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ABSTRACT

Patient safety is a primary priority in the con-
duction of retinal gene therapy trials. An
understanding of risk factors and mitigation
strategies for post-procedure complications is
crucial for the optimization of gene therapy
clinical trial protocols. In this review, we syn-
thesize the literature on ocular delivery meth-
ods, vector platforms, and treatment-emergent
adverse effects in recent gene therapy clinical
trials for inherited retinal diseases.
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Key Summary Points

Numerous active and planned clinical
trials are investigating the safety of adeno-
associated virus (AAV)-mediated gene
therapy for inherited retinal diseases
(IRDs).

Treatment-emergent adverse events
(TEAEs) are related to the delivery
method, vector system, and underlying
retinal condition.

Emphasis should be placed on minimizing
subretinal- and intravitreal-related
complications, the most common cause of
adverse events in completed gene
replacement trials.

Perioperative steroids are used to manage
AAV immunogenicity.

INTRODUCTION

Targeted vector-based gene therapy has been
rapidly developing over the past decade to halt
disease progression and preserve visual function
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for inherited retinal diseases (IRDs). Recessive
retinal disorders may be treated with gene
replacement therapy, in which a pathogenic
gene is replaced with a functional gene. The
landmark approval of Luxturna opened the
door for genetic augmentation of other visually
devastating inherited disorders [1]. Numerous
gene augmentation trials have been completed
or are under way for the treatment of several
IRDs, including Leber congenital amaurosis,
retinitis pigmentosa, choroideremia, achro-
matopsia, Stargardt disease, Leber hereditary
optic neuropathy, and X-linked retinoschisis.

Anatomically accessible and easily moni-
tored with noninvasive imaging, the retina has
been an ideal candidate for genetic therapy
interventions [2]. Heavily confined and
immune-privileged, systemic side effects are
typically limited from therapeutic interventions
introduced directly into the retina. With a tight
blood–retinal barrier (BRB) and immunosup-
pressive ocular environment, the retina effec-
tively restricts the inflammatory response to
potential therapies [3].

Clinicians should stay up to date and
implement recommended technique adjust-
ments and protocol modifications to improve
patient safety in the numerous ongoing retinal
gene therapy trials. Treatment-emergent
adverse events (TEAEs) from gene therapy are
typically related to the injection procedure and
vector platform. This article will review the risk
factors for developing these complications and
discuss evidence-based recommendations for
mitigating these adverse outcomes. This article
is based on previously conducted studies and
does not contain any studies with human par-
ticipants or animals performed by any of the
authors.

VIRAL VECTORS

Viral vector systems for ocular genetic therapy
come with different risk assessments and safety
profiles. Most clinical trials for IRDs currently
use recombinant adeno-associated viral (AAV)
vectors to deliver the normal functional gene of
interest into the retina, restoring the visual
transduction pathway. AAVs, a single-stranded

DNA parvovirus vector, have been preferable to
other viral vectors in transducing target cells, as
they are nonpathogenic, non-integrating, and
longer-lasting [2, 4]. However, they are limited
by a small gene-carrying capacity of approxi-
mately 4.7 kilobases (kb) [4].

Lentiviral vectors, a type of retrovirus, have a
high packing capacity of approximately 8 kb
and are capable of transducing multiple cell
types, making them more suitable for IRDs with
large causative genes such as Stargardt disease
and Usher syndrome type 1B [5]. However,
insertional mutagenesis is a potentially serious
complication of lentiviruses [6]. Nonviral vector
platforms may eventually resolve many of the
aforementioned obstacles of viral vectors [7].

The introduction of a viral vector agent has
the potential to cause a substantial and harmful
immune response that reduces visual outcomes.
In the general population, there is greater pre-
existing immunity against AAV2 relative to
other AAV subtypes [8]. AAV5, AAV8, and AAV9
vectors, with the lowest seroprevalence, may be
superior constructs in limiting the inflamma-
tory response [8]. Exclusion criteria in clinical
trials often include a threshold titer level of
neutralizing antibodies (NAbs) against the
specific study vector. To reduce the incidence of
inflammatory reactions, periprocedural
immunomodulatory therapies are increasingly
being incorporated into numerous AAV-medi-
ated gene replacement trials.

ADMINISTRATION ROUTES

Several intraocular approaches are available to
deliver the AAV vectors carrying the functional
target gene to the damaged retinal cells,
including subretinal (SR), intravitreal (IVT),
suprachoroidal, and sub-internal limiting
membrane (subILM). As the majority of adverse
effects in retinal gene therapy trials are directly
related to the procedure, we discuss the litera-
ture on minimizing procedure-related compli-
cations. Tissue properties and cell types are
affected differently based on the specific genetic
mutation. These properties are important con-
siderations in selecting the injection approach
and predicting intra-procedural obstacles. The
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preferred injection approach is typically uni-
form for trials treating the same IRD.

Subretinal

Compared to traditional 20-gauge surgery,
novel microincision vitrectomy surgery (MIVS)
gauge systems have reduced incidence of iatro-
genic retinal tears, ocular hemorrhages, astig-
matism, and postoperative pain and
inflammation [9–12]. With shorter operating
times and enhanced visual outcomes, they have
become the predominant platforms for vitrec-
tomies. MIVS include transconjunctival suture-
less 23-, 25-, and 27-gauge instrument designs,
with the 23-gauge system being the most com-
monly adopted in gene therapy trials. There are
conflicting reports on the rate of intraoperative
and postoperative complications among the
three main MIVS gauge systems, with most data
showing similar safety profiles [13, 14]. A recent
comprehensive review comparing 23- and
25-gauge pars plana vitrectomy (PPV) surgery
showed an increased rate of overall adverse
events for the 23-gauge system [15]. Addition-
ally, 25- and 27-gauge PPV have shown
increased intraocular pressure (IOP) stability
and decreased conjunctival trauma compared to
23-gauge PPV [16, 17]. Future studies are nec-
essary to clearly validate the most appropriate
instrument size for gene therapy trials.

Located between the photoreceptors and
retinal pigment epithelial (RPE) cells, the sub-
retinal space is a readily accessible location for
the delivery of targeted gene therapy directly to
cells of interest. An invasive alternative to
intravitreal injections, subretinal injections,
allow precise targeting of most outer retinal cell
types affected in IRDs [18]. In genetic therapy
trials, the subretinal space is accessed through
small-gauge PPV surgery followed by vector
injection [19]. The specific surgical technique
will vary among trials and surgeons. Some trials
elect to use a two-step technique where vector
injection follows the formation of a subretinal
bleb of balanced salt solution (BSS). The BSS
parafoveal bleb ensures accurate location for
vector injection, minimizing loss of vector into
the vitreous and choroid [19]. Small BSS pre-

blebs are used for thin retinas, while large pre-
blebs are used in diseases with more adhesive
foveal areas [19]. Practitioners who opt for a
one-step delivery method argue that a one-step
approach avoids the risk of excessive retinal
stretching and vector reflex associated with the
two-step method [20]. Oral corticosteroids are
typically started 3 days before surgery, with
tapering 2 weeks following the procedure to
reduce both procedure- and vector-related
inflammation [19].

There are certain known adverse events
associated with PPV surgery, including cystoid
macular edema (CME) development, retinal
detachment, increased IOP, endophthalmitis,
ocular hemorrhage, epiretinal membranes,
macular hole formation, cataract progression,
glaucoma, and hypotony [21]. A few studies
have assessed risk factors and the preoperative
management of PPV-associated complications.
Intraoperatively, surgeons must carefully
examine the peripheral retina to identify and
treat iatrogenic retinal breaks. Postoperative IOP
elevation is a concern that can be effectively
reduced with topical prophylactic IOP medica-
tions and small gauges intraoperatively [22, 23].
Accurate speed and pressure during vector
injection with a controlled foot pedal is neces-
sary to decrease the likelihood of hemorrhage
and macular hole formation [18, 24]. Along
with the aforementioned optimization of the
injection system, macular hole formation may
be reduced through preoperative identification
of thin retinal areas with optical coherence
tomography (OCT) and autofluorescence (AF)
imaging [25]. Heavy liquid can be positioned
over these areas during injection to prevent
opening [25].

Acute infectious endophthalmitis, an infre-
quent but severe complication of PPV, is linked
to pre-existing systemic immunosuppression,
pseudophakia, aphakia, and use of topical ster-
oids prior to surgery [26, 27]. Inadequate wound
closure leading to ocular hypotony and ingress
of surface bacteria is the main predisposing risk
factor for endophthalmitis [28]. The proper
technique involves conjunctival displacement
and angled sclerotomy [27]. Meticulous exami-
nation of sclerotomy sites requiring suturing is
crucial to preventing leakage and inoculation of
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flora into the vitreous. Effective and safe tech-
niques for sealing leaking sclerotomies include
simple suturing, diathermy, scleral needling,
resealable vicryl sutures, and cauterization
[29–31]. Bacterial contamination in the vitreous
from the conjunctiva has been shown to be
safely reduced through repeated field irrigation
with 0.25% povidone-iodine (PVI) [32]. Addi-
tionally, compared to fluid, air and gas are
superior final intraocular tamponades for accu-
rate closure of wounds and prevention of post-
operative endophthalmitis [33, 34].

Intraoperative and patient-related risk fac-
tors for the development of suprachoroidal
hemorrhage in PPV include advanced age, male
sex, and anticoagulant or antiplatelet medica-
tion [35]. Hypotony (intraocular pressure less
than 6 mmHg) following MIVS is associated
with high myopia, young age, and pseu-
dophakia [36, 37]. Extra caution should be
taken for patients with these risk factors. The
risk of hypotony following 23- and 25-gauge
PPV has been demonstrated to be reduced by
utilizing two- and three-step incision methods
as well as 25% sulfur hexafluoride (SF6) gas at
the conclusion of the procedure [38–40].

Recent technological microsurgery acces-
sories have improved patient safety. Intraoper-
ative use of OCT enables enhanced visualization
for real-time adjustments of the surgical
approach [41]. This is particularly useful in
delivering gene therapy, as it facilitates precise
confirmation of site injection, retinal bleb cre-
ation, and drug dosage [42]. Microscope-inte-
grated OCT (MIOCT) may help prevent
complications of inaccurate needle tip place-
ment and repeat subretinal bleb formations
such as hemorrhage, cannula tip obstruction,
macular hole formation, retinoschisis, and RPE
damage [43]. Robotic augmented vitreoretinal
surgery has emerged in an effort to improve
dexterity and control [44]. The first trial to use
robotic-assisted surgery in human patients, the
Robotic Retinal Dissection Device trial,
demonstrated promising early safety results
[45]. As subretinal injections are long proce-
dures, robotic technology has enormous
potential in improving outcomes and mini-
mizing complications. Assimilating new

technology into PPV will present a host of new
technical and operative challenges.

Intravitreal

Intravitreal injections, the most common reti-
nal procedure, involve nonoperative treatments
inserted directly into the vitreous cavity. They
are simple and efficient, but with limited effec-
tiveness in targeting cells in the posterior seg-
ment of the eye due to transduction barriers,
the most significant of which is the internal
limiting membrane [46, 47]. IVT injection,
therefore, is more suitable for targeting inner
retinal layers [18]. In the future, potential sur-
gical complications from SR injections may be
avoided through novel AAV variants that are
able to reach the outer retina after IVT injection
[48, 49].

There are certain procedure-related adverse
outcomes associated with intravitreal injec-
tions. Endophthalmitis is a rare but feared
complication associated with IVT injections
[50, 51]. In large prospective trials and reviews,
post-injection endophthalmitis incidence rates
have ranged from 0.028 to 0.056% [52]. Most
frequently, organisms identified are coagulase-
negative Staphylococcus and Streptococcus species
[53]. As these are common upper respiratory
tract flora, it is recommended that individuals
take droplet contamination precautions such as
wearing surgical masks and avoiding commu-
nication when injecting to reduce the risk of
infection [54, 55]. The use of topical post-in-
jection antibiotics does not reduce the risk of
endophthalmitis [56]. Additional precautionary
measures include PVI for sterilization of the
ocular surface, subconjunctival 2% lidocaine for
anesthesia, pre-filled syringes, and utilization of
a sterile speculum or splint to minimize expo-
sure of instruments to eyelids and eyelashes
[57–61]. PVI should be applied following
placement of the eyelid speculum [62].

Other vision-threatening complications
include retinal tear/detachment, cataract for-
mation, uveitis, hypotony, and intraocular
hemorrhage [63]. Retinal detachment is a rare
adverse effect with a prevalence between 0.0
and 0.08% per injection [64]. A proper
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technique with accurate measurement of the
injection site has been demonstrated to reduce
the rate of detachments [65, 66]. It is important
to clearly discuss signs of retinal detachment
(photopsia, peripheral vision loss) with patients
for prompt recognition and treatment.

Common post-injection complications
include subconjunctival hemorrhage (SCH) and
floaters. Hypertensive patients are at a higher
risk of developing SCH [67]. Patients should be
educated and reassured that these are benign,
painless complications that will resolve within
days or weeks. A post-injection transient
increase in intraocular pressure (IOP) that nor-
malizes within 30 min without intervention is
also commonly observed [68]. Pre-injection
IOP-lowering therapies are not effective in pre-
venting these transient spikes [69]. There is
evidence that high injection volumes, fast
injection rates, and smaller-gauge needles are
associated with sustained IOP elevation [70, 71].
The status of the optic nerve should be carefully
monitored post-injection, especially in patients
with pre-existing ocular hypertension and
glaucoma.

Certain approaches are available to enhance
patient comfort and compliance during IVT
injection. An additional staff member, neck
pillow, classical music, and verbal notification
prior to injection improve overall patient satis-
faction [72, 73]. There is no consensus topical
anesthetic technique for pain management, but
subconjunctival injection of 2% lidocaine may
be used for patients more sensitive to pain [74].
Injection into the superior nasal quadrant and
topical nonsteroidal anti-inflammatory drug
(NSAID) administration post-procedure are
associated with less patient discomfort [75, 76].

Multiplicity of infection (MOI), an impor-
tant consideration for delivery approaches,
refers to the ratio of viral particles per total
number of transduced target cells. MOI is
dependent upon both the underlying disease
characteristics and stage [2]. Larger retinal target
areas require more viral vectors to reach neces-
sary MOI for effective transduction [2]. A larger
vector dose increases undesired dissemination
and the potential for a deleterious immune
response [2, 18]. This is particularly important
in IVT injections that target broader retinal

areas. In preclinical models, intravitreal AAV
delivery induced a more robust immune
response compared to subretinal injection [77].
Relative to SR injection, a longer post-injection
course of systemic corticosteroids is typically
used to mitigate the inflammatory response
[78].

Suprachoroidal

The suprachoroidal space (SCS), an anatomical
space between the sclera and choroid, is a novel
delivery route that has been under investigation
for the administration of therapeutic agents.
With greater distribution and unimpeded by
the internal limiting membrane, SCS injection
allows ocular drug therapy delivery into the
posterior segment without vitrectomy or
retinotomy [79].

While the SCS may be accessed through
catheters, microneedles are a recent minimally
invasive and simple alternative [80]. Recent
preclinical models of AAV-mediated gene
delivery through the SCS are encouraging, but
prospective studies are needed to substantiate
the safety profile [81]. Reported adverse events
from suprachoroidal drug delivery clinical trials
include eye pain, anterior chamber inflamma-
tion, conjunctival edema, hemorrhage, punc-
tate keratitis, and retinal artery occlusion [82].
Anterior segment- and vitreous cavity-associ-
ated complications, including endophthalmitis,
cataract formation, and retinal detachment, will
theoretically be avoided [83].

Peri-injection preparation for intravitreal
injection is similar to that for IVT injections.
Injection is likewise in the pars plana, in
approximately the same site. While there is not
enough data on recommended guidelines for
preventing adverse events, it is reasonable to
believe that similar precautions should be
applied.

Sub-Internal Limiting Membrane

In a patient population with fragile retinas, the
capability to effectively transduce inner and
outer retinal cells of interest without physically
stretching the central retina is highly sought
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after [84]. A novel promising alternative ‘‘sub-
ILM’’ injection method was recently proposed
in which a vector is delivered into a surgically
created space between the retina and ILM [84].
Only in its infancy, future preclinical and clin-
ical studies are necessary to examine subILM
injections as a viable alternative to SR and IVT
injections.

RECENT GENE REPLACEMENT
CLINICAL TRIALS

Safety Evaluation Procedures

The safety profile is related to both the study
vector and administration route. Safety evalua-
tions involve full ophthalmic examinations,
adverse event reports, laboratory testing,
immunogenicity, and biodistribution analysis.
Vector immunogenicity is assessed through
enzyme-linked immunosorbent assays (ELISA)
for antibodies against the specific vector
employed. A polymerase chain reaction (PCR) is
used to assess systemic biodistribution and viral
shedding.

RPE65-Associated Leber Congenital
Amaurosis

Leber congenital amaurosis (LCA) is a severe,
rapidly progressive IRD characterized by early-
onset visual loss and nyctalopia. RPE65, one of
many causative genes for LCA, encodes an
essential enzyme in the production of 11-cis-
retinol during the visual cycle [85]. RPE65-me-
diated LCA patients were the first to undergo
subretinal gene replacement therapy [86]. The
SR approach is preferred to specifically target
RPE cells.

There have been five phase I/II trials and one
phase III trial by several groups investigating
AAV-mediated replacement of RPE65 in patients
with RPE65-mediated LCA. The safety results of
an initial open-label phase I trial exploring
single, unilateral SR injections of an AAV2 vec-
tor carrying RPE65 DNA in 12 LCA patients with
RPE65 mutations were favorable and consistent
with expected AEs [87]. A follow-on phase I trial

of the same patients demonstrated good safety
in administration of AAV2-hRPE65v2 to the
contralateral, previously untreated eye [88].
Following these two successful trials, a ran-
domized controlled phase III trial of sequential,
bilateral SR administration of AAV2-hRPE65v2
in 29 participants was initiated [89]. Of the 29
participants, 20 underwent treatment while the
other 9 served as controls for at least 1 year
before undergoing therapy. The same vector
construct and dose were used in the follow-on
and phase III trials. Two-year data for the phase
III trial and 4-year results for the phase I follow-
on study revealed a positive long-term safety
profile that was consistent with known adverse
outcomes of the SR approach [90]. The majority
of ocular TEAEs were mild in severity, consisting
primarily of pain, inflammation, macular hole,
maculopathy retinal hemorrhage, conjunctival
hyperemia, retinal tear and deposits, dellen,
elevated IOP, and cataract. These events pre-
dominantly resolved spontaneously or with
appropriate treatment. Two serious ocular
events were encountered: one participant
developed increased IOP and optic atrophy
3 months after treatment for bacterial endoph-
thalmitis, and one participant experienced
unresolved central retinal thinning with loss of
foveal function [90]. No clinically significant
immune response was observed, most likely
attributable to a peri- and postoperative steroid
regimen [90].

While other phase I/II gene therapy trials
have used different vector constructs or modi-
fied surgical approaches compared to Maguire
and associates, the long-term safety profiles
have been consistent with that of Luxturna
[91–94]. A meta-analysis of 82 patients from five
phase I/II trials and one phase III trial revealed
central retinal thinning in the treated eyes
compared to control eyes 2–3 years following
intervention [95]. While the etiology is
unknown, the authors hypothesized that retinal
thinning was a result of iatrogenic retinal
detachment induced during the SR procedure
[95].
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Choroideremia

Choroideremia (CHM) is a slowly progressive
X-linked IRD caused by mutations in the CHM
gene [96]. Xue and associates conducted a phase
I/II dose-escalation trial exploring the safety of
unilateral subretinal administration of AAV2.-
REP1 vector in 14 CHM patients [97]. Two of the
fourteen patients experienced significant
TEAEs. Surgical difficulties in subretinal bleb
formation resulted in a lower dose delivered and
retinal thinning in one treated eye. The second
significant AE was likely related to a combina-
tion of the vector procedure and SR injection,
involving substantial ocular inflammation that
resolved following systemic steroids. Following
these two complications, the clinical team
began using an extended postoperative course
of corticosteroids, an automated injection sys-
tem, and intraoperative OCT [97]. There was no
incidence of serious AEs or inflammation in the
remaining patients after these protocol changes.

An additional phase I trial in six patients
over a 2-year period with a higher dose relative
to the first trial described reported a favorable
safety profile for single SR injection of rAAV2.-
REP1 [98]. While the optimized injection sys-
tem described by Xue et al. was used,
microscope-integrated OCT was not used to
guide subretinal bleb creation [97]. Hyper-
reflective loci, a serious AE hypothesized to be
related to the AAV vector, were observed on
OCT in one patient 1 month postoperatively
[98]. The loci resolved with systemic corticos-
teroids, but the patient experienced decreased
vision and retinal thinning. Video of the surgi-
cal procedure for this subject showed injection
of air bubbles into the subretinal space as well as
a limited release of subretinal, intraretinal, and
vitreous hemorrhage [98]. The rest of the AEs in
both phase I trials were mild to moderate in
intensity, with the majority resolving sponta-
neously without significant sequelae. Mild pro-
cedure-related ocular AEs in both phase I trials
included subconjunctival hemorrhage, discom-
fort, micropsia, metamorphopsia, blurred
vision, flashing lights, and cataract develop-
ment. Only a few ocular complications were
potentially attributable to the study vector,
including flashing lights, cataract, and

grittiness. Systemically, there was no evidence
of vector dissemination or neutralizing AAV
antibodies [98].

Two recent phase II trials using the same
AAV vector construct corroborated the phase I
safety results. Lam et al. described an encour-
aging 2-year safety profile in six patients SR-in-
jected with high-dose AAV2-REP1 [99]. The
authors performed the SR procedure with a
standard 23-gauge vitrectomy, MIOCT, and an
automated injection system. No serious AEs
were noted, with the majority of the complica-
tions consistent with expected events following
an SR procedure. Mild AEs included subretinal
fluid, conjunctival hemorrhage, anterior cham-
ber cells, diplopia, and cataract. A minimal
immunologic response to the viral vector with
transient shedding and anti-AAV-2 neutralizing
antibodies was observed in two separate
patients. Two patients with lamellar thinning at
baseline developed a macular hole in the dam-
aged retinal areas [99]. To prevent macular hole
formation, the authors emphasized use of pre-
operative OCT in identifying vulnerable retinal
areas as well as utilization of MIOCT to mini-
mize unnecessary foveal manipulation [99].
Iatrogenic retinal detachment during sub-foveal
bleb formation is difficult in patients with CHM
due to excessive areas of subretinal adhesions
[25]. Larger BSS parafoveal pre-blebs and per-
fluorocarbon liquid have been recommended to
aid these excessively adhesive areas and prevent
unnecessary retinal stretch and vector reflux
[19, 100]. A second phase II trial in six men over
a 2-year period showed AAV2-REP1 to be well
tolerated, with an AE profile similar to the trial
conducted by Lam and associates [99, 101]. One
patient developed an intraoperative retinal hole
that sealed by the conclusion of surgery. No
severe or vector-associated AEs were encoun-
tered [101]. A randomized phase III trial
(NCT03496012) in 140 CHM patients currently
under way will help validate the safety of AAV2-
REP1.

Stargardt Disease

Stargardt disease (STGD), the most common
form of juvenile macular degeneration, presents
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in young adolescents with a progressive decline
in central vision [102]. Mutations in the ABCA4
gene, an encoder of a photoreceptor ATP-bind-
ing transporter, are the most common culprits
in recessive STGD [103]. The gene size of ABCA4
exceeds the carrying capacity of AAV, requiring
the use of dual-AAV, lentiviral, and nonviral
platforms [104–106]. Sanofi initiated a study
investigating intravitreal delivery of a lentiviral
vector carrying ABCA4 in 22 subjects
(NCT01367444). The study was terminated due
to review of clinical development priorities, but
preliminary 1-year safety results were promis-
ing, with subjects experiencing 125 mild to
moderate adverse events [107]. Sanofi is con-
ducting a second long-term dose-escalation
phase I/II trial investigating SR injection of a
lentivirus carrying ABCA4 (SAR422459) in 27
participants (NCT01736592).

Retinitis Pigmentosa

Retinitis pigmentosa (RP) is a genetically diverse
group of rod-cone dystrophies that begins with
rod photoreceptor impairment, eventually cul-
minating in degeneration of both rod and cone
photoreceptors [108]. Clinically, patients will
experience nyctalopia followed by a progres-
sively constricting visual field and loss of central
vision. Gene replacement strategies have been
applied in MERTK-associated RP and X-linked
retinitis pigmentosa (XLRP).

Mutations in MERTK (MER Proto-Oncogene,
Tyrosine Kinase), an essential gene in the regu-
lation of RPE phagocytosis, are implicated in RP
[109]. Ghazi et al. investigated the safety of SR
administration of rAAV2-VMD2-hMERTK in six
patients with MERTK-related RP [110]. They
reported no systemic toxicities and only a few
mild TEAEs, including filamentary keratitis,
submacular fluid, and cataract formation [110].
Notably, one patient developed oscillopsia fol-
lowing a shallow detachment of the fovea
intraoperatively. There is no consensus on the
mechanism behind this unusual complication
in this patient [110]. Unlike most other gene
therapy trials, the protocol involved a 20-gauge
vitrectomy and no perioperative steroids.

X-linked retinitis pigmentosa, the most sev-
ere form of RP, is characterized by profound
night blindness and visual loss in early child-
hood [111]. RPGR (Retinitis Pigmentosa GTPase
Regulator), the major XLRP gene, has been the
primary target in gene replacement studies
[112]. A recent phase I/II trial investigated the
SR administration of an AAV vector encoding
codon-optimized human RPGR (AAV8-coRPGR)
in 18 XLRP patients with mutations in RPGR
over a 6-month period [113]. They reported no
severe ocular or systemic toxicities. Only mild
corticosteroid-responsive subretinal inflamma-
tion was linked to the viral vector, with other
transient AEs such as hemorrhage, uveitis, sub-
retinal fluid, corneal abrasion, pain, and suture
granuloma linked to the surgical approach
[113].

Achromatopsia

Achromatopsia is a slowly progressive congeni-
tal retinal disorder that primarily affects cone
photoreceptor function [114]. Patients typically
present in early infancy with photophobia,
nystagmus, and hemeralopia. Of the six known
causative variants, mutations in cyclic nucleo-
tide-gated channel alpha and beta 3 (CNGA3
and CNGB3) genes are responsible for the
majority of achromatopsia cases [115].

The first human trial investigated the safety
of SR delivery of an AAV8 vector for complete
CNGA3-linked achromatopsia over a 12-month
period [116]. In a limited cohort of nine
patients, safety results were favorable, with only
mild ocular and systemic AEs consistent with
expected complications of the SR injection.
Procedure-related ocular AEs that were transient
or responsive to treatment included conjuncti-
val injection and chemosis, foreign body sen-
sation, corneal erosion, and hemorrhage [116].
There were two cases of mild pigmentary
changes that did not resolve. Potential vector-
linked AEs were steroid-responsive hyper-re-
flective spots and iridocyclitis [116].
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LHON

Leber hereditary optic neuropathy (LHON), the
most common inherited mitochondrial disor-
der, causes early-onset severe binocular loss of
central vision [117]. LHON is caused by point
mutations in mitochondrial DNA (mtDNA)
encoding subunits of electron transport chain
complex I, the most common of which is
G11778A in the NADH dehydrogenase subunit
(ND4) gene [118]. An IVT approach is typically
used in LHON gene therapy trials to target the
more accessible layer of affected retinal gan-
glion cells.

Wan and associates conducted a phase I trial
evaluating the safety of IVT-delivered rAAV2
carrying ND4 DNA (rAAV2-ND4) in nine LHON
patients with the G11778A mutation [78]. To
account for the increased immunogenicity in
IVT administration, a 9-week course of corti-
costeroids was used to minimize the inflam-
matory response. Additionally, patients who
had anti-AAV2 neutralizing antibodies at base-
line were excluded from the study. Seven-year
follow-up demonstrated an excellent safety
profile, with no AEs and no significant immune
response [119].

An additional 2-year study in 14 LHON
patients explored the safety of a single, unilat-
eral IVT injection of a self-complementary
AAV2-ND4 vector [AAV2(Y444,500,730F)-
P1ND4v2] [120]. All participants had AAV2-
neutralizing antibodies prior to treatment, but a
steroid regimen was not part of the intervention
protocol. Two patients developed transient
anterior uveitis 2 months following injection,
with serum NAbs increasing in one of these
participants. All other ocular AEs, including
elevated IOP, keratitis, and subconjunctival
hemorrhage, were directly connected to the IVT
injection procedure [120].

GenSight Biologics conducted a 2-year dose-
escalation phase I/II trial of rAAV2/2-ND4 in 13
LHON patients, showing a favorable safety
profile, with the majority of ocular AEs mild in
severity and responsive to appropriate therapy
without sequelae [121]. IVT injection-related
AEs encountered included subconjunctival
hemorrhage, keratitis, and ocular hypertension.
Two patients developed moderate elevation of

IOP, with one of the patients not receiving
prophylactic IOP-lowering medications prior to
injection [121]. AEs believed to be related to
AAV2-ND4 vector included anterior chamber
inflammation, punctate serous detachment,
vitritis, and eye pain. Similar to the study
described by Guy et al., peri-injection
immunosuppression was excluded from the
protocol design [120, 121]. Ocular inflamma-
tion, the most commonly observed AE, was
reported to be non-dose-dependent, with only
one case of serious intensity [122]. While there
was no clear association in this small sample
size between patients with higher baseline NAb
levels and intensity of intraocular inflamma-
tion, the patient with the highest baseline NAb
levels experienced the most severe anterior
inflammation [122]. Before larger studies eluci-
date further risk factors for ocular inflamma-
tion, clinicians should pay greater attention to
patients with higher baseline immune reactivity
against the AAV vector and consider peri-injec-
tion corticosteroids. GenSight Biologics is cur-
rently conducting two phase III trials evaluating
the safety and efficacy of rAAV2/2-ND4 (GS010)
(NCT02652767, NCT02652780). Press releases
from the 96-week follow-ups corroborated early
encouraging safety results describing adverse
events linked mostly to the injection procedure
[123, 124].

XLRS

X-linked retinoschisis (XLRS), caused by muta-
tions in the RS1 gene, is characterized by inner
retinal layer splitting and typically young men
presenting with variable visual disturbances
[125, 126]. RS1 mutations result in a dysfunc-
tional retinoschisin protein destabilizing cell
adhesion among retinal cell layers [127]. As
these patients are prone to developing retinal
detachments and other surgery-related compli-
cations, investigators have chosen to use an IVT
approach instead of the typical SR technique to
target the cells of interest and to avoid potential
detachments. A phase I/IIa study assessed the
safety of RS1 AAV (AAV8-RS1) administered by
intravitreal injection in eight participants over
an 18-month span [128]. Overall, treatment was
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well tolerated, with mild AEs likely linked to the
vector including corticosteroid-responsive
anterior chamber and vitritis. Notably, one
patient underwent vitrectomy for post-inflam-
matory posterior vitreous detachment compli-
cated by a retinal tear and vitreous hemorrhage
[128]. AEs related to the IVT procedure included
iridocyclitis, photopsia, keratic precipitates, and
elevated IOP [128].

CONCLUSIONS

As the era of gene therapy moves forward, there
should be a focus on minimizing adverse events
through continued refinement of delivery
method, ancillary technology, and prophylactic
measures. Complications may be inevitable, but
clinical trial investigators and surgeons should
be aware of the potential serious adverse events,
risk factors, and perioperative strategies for each
individual patient. Ophthalmologists and clin-
ical trial principal investigators should carefully
inform patients of the possibilities of these
complications and assuage any pre-procedural
anxiety.

Based on current results, there are minimal
vector-related side effects, with treatment com-
plications mostly related to the delivery
approach. In this new and ever-evolving field, it
is essential for clinicians to continue sharing
technique modifications to maximize outcomes
and minimize adverse events. Future large-scale
gene therapy trials and data sets will refine these
protocols and establish long-term safety
profiles.
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