1 with the LoG 
filter. The results show clearly that the proposed method is 
more sensitive and outperforms the LoG filter in terms of 
most of the others performance measures. The LoG filter 
shows slightly better performance in terms of the PPV.

We invite fellow researchers to download this dataset 
from our website1 in the spirit of a healthy competition 
for advancement of technology to solve this basic but 
challenging problem.

The bane of manual marking
As already mentioned in the introduction section, it may 
take a few months for the marking by a human expert. 
Just to give the readers an idea, single experiment on 
beta cells may consists of about 6,000 images of the size 
1024×768. Each image has about 50-300 beta cells. On 
average, a human expert would take about 4-5 minutes 
per image depending on fatigue level and other human 
factors. This would cost up to 500 man hours.

On the other hand, the current MATLAB implementation 
of our algorithm takes about 30 seconds per image on a 
2.66 GHz Quad-Core workstation. This would mean 
for 50 computer hours, equivalent to about 2-3 days 
for marking without any human intervention. However, 
in our opinion, it would be possible to reduce the 
1http://www2.warwick.ac.uk/fac/sci/dcs/research/combi/projects/bic/lipsym

computation time further by implementation in lower 
level languages like C/C++. Further acceleration can be 
achieved by implementation on GPUs.

Thus, it can be seen that it would save valuable human 
expert hours from the laborious task of marking. This 
would allow the expert to spend their time on more fruitful 
activities, resulting in accelerated pace of such a research.

Detection of Lymphocytes
Our second dataset consists of 10 images which were 
the subject of an international competition on pattern 
recognition in histology images.[13] These images contain 
breast tissue with lymphocytic infiltration stained with 
Hematoxylin and Eosin (H and E) and digitized at 20×, 
with the spatial resolution of each image being 100×100. 
The centers of all lymphocytes identified by an expert 
were marked. We employed the standard Hematoxylin 
stain vector, as suggested in,[15] in order to identify pixels 
containing the candidate nuclei. The phase symmetry 
measure was then used to identify lymphocytes, without 
using any textural measures or any kind of supervised or 
unsupervised classifier, as was the case with some of the 
competing algorithms in that contest[22-25] Table 3 shows 
the results of our algorithm for lymphocyte detection as 
compared to four other competing methods. We quote 
the figures for last four of the seven aforementioned 
performance measures from.[13] MATLAB code for Kuse  
et al.’s method[22] was downloaded from their website2 and, 
2http://conf.lnmiit.ac.in/mail/home/work/ICPR_work/code.php

Table 2: Experimental results for the detection of β cells; best results are shown in bold

Method Sensitivity (%) PPV (%) F1-score (%) µd σd
µn σn

LIPSyM 63.22 60.63 60.82 7.82 2.18 10.35 9.39
LoG 47.22 62.11 52.42 9.21 2.83 15.65 20.30

Table 1: Comparison of three experts’ (A, B, and C) markings against each other and against the fused 
ground truth (FGT)

Testing Ground truth Sensitivity (%) PPV (%) F1-score (%) µd σd
µn σn

A B 40.42 54.42 45.82 10.49 3.78 22.95 29.13
B C 51.03 44.58 47.35 6.39 2.01 13.95 16.31
A C 54.96 63.48 45.77 5.69 1.56 18.95 24.25
A FGT(B+C) 52.75 59.99 54.64 9.52 4.32 13.05 12.36
B FGT(A+C) 55.84 45.80 49.65 5.69 2.30 23.70 35.27
C FGT(A+B) 56.73 54.86 54.82 6.18 1.86 19.10 22.49

Table 3: Experimental results for the detection of lymphocytes; best results are shown in bold

Method Sensitivity (%) PPV (%) F1-score (%) µd σd
µn σn

LIPSyM 70.21 70.08 69.84 3.14 0.93 4.30 3.09
Kuse et al.[22] 65.23 69.99 67.29 3.04 3.40 14.01 4.4
Cheng et al.[23] - - - 8.10 6.98 26.67 12.5
Graf et al.[24] - - - 7.60 6.30 24.50 16.20
Panagiotakis et al.[25] - - - 2.87 3.80 14.23 6.30
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therefore, we were able to fully compare the performance of 
their algorithm with ours. It is clear from these results that 
LIPSyM gives the best performance among all the methods, 
better in terms of all but one performance measures than[22] 
which was declared winner of the ICPR contest.[13]

CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel measure of local 
isotropic phase symmetry (LIPSyM) for identifying 
cells. We employ LIPSyM in a systematic framework for 
labeling particular stain-specific cells such as insulin-rich 
β cells in pancreatic sections. Counting β cell mass plays 
a critical role in studying the development and cure of 
diabetes in mouse models. We studied manual detections 
of β cells by three experts and found very low levels of 
agreements between them. In fact, we found that our 
algorithm gives higher precision and sensitivity than any 
of the three experts against a fused ground truth using 
markings from two of the remaining experts.

We demonstrated the effectiveness of LIPSyM on 
another similar kind of problem, the detection of 
lymphocytes in breast histology images. Our results 
illustrate the highly subjective nature of manual 
detection of specific type of cells, such as β cells and 
lymphocytes, and consequently point to the difficulty 
in getting a reliable ground truth for training computer 
algorithms for detection of such cells. A large-scale 
multisite collaborative study may be a vehicle to 
resolve these issues by collaborative filtering and aid 
in the development of reliable computerized tools to 
objectively quantify specific cells in histology images.
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