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Direct evidence of the molecular basis for biological
silicon transport
Michael J. Knight1, Laura Senior1, Bethany Nancolas1, Sarah Ratcliffe1 & Paul Curnow1,2

Diatoms are an important group of eukaryotic algae with a curious evolutionary innovation:

they sheath themselves in a cell wall made largely of silica. The cellular machinery

responsible for silicification includes a family of membrane permeases that recognize and

actively transport the soluble precursor of biosilica, silicic acid. However, the molecular basis

of silicic acid transport remains obscure. Here, we identify experimentally tractable diatom

silicic acid transporter (SIT) homologues and study their structure and function in vitro,

enabled by the development of a new fluorescence method for studying substrate transport

kinetics. We show that recombinant SITs are Naþ/silicic acid symporters with a 1:1 protein:

substrate stoichiometry and KM for silicic acid of 20 mM. Protein mutagenesis supports the

long-standing hypothesis that four conserved GXQ amino acid motifs are important in SIT

function. This marks a step towards a detailed understanding of silicon transport with

implications for biogeochemistry and bioinspired materials.
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D
iatoms (Bacillariophyceae) are unicellar eukaryotic algae.
They are among the most important and diverse
photosynthetic producers in the biosphere, with over

100,000 species distributed in oceans, lakes, rivers, wetlands and
soils1. Diatoms are estimated to contribute nearly half of the total
ocean primary production and as much as 20% of global
photosynthetic carbon fixation2,3.

One unusual characteristic of diatoms is the presence of a
silicified outer cell wall known as the frustule. This structure is
essential to the survival of many (although not all) of the
common diatoms and is formed from the polycondensation of a
soluble precursor, silicic acid. Frustules are intricate and ornate
hierarchical structures that are synthesized with control over the
silica architecture from the nanoscale to the microscale, and the
gross morphology of the frustule can vary markedly across
different diatom species. Silicification occurs just after vegetative
cell division within a dedicated intracellular compartment known
as the silica deposition vesicle (SDV). This involves a collection
of specialized genes whose expression is regulated either by cell
cycle progression, environmental concentrations of silicic acid,
or both4–7. The prevalent model8,9 is that, within the SDV,
pre-organized biomacromolecules template and regulate the
polymerization of silicic acid to silica10–19. This direct biological
control over silica formation is augmented by cytoskeletal
proteins that determine the shape and size of the SDV within
the cell20.

A critical step in silicification is the concentrative uptake of
silicic acid across the plasmalemma into the cell and, ultimately,
to saturating concentrations within the SDV. This active
transport is apparently mediated by a novel family of integral
membrane proteins that function as silicic acid transporters
(SITs). The SITs are found universally within the diatoms, with
multiple paralogues being common21–24, and are upregulated
during silicification or in response to silicic acid limitation4,5,7,25.
SITs have no significant homology to any other protein sequences
but hydropathy analysis suggests that they are integral membrane
proteins comprising 10 transmembrane a-helices21. The existence
of such transporters was anticipated because diatom cell cultures
exhibit classical saturable transport of silicic acid under
appropriate growth conditions, with KM for silicic acid
consistently within the range 0.8–8mM (ref. 26). Because silicic
acid has a pKa of 9.8, orthosilicic acid (Si(OH)4) is the dominant
species except under very alkaline conditions and so is likely to be
the transported form in most diatoms27. Saturable transport of
silicic acid was reproduced in isolated diatom membrane
vesicles28, microinjected Xenopus laevis oocytes29, and SIT
proteoliposomes30 and was shown to depend upon the
transmembrane electrochemical sodium gradient. Transport is
likely to be electrogenic with 1:1 Naþ /Si(OH)4 stoichiometry28.

In principle, the detailed structure and function of the SITs can
be revealed through in vitro biophysical studies. In practice these
studies have been challenging for several reasons. The first of
these is that silicic acid is a small non-polar molecule that readily
diffuses across biological membranes at high concentrations26.
Being obliged to work at low substrate concentrations means
that substrate gradients are quickly exhausted in reconstituted
transport systems which have inherently poor signal-to-noise.
These conditions are not compatible with the current
discontinuous methods available for quantifying silicic acid
(colorimetric silicomolybdate assay, inductively coupled plasma
mass spectrometry and radiolabelling). Additionally, in
proteoliposome experiments the silicomolybdate method cannot
measure transport rates and suffers interference from
phospholipids, buffer components and unreconstituted protein
and is thus subject to an inherent, and substantial, variability30.
These issues are compounded by difficulties in purifying

recombinant SITs. We previously studied a SIT from
Thalassiosira pseudonana but found this protein to be highly
aggregation prone, leading to substantial batch-to-batch variation
in transport assays30.

These challenges motivated us to perform a systematic screen
for SITs that could better serve as model systems for under-
standing silicic acid transport. Here, we report the successful
results of that screen and the ensuing protein characterization,
including the development of a new fluorescent method for
studying silicic acid transport kinetics.

Results
Expression and purification of SIT homologues. We derived a
set of 11 full-length diatom SIT homologues (see Methods
section). The cDNA for each of these was synthesized
commercially after being codon optimized for recombinant
overexpression in Saccharomyces cerevisiae (Supplementary
Fig. 1). This set encompassed proteins from both pennate
and centric diatoms including the model organisms from each
of these divergent lineages, Phaeodactylum tricornutum and
T. pseudonana, respectively22,23. All of these protein sequences
were between 506 and 599 amino acids in length. We carried out
a multiple sequence alignment of these SITs and Fig. 1a shows a
representative part of this alignment that exemplifies the results.
The full alignment is provided in Supplementary Fig. 2; also see
Supplementary Note 1. As anticipated based on previous
comparative sequence analyses21,31, the alignment revealed
relatively high sequence conservation between transmembrane
regions, with greater diversity in the interhelical loops and at the
N- and C-termini. This included the absolute conservation of
four GXQ motifs that occur in pairs at the cytoplasmic ends of
helices 2 and 3 and the extracellular ends of helices 7 and 8
(Supplementary Fig. 3) and were previously suggested to be
important in silicic acid binding and transport in diatoms and
other silicifiers21,31. In what follows, we describe each of the SITs
using conventional nomenclature with abbreviated species name
and paralogue number; for example, PtSIT1 refers to paralogue 1
from P. tricornutum.

Initial expression trials showed that TpSIT3, CfSIT2,
PtSITs1–3 and NaSIT were expressed in recombinant yeast at
the highest levels (Fig. 1c). CfSIT1, CfSIT3 and ScSIT showed
only moderate expression and TpSIT1 and ToSIT were expressed
at very low levels. Many of the expressed proteins showed gel
shifts during SDS–PAGE (polyacrylamide gel electrophoresis) to
an apparent molecular weight 5–15 kDa lighter than expected
from the amino acid sequence. This phenomenon is common to
integral membrane proteins because of anomalous SDS loading32.
Expressed PtSIT3 was rather heterogeneous with a ladder of
lower molecular-weight bands observed that could arise from
proteolysis. On this basis, and given that we had previously
studied TpSIT3 (ref. 30), we decided to focus on characterizing
CfSIT2, PtSIT1, PtSIT2 and NaSIT.

We next employed a high-throughput sedimentation assay33

to determine the solubility and dispersity (‘stability’) of each of
these four homologues in different detergent micelles. After
treating recombinant membranes with one of 17 detergents, two
consecutive ultracentrifugation runs at progressively faster speeds
were used to pellet either insoluble proteins or large micellar
protein aggregates. In all cases, the fos-choline series of detergents
were the most effective for both solubilizing the SITs and for
preventing non-specific aggregation after solubilization (Supple-
mentary Fig. 4). This agrees with the previous results of a
chromatography-based method that identified fos-choline 12
(FC-12) as being optimal for TpSIT3 (ref. 30). Based on the
results of this screen, we then purified detergent-solubilized
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NaSIT, PtSIT1, PtSIT2 and CfSIT2 using metal affinity
chromatography. Best results were achieved with PtSIT1 and
NaSIT using FC-12 (Fig. 1d and Supplementary Fig. 5; also see
Supplementary Note 2) with typical yields of 0.5 and 0.2 mg
protein per l yeast culture for PtSIT1 and NaSIT, respectively.
Purified proteins were resolved as a single band on a Coomassie-
stained SDS–PAGE gel (Fig. 1e) and their identity was confirmed
by mass spectrometry.

Protein characterization. We were conscious that although
some membrane proteins have been successfully studied in
fos-cholines, these are notorious as strong and indiscriminate
detergents that can efficiently solubilize aggregated or misfolded
proteins34,35. We thus turned to biophysical methods to
characterize the folding and aggregation state of solubilized SITs.

The oligomeric state of each of the purified SITs was
characterized by size-exclusion chromatography (Fig. 2a). For
PtSIT1 in FC-12, the chromatogram was heterogeneous and a
significant fraction of the loaded protein eluted in the void
volume, indicating the presence of protein aggregates above

B600 kDa. However, we could discern a distinct peak eluting at
12.3 ml, corresponding to an apparent molecular weight of
B150 kDa. Column fractions across the entire chromatogram
were collected and visualized on an SDS–PAGE gel. The 11–12 ml
fraction showed a band corresponding to PtSIT1 and another
compact strong band at 30 kDa. Surprisingly, mass spectrometry
revealed this low-molecular weight band to be intact full-length
PtSIT1. We assume this arises from a minor state of PtSIT1 with
unusual SDS binding or conformation. This low-weight band was
missing in the fraction collected between 12 and 13 ml, which
showed only a single major band corresponding to PtSIT1. When
this fraction was reapplied to the same column it eluted as a single
peak at 12.3 ml, showing that this protein population remained
relatively stable in FC-12 without further aggregation. Each of
the other SITs tested by size-exclusion chromatography showed
substantial heterogeneity, peak broadening and aggregation
(Supplementary Fig. 6).

The circular dichroism spectrum of PtSIT1 was characteristic
of an a-helical protein, having strong negative deflections at 222
and 208 nm (Fig. 2b). The magnitude of those deflections was
consistent with B25% of the protein residues being a-helical,
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Figure 1 | Recombinant expression of silicon transporter homologues in S. cerevisiae. (a) Representative part of a multiple sequence alignment of SIT

homologues, exemplifying the results of the alignment and showing conserved transmembrane (TM) regions connected by divergent extramembrane

loops. Symbols denote (*) conserved, (:) strongly similar and (.) weakly similar residues at each position. (b) Phylogenetic tree showing evolutionary

relationships between homologues. (c) Qualitative western blot showing the relative expression levels of recombinant SITs in S. cerevisiae. Each lane

contains 50mg total protein. (d) Qualitative western blot tracking the fate of selected SITs during cell fractionation and affinity purification. The uncropped

blot for PtSIT1 is shown in Supplementary Fig. 5. (e) SDS–PAGE of purified SITs stained with Coomassie Brilliant Blue. Bands corresponding to purified SITs

are marked (*).
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similar to previous results with TpSIT3 (ref. 30) but slightly
lower than anticipated from sequence-based structure predictions
(Supplementary Fig. 3). Thermal melts showed that PtSIT1 was
very stable, with no significant loss of secondary structure up to
95 �C. In contrast, mutants such as the representative Q104A had
identical secondary structure at room temperature but tended
to be destabilized, exhibiting a cooperative loss of secondary
structure with Tm B80 �C.

We next used isothermal titration calorimetry (ITC) to probe
substrate binding at equilibrium (Fig. 2c; Supplementary Fig. 7;
Supplementary Table 1). PtSIT1 was apparently folded in FC-12
and was able to bind silicic acid. Fitting to a single-site binding
equation yielded a Kd of 2.9±2.3 mM (±s.e.m.) and stoichio-
metry of 1.1±0.1. This binding affinity was reduced B10-fold in
the absence of sodium with a poor fit to binding isotherms,
suggesting that sodium binding is a prerequisite for high-affinity
binding to silicic acid. This was supported by titration of sodium
which, although giving lower quality data, did show sodium
binding in the absence of silicic acid with a weaker Kd of
13.8±16.1 mM and stochiometry of 1.4±0.7. Mutations at the
conserved glutamines Q104 and Q324 also reduced Kd by 10-fold
and fourfold, respectively, suggesting a role for these residues
in substrate binding. For wild-type PtSIT1, DG for silicic acid
binding was � 7.4±1.1 kcal mol� 1 and this was reduced by

B1 kcal mol� 1 in the absence of sodium and for the mutants
studied. Entropic changes made the major contribution to DG,
with DH being only � 0.2±0.03 kcal mol� 1. This modest net
enthalpy change probably excludes the formation of new
hydrogen bonds and extensive van der Waals contacts between
the protein and the ligand. Instead, the data suggest that silicic
acid binding is characterized by favourable changes in solvent
entropy arising from the desolvation of the protein or the
substrate or from protein conformational shifts.

Zinc silicate fluorescence. We next sought to develop a novel
fluorescence assay that would enable us to characterize silicic acid
transport. The green fluorescence of zinc silicates under UV light
is well-known, being observed in the natural mineral willemite
and exploited in synthetic zinc phosphors for commercial
lighting, display and analytical applications36. Although strong
fluorescence from zinc silicate requires doping with other metal
ions, we reasoned that even weak fluorescence signals would be
measurable by sensitive solution methods.

Figure 3a shows that the presence of 600mM silicic acid causes
a 20-fold increase in the fluorescence emission of zinc acetate
solutions at 507 nm. No precipitates were observed in these
reactions, nor could any be detected by dynamic light scattering
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(DLS) measurements (Supplementary Fig. 8). We assume that the
observed fluorescence comes from the formation of small
Zn2þ–polysilicate complexes below the limits of detection by
DLS (r0.4 nm).

To further investigate this phenomenon, we examined the
fluorescence of 80mM silicic acid titrated with the salts ZnSO4,
ZnCl2 and Zn acetate (Fig. 3b). In each case, the fluorescence
emission increased predictably until saturating at 5 mM Zn salt,
or B60:1 molar ratio of zinc:silicic acid. The data could be fit to
hyperbolic binding curves as shown, giving dissociation constants
in the range 1–2 mM for each zinc salt. Zn acetate and ZnSO4

gave twice the emission intensity of ZnCl2 and so the latter was
not used further. As expected, no fluorescence was observed in
negative controls with the analogous sodium salts.

In the inverse experiment, Zn acetate and ZnSO4 were held in
excess and titrated with silicic acid (Fig. 3c). In both cases the
change in fluorescence emission was linear, with a gradient of
1.4±0.1 (±s.e.m.) fluorescence units mM� 1 silicic acid. We
found that titrating FeCl3 into Zn acetate/silicic acid mixtures
abolished fluorescence (Fig. 3d), presumably because the non-
fluorescent Fe3þ displaces Zn2þ according to the established
silica-metal reactivity series37. Further experiments showed that
Zn silicate fluorescence was influenced by the buffer components
Tris and KCl and was essentially abolished at low pH that
prevented silicic acid polymerization (Supplementary Fig. 8).

Proteoliposome transport assays. We next used Zn silicate
fluorescence to assay in vitro silicic acid transport by SITs.
TpSIT3, NaSIT and PtSIT1 were reconstituted into proteolipo-
somes preloaded with 6 mM Zn acetate (Supplementary Fig. 9).
An inward-directed electrochemical sodium gradient was
applied to the SIT proteolipsomes and Zn silicate fluorescence
from transported silicic acid was measured continuously in a
stopped-flow instrument.

In the presence of 80 mM external silicic acid we observed an
increase in zinc silicate fluorescence over negative controls

(Fig. 4). PtSIT1 and NaSIT showed similar activity, but TpSIT3
gave a modest signal change that was only just discernible above
background. As expected, the transport assay had a low signal
and fast rate because of the low concentrations of silicic acid that
we use to avoid artifacts from spontaneous diffusion. Control
experiments consistently showed a background signal that we
attribute to a liposome mixing artifact. This background was also
present in an additional negative control using proteoliposomes
reconstituted with an unrelated transporter, the yeast Hþ /Ca2þ

exchanger VCX1 (ref. 38).
Given the lower activity of TpSIT3 we chose to focus on

characterizing the transport kinetics of PtSIT1 and NaSIT. We
determined initial (linear) transport rates at different silicic acid
concentrations and constructed Michaelis–Menten plots for both
homologues (Fig. 5a). Both PtSIT1 and NaSIT showed classical
transport kinetics, with identical Vmax of 0.6±0.1 fluorescence
units s� 1 and KM for silicic acid of 19.1±4.5 mM and
19.6±7.7 mM for PtSIT1 and NaSIT respectively (errors are
±s.e.m from curve fitting). Control experiments showed that
background diffusion of silicic acid was negligible under all
conditions. Since P. tricornutum is a model diatom species with a
sequenced genome that is readily culturable and amenable to cell
biological studies6,23, we decided to concentrate our further
studies on PtSIT1. We determined the sodium dependence of
PtSIT1 and observed a saturable response (Fig. 5b), with KNa

M of
35.5±18.6 mM.

We next made a series of targeted alanine mutations in PtSIT1
to understand the influence of certain highly conserved residues
upon protein structure and function. Our initial targets were the
absolutely conserved charged residues R98 and D166, likely sited
within cytoplasmic loops, and E184 and E275, which are
predicted to be buried within the membrane (Supplementary
Figs 2 and 3). D166 is found within the partly conserved CMLD
motif in loop 4 suggested to be involved in substrate transport39.
We also introduced independent mutations at each of the four
glutamines Q62, Q104, Q278 and Q321 that are found in the
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context of four conserved GXQ motifs. Each of these eight
mutants were expressed, purified, characterized and successfully
reconstituted (Supplementary Figs 9–12). However, mutations
D166A, E184A, E275A and Q278A all significantly disrupted
protein folding and stability; for example, these mutants were
aggregation prone and so could not be resolved on SDS–PAGE
(Fig. 5d, inset). In contrast, mutations R98A, Q62A, Q104A and
Q321A were relatively benign.

All of the mutants showed substantially diminished transport
activity compared with wild-type PtSIT1 (Fig. 5c,d). These data
are difficult to interpret for the disruptive mutants D166A,
E184A, E275A and Q278A since the signal loss may arise from
protein aggregation or misfolding. However, it is tempting to
speculate that the reduced activity of the benign mutations Q62A,
R98A, Q104A and Q321A comes from the influence of these
highly conserved residues in substrate binding or another part of
the transport cycle. This is reinforced by our findings that
substrate binding is impaired by mutations Q104A and Q321A
(Fig. 2c). This would support the hypothesis that the conserved
glutamines play a role in silicic acid binding and transport and
provides the first evidence that other residues, such as R98, may
also be important in SIT function.

Discussion
Biological silicon transport is an enduring enigma. How
do integral membrane proteins in plants40–42, diatoms,
choanoflagellates31 and other silicifiers recognize and transport
silicic acid? Aside from the plant aquaporin-like channels, silicic
acid transport appears to be an active process coupled to the

dissipation of an electrochemical gradient. However, the
molecular basis of the protein–silicon interaction has remained
elusive. This is at least partly because of the paucity of
experimental methods that have been available to study these
proteins. Here, we introduce new approaches that allow us to
bring in vitro techniques to bear upon the SITs. These enable us
to characterize silicic acid binding and transport in isolation from
the (very complex) cell environment and absent the dynamic
regulation that occurs during the cell cycle4,25,43. The new
methods include developing a fluorescent probe for silicic acid
that expands the ‘toolkit’ available for studying silicon transport
in vitro. Using these methods, we can directly compare and
contrast SITs from different diatoms and apply site-directed
mutagenesis to try and identify important residues for substrate
binding and transport. We anticipate that the screens of SIT
expression and detergent compatibility presented here will also
provide a platform for future structural biology studies that
should lead to a more detailed understanding of structure and
function.

We can make some general observations on diatom SITs based
upon our results. The protein:silicic acid stoichiometry is 1:1 with
substrate binding being entropically-driven, and both Kd and KM

are in the low micromolar range. Because we are working at near-
neutral pH throughout, our results support previous reports that
the undissociated orthosilicic acid is the form that interacts with
the transporter27. Sodium is essential for active transport and is
required for high-affinity substrate binding, confirming that SITs
utilize sodium symport and suggesting that sodium binding
precedes silicic acid binding in the transport cycle. Mutating any
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one of four conserved glutamines impairs substrate binding and
transport, supporting the role of these residues in substrate
binding.

In the case of PtSIT1, the 1:1 binding stoichiometry and
hyperbolic transport kinetics observed here suggest that the SITs
follow classical Michaelis–Menten kinetics in vitro. Although SITs
expressed in Xenopus laevis oocytes29 and studied in diatom
membrane vesicles28 also showed Michaelis–Menten kinetics,
there is convincing evidence that in culture at least some diatom
strains show a sigmoidal trend in silicic acid uptake which can be
interpreted as arising from cooperative transport26. We also
found such a sigmoidal trend in our own previous work30

studying TpSIT3 in proteoliposomes. It will thus be important
for further work to clarify whether cooperative or non-
cooperative transport kinetics are intrinsic properties of the
SITs or instead reflect the assay system used.

Our results cannot easily be explained by a current model9,21

which suggests that the SITs contain two functionally equivalent
binding sites at opposing sides of the membrane. Instead, we
propose that our results support an alternative mechanism shown
in Fig. 6 and discussed below. Although our model is consistent
with the experimental data presented here and elsewhere, it is
necessarily speculative and should be viewed as such.

The overarching principle of our model is that SITs operate via
an alternating access mechanism. Some variation upon this
mechanism is universally observed for solute transporters44–46

because it allows the substrate to be moved from one side of the
bilayer to the other without compromising bilayer integrity. In
keeping with other transporters, our model supposes that the SIT
has a substrate binding site at the centre of the membrane; and
that protein conformational changes, driven by the co-ordinated

binding and release of substrates, alternately expose this binding
site to the opposing faces of the bilayer without ever opening a
continuous pore.

Given the 1:1:1 Naþ :Si(OH)4:SIT stoichiometry suggested by
ITC (Fig. 2; Supplementary Fig. 7; Supplementary Table 1) we
suggest that there is a single shared binding site for sodium and
silicic acid at the centre of the membrane. Further, ITC also
shows that silicic acid cannot readily bind in the absence of
sodium, but that sodium can bind in the absence of silicic acid.
Because of this, we suggest that sodium binding to an outward-
facing conformation occurs as a first step in the transport
cycle and predisposes the transporter to bind silicic acid.
Sodium-binding sites from other transporters consist of multiple
interactions between Naþ and polar amino acid side chains, as
well as interactions with main chain carbonyls44,47. We assume
that the sodium-binding site in the SITs will be similar.
Candidates for polar side chains involved in sodium binding
include S20, Q104, N115, H190, Y193, S229 and S372 (numbers
refer to PtSIT1 sequence) based on their absolute conservation in
our multiple sequence alignment (Supplementary Fig. 2).

The binding of sodium then facilitates the binding of silicic
acid. We propose that sodium and silicic acid come in close
proximity within the binding site. Although monomeric silicic
acid does not readily interact with sodium in solution37, we
hypothesize that the close approach of the two cosubstrates
within the microenvironment of the binding site induces the
ionization of silicic acid to Si(OH)3O� and establishes an
electrostatic interaction between Si(OH)3O� and Naþ . This
induced dipole allows the remaining silanols to engage in
hydrogen bonding with amino acid side chains or main chain
carbonyls. It is well-established that silanol groups can hydrogen
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bond with peptides48 and other organic polymers37,49 and silicic
acid probably makes up to four hydrogen bonds with water37.
These protein-silanol bonds displace protein-water hydrogen
bonds and so disrupt the water network within the binding site.
This causes an increase in solvent entropy, consistent with our
results that suggest entropy is the major driving force for silicic
acid binding. Such a mechanism requires that multiple waters are
displaced by a single silicic acid and this is shown in Fig. 6. The
overall binding entropy determined by experiment is the sum of
individual contributions from the protein, the ligand and the
solvent50,51. Resolving the contribution of each of these terms to
the total entropy is difficult, but for the binding of a relatively
simple small molecule like silicic acid changes in ligand and
protein conformational entropy are likely to be negligible. We
thus suggest that solvent entropy from protein and/or ligand
desolvation makes the largest contribution. Our proposed
mechanism may also resolve the quandary of the conserved
glutamines, which are implicated in substrate binding (Figs 2 and
5) but cannot be part of a central binding site since they are
situated at either side of the bilayer close to the headgroup region.
We suggest that although they may not contact the substrate
directly, these glutamines might have an important indirect role
in organizing the water network. We have given them this role
in Fig. 6.

The next step in the transport cycle is a change in protein
conformation that exposes the binding site to the cell interior.
After this conformational change the first half of the cycle is
reversed, so that water enters the binding site and replaces
Si(OH)3O� , which is immediately reprotonated to Si(OH)4.

Sodium then leaves and the empty SIT resets to the outward-
facing conformation.

To our knowledge, the SITs are the only proteins yet known
that can specifically recognize silicic acid with high affinity. There
has been keen interest in studying proteins and peptides that can
interact with inorganic materials and with soluble mineral
precursors52 because understanding the molecular basis of such
interactions allows them to be translated into biomimetic
materials chemistry53,54. A general advantage of biomimetic
chemistry is that it can take place under mild conditions within
the physiological range of pH and temperature. This has
prompted suggestions that bioinspired methods could be an
environmentally friendly alternative to existing manufacturing
processes for silica55. Thus understanding the specific and
unusual protein-silicic acid interface found in the SITs may
provide a fresh impetus to the biomimetic ‘green’ synthesis of
silica materials.

Diatoms play a major role in marine biology and global
biogeochemistry2,3,56–58. Silicic acid, which is present at low
micromolar concentrations in much of the surface ocean, is an
essential and limiting nutrient for the growth of many diatoms
and cellular demand can only be met via concentrative active
transport by the SITs59,60. Understanding silicic acid transport
and utilization thus offers key insights into diatom growth
cycles, community dynamics and competition for resources61,62.
Information on silicic acid transport can also supply the
parameters for computational models of the marine
ecosystem63,64, providing a link between diatom cellular biology
and biogeochemical cycles at the global scale.
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One outstanding question is whether different SITs will have
different transport characteristics. Studies of cell cultures suggest
that the rate and efficiency of silicic acid transport vary between
diatom species and that SITs from marine diatoms may have a
higher affinity for silicic acid than those from freshwater
diatoms60. These variations probably represent differences in
SIT expression levels and regulation, as well as physiological
diversity and environmental pressures, rather than the evolution
of fundamentally different transport mechanisms65. Additionally,
because diatoms often contain multiple SIT paralogues, there may
be lower- and higher-affinity SIT variants within the same cell
that predominate at different stages of silicification24,60. Although
we cannot address these issues definitively, our results suggest
that homologues PtSIT1 and NaSIT from different marine species
are functionally indistinguishable (Fig. 5). In particular, we find
that PtSIT1 has a KM for sodium in the micromolar range. This
seems unnecessarily stringent in P. tricornutum, a coastal marine
diatom that constantly experiences millimolar salt gradients
across the cell membrane. However, relatively high sodium
affinities would allow the SITs to be active as sodium symporters
in freshwater diatoms where salt gradients might be shallower or
more variable; clearly this could be confirmed by studying
SITs from freshwater diatoms. In this context it is also interesting
to consider the functional diversity of silicon transport
proteins from different organisms. The choanoflagellate SITs
are evolutionarily related to the diatom SITs and so are
probably also sodium-driven symporters31. In sponges, there is
circumstantial evidence that a protein belonging to the
Naþ /HCO3

� transporter family may be involved in silicic acid
transport66. In the case of plants, silicon transporters are either
aquaporin-like channels40,67 or appear to be proton-driven
secondary symporters41. Thus cation symport appears to be a
common mechanism among those SITs that function as active
secondary transporters.

We thus take a step towards revealing the detailed mechanism
of silicon transport in the diatom. This will ultimately help to
realize the exploitation of diatoms in biotechnology, provide an
inspiration for new composite materials, and support the pressing
need to understand global biogeochemistry.

Methods
Identification and synthesis of SIT homologues. Interrogating the NCBI protein
database (http://www.ncbi.nlm.nih.gov) with the search term ‘silicon transporter
AND stramenopiles[orgn]’ in November 2013 yielded 28 full-length sequences
for diatom silicon transporters. Of these, one sequence from Thalassiosira
oceanica was unusually large (761 amino acids) and was excluded as being non-
representative. A multiple sequence alignment of the remaining 27 sequences using
Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/)68 revealed that several
of these proteins were found to be either redundant depositions or highly similar,
with sequence identities 490%. In this case, one of these virtually identical
proteins was arbitrarily selected for further study. This ultimately provided a set of
11 full-length SITs. The transmembrane topology of PtSIT1 was predicted by the
online tools TMPred (http://www.ch.embnet.org/software/TMPRED_form.html),
HMMTOP (http://www.enzim.hu/hmmtop/), TMHMM (http://www.cbs.dtu.dk/
services/TMHMM/) and TOPCONS (http://topcons.cbr.su.se). These were in
reasonable agreement except that Helix 8 was only weakly predicted by TMMHMM.
The overall consensus of the topology predictions was used to generate a schematic
topology diagram with TOPO2 (http://www.sacs.ucsf.edu/TOPO2/).

Each of these constructs was made as a synthetic gene by Eurofins Genomics or
DNA 2.0 (Supplementary Fig. 1). The synthetic genes were codon optimized for
expression in S. cerevisiae either using online tools (http://www.jcat.de) or with the
manufacturers proprietary software. Synthetic genes were subcloned into the
expression plasmid pYES2 (Life Technologies) with the stop codon omitted to
allow read-through into a V5 epitope and polyhistidine tag. Plasmids were
transformed into the protease-deficient S. cerevisaie strain FGY217 (MATa,
ura3-52, lys2D201, pep4D)69. Site-directed mutagenesis of these constructs
was via the plasmid amplification method.

Protein expression. Small-scale expression tests were carried out in 10 ml of
auxotrophic yeast media (-Ura). Cultures grown at 30 �C to an OD600 of 0.4 were
induced with 2% (w/v) galactose for 24 h. Cell lysates were boiled at 95 �C for

10 min in sample application buffer and 50 mg of total lysate protein was loaded
onto 12% Tris-Glycine SDS–PAGE gels. SIT expression levels were detected by
western blotting with anti-V5-HRP at 1:10,000 dilution (Life Technologies,
catalogue number R96125).

Sedimentation dispersity assay. Recombinant yeast membranes were treated
with detergent and subject to two consecutive ultracentrifugation runs at 140,000g
and 300,000g to pellet unsolubilized proteins and large protein aggregates,
respectively. The supernatant from each run was collected and the protein
qualitatively assessed by western blotting.

Protein purification and characterization. For purification, primary cultures
were harvested at 3,500g and added to a final OD600 of 0.4 in 1 l secondary cultures
containing 2% galactose and 0.1% glucose. After 24 h at 30 �C, cells were harvested
at 3,500g and resuspended in 100 ml phosphate buffered saline (1�PBS). Cells
were lysed in a continuous flow cell disrupter (Constant Systems Ltd) at 35 KPSI.
After a clearing spin at 10,000g for 10 min, cell membranes were sedimented at
180,000g for 1 h. Membrane were resuspended in 50 mM TrisHCl, pH 7.4, 150 mM
NaCl, 5% Glycerol and homogenized. The total protein was determined by the
detergent-compatible Lowry assay (DC Protein Assay, Bio-Rad Laboratories Inc.)
and the membrane suspension was diluted to 5 mg ml� 1. Detergents were then
added to at least 10� above the critical micelle concentration for solubilization.
After 1 h at room temperature, insoluble material was pelleted at 180,000g for 1 h.
The soluble supernatant was retained and imidazole added to 20 mM before being
applied to a 1 ml ‘HisTrap’ Ni2þ column (GE Healthcare) equilibrated in Column
Buffer (50 mM TrisHCl, pH 7.4, 150 mM NaCl, 5% glycerol, detergent at least 4x
critical micelle concentration) plus 20 mM imidazole. Specifically, FC-12 was used
at 2% for membrane solubilization and 0.1% thereafter. After washing with 40
column volumes of Column Buffer plus 60 mM imidazole, SITs were eluted in the
same buffer with 0.5 M imidazole which was immediately removed by gel filtration.

Size-exclusion chromatography was performed with a prepacked Superdex S200
10/300 GL column (GE Healthcare) at a flow rate of 0.5 ml min� 1. Circular
dichroism spectroscopy was performed on a Jasco J-1500 instrument with a 1 mm
pathlength cell at protein concentrations of 0.2–1 mg ml� 1. Thermal melts were
recorded at 1 �C steps with 10 s equilibration time. Isothermal titration calorimetry
was carried out on a MicroCal iTC-200 at protein concentrations of 30 mM
(2 mg ml� 1), giving c-values B10, and ligand concentration of 400–800 mM.
Injections were 18� 2 ml at 120 s intervals. Data were fit to a single-site binding
equation using the instrument software.

Protein reconstitution. Liposomes were prepared from E. coli polar lipid mix and
egg phosphatidylcholine (Avanti Polar Lipids) dissolved at 3:1 w/w respectively
in 1:1 chloroform:methanol and dried to a lipid film. The mixed lipids were
resuspended at 40 mg ml� 1 in 50 mM Tris, 150 mM KCl, pH 7.4 and sonicated in a
bath-type sonicator for 15 min before being subject to five freeze/thaw cycles using
liquid nitrogen and a waterbath set at 42 �C. Liposomes were formed by extruding
the lipid suspension through a 0.4 mm filter in a bench-top extruder (Avanti Polar
Lipids) according to the manufacturers’ instructions at room temperature. For
reconstitution, 500ml extruded liposomes were incubated with 45 ml of 20% sodium
cholate and 55ml SIT at 360:1 (w/w) lipid:protein ratio. After 30 min at room
temperature cholate was removed by gel filtration with an equilibrated PD
SpinTrap G-25 column using the centrifugation rather than gravity method. The
eluted proteoliposomes were centrifuged at 200,000g for 1 h. For influx assays,
the pellet was resuspended at 40 mg ml� 1 in 50 mM Tris, 150 mM KCl, pH 7.4.
The buffer composition was adjusted as required for control experiments.

For sucrose flotation assays, samples were diluted into 60% sucrose and loaded
onto a discontinuous sucrose gradient comprising 1 volume of sample in 60%
sucrose, 4.5 volumes of 40% sucrose and 1 volume of buffer. Gradients were
centrifuged at 180,000g for 1 h and fractions removed by syringe needle for western
blotting.

Zinc acetate fluorescence assay. Silicic acid was either prepared by incubating
4 ml of 0.2 M sodium silicate with 1.5 g of acidified Dowex 50WX4–50 cation
exchange resin or by dilution of sodium silicate, and silicic acid concentration was
verified by silicomolybdate assays and ICP-MS. For kinetic influx measurements,
proteoliposomes in 50 mM Tris, 150 mM KCl, pH 7.4 were loaded with 6 mM
Zn acetate by two cycles of freeze-thaw and treated with 1mM valinomycin.
A stopped-flow instrument (Applied Photophysics) was configured so that each
reaction comprised one volume proteoliposomes and ten volumes of 50 mM Tris,
150 mM NaCl, pH 7.4 plus silicic acid as required. This instantaneously establishes
an electrochemical sodium gradient (150 mV, negative inside), with the electrical
component generated by the egress of potassium ions through the valinomycin
pore. Fluorescence excitation was at 254 nm with a 360 nm cut-off filter. Initial
rates were determined from the early part of the kinetic trace and fit to the
Michaelis–Menten equation by non-linear curve-fitting in GraphPad Prism.

Data availability. The authors declare that the data supporting the findings of this
study are available from the corresponding author on reasonable request.
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12. Kröger, N., Deutzmann, R. & Sumper, M. Silica precipitating peptides from
diatoms. The chemical structure of silaffin-A from Cylindrotheca fusiformis. J.
Biol. Chem. 276, 26066–26070 (2001).
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