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Empirical networks often exhibit different meso-scale
structures, such as community and core–periphery
structures. Core–periphery structure typically consists
of a well-connected core and a periphery that is
well connected to the core but sparsely connected
internally. Most core–periphery studies focus on
undirected networks. We propose a generalization
of core–periphery structure to directed networks.
Our approach yields a family of core–periphery
block model formulations in which, contrary to
many existing approaches, core and periphery
sets are edge-direction dependent. We focus on
a particular structure consisting of two core
sets and two periphery sets, which we motivate
empirically. We propose two measures to assess
the statistical significance and quality of our novel
structure in empirical data, where one often has no
ground truth. To detect core–periphery structure
in directed networks, we propose three methods
adapted from two approaches in the literature, each
with a different trade-off between computational
complexity and accuracy. We assess the methods on
benchmark networks where our methods match or
outperform standard methods from the literature,
with a likelihood approach achieving the highest
accuracy. Applying our methods to three empirical
networks—faculty hiring, a world trade dataset and
political blogs—illustrates that our proposed structure
provides novel insights in empirical networks.
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1. Introduction
Networks provide useful representations of complex systems across many applications [1], such
as physical, technological, information, biological, financial and social systems. A network in
its simplest form is a graph in which nodes represent entities and edges represent pairwise
interactions between these entities. In this paper, we consider directed unweighted networks.

Given a network representation of a system, it can be useful to investigate the so-called
meso-scale features that lie between the micro-scale (local node properties) and the macro-scale
(global network properties). Typical meso-scale structures are community structure (by far the
most commonly studied), core–periphery structure, role structure and hierarchical structure [1–3];
often, more than one of these is present in a network (see for example [2] or [4]).

Here we focus on core–periphery structure. The concept of core–periphery structure was
first formalized by Borgatti & Everett [5]. Typically, core–periphery structure is a partition
of an undirected network into two sets, a core and a periphery, such that there are dense
connections within the core and sparse connections within the periphery. Furthermore, core
nodes are reasonably well connected to the periphery nodes [5]. Extensions allow for multiple
core–periphery pairs and nested core–periphery structures [2,4,6]. Algorithms for detecting
(different variants) of core–periphery structure include approaches based on the optimization
of a quality function [2,5,7–9], spectral methods [10–12] and notions of core–periphery based
on transport (e.g. core nodes are likely to be on many shortest paths between other nodes
in the network) [12,13]. Core–periphery detection has been applied to various fields such
as economics, sociology, international relations, journal-to-journal networks and networks of
interactions between scientists; see [14] for a survey.

Many methods for detecting core–periphery structure were developed for undirected
networks. Although these can be (and in some cases have been) generalized to directed graphs,
they do not also generalize the definition of a discrete core and periphery to be edge-direction
dependent, but, rather, either disregard the edge direction or consider the edge in each direction
as an independent observation [2,5,15,16], or use a continuous structure [17]. A notable exception
is [18], but with a different notion of core than the one pursued here. The discrete structure
which is most closely related to our notion of directed core–periphery structure is the bow-tie
structure [19,20]. Bow-tie structure consists of a core (defined as the largest strongly connected
component), an in-periphery (all nodes with a directed path to a node in the core), an out-
periphery (all nodes with a directed path from a node in the core) and other sets containing any
remaining nodes [20–22].

In this paper, we propose a generalization of the block model introduced in [5] to directed
networks, in which the definition of both core and periphery are edge-direction dependent.
Moreover, we suggest a framework for defining cores and peripheries in a way that accounts
for edge direction, which yields as special cases a bow-tie-like structure and the structure we
focus on in the present paper. Our accompanying technical report explores a small number of
additional methods [23]. Extensions to continuous formulations (e.g. as in [24]) or multiple types
of meso-scale structure are left to future work.

We suggest three methods to detect the proposed directed core–periphery structure, which
each have a different trade-off between accuracy and computational complexity. The first two
methods are based on the Hyperlink-Induced Topic Search (HITS) algorithm [25] and the third
on likelihood maximization. We illustrate the performance of methods on synthetic and empirical
networks. Our comparisons with bow-tie structure illustrate that the structure we propose yields
additional insights about empirical networks. Our main contributions are (i) a novel framework
for defining cores and peripheries in directed networks; (ii) scalable methods for detecting these
structures; (iii) a comparison of said methods; and (iv) a systematic approach to method selection
for empirical data.

This paper is organized as follows. In §2, we consider directed extensions to the classic core–
periphery structure. We introduce a novel block model for directed core–periphery structure
that consists of four sets (two periphery sets and two core sets) and a two-parameter synthetic
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model that can generate the proposed structure. In electronic supplementary material, A, we
consider alternative formulations. We further introduce a pair of measures to assess the quality of
a detected structure; the first one is a test of statistical significance, and the second one is a quality
function that enables comparison between different (statistically significant) partitions. In §3, we
introduce three methods for detecting the proposed directed core–periphery structure. Section 4
illustrates the performance of our methods on synthetic benchmark networks, and validates the
use of our proposed partition quality measures. In §5, we apply the methods to two real-world
datasets (a third dataset is shown in electronic supplementary material, E). Section 6 summarizes
our main results and offers directions for future work.

The code for our proposed methods and the implementation for bow-tie structure
(provided by the authors of [26]) are available at https://github.com/alan-turing-institute/
directedCorePeripheryPaper.

2. Core–periphery structure
We encode the edges of an n-node network in an adjacency matrix A = (Au,v)u,v=1,...,n, with entry
Au,v = 1 when there is an edge from node u to node v, and Au,v = 0 otherwise. We partition the
set of nodes into core and periphery sets, resulting in a block partition of the adjacency matrix
and a corresponding block probability matrix. In the remainder of the paper, we use the term
‘set’ for members of a node partition and ‘block’ for the partition of a matrix. We shall define a
random network model on n nodes partitioned into k blocks via a k × k probability matrix M,
whose entries Mij give the probability of an edge from a node in block i to a node in block j,
independently of all other edges.

(a) Core–periphery in undirected networks
The most well-known quantitative formulation of core–periphery structure in undirected
networks was introduced by Borgatti & Everett [5]; they propose both a discrete and a continuous
model for core–periphery structure. In the discrete notion of core–periphery structure, Borgatti &
Everett [5] suggest that an ideal core–periphery structure should consist of a partition of the node
set into two non-overlapping sets: a densely connected core and a loosely connected periphery,
with dense connections between the core and the periphery. The probability matrix of a network
with the idealized core–periphery structure in [5] and the corresponding network-partition
representation are given in (2.1),

(2.1)

where the network-partition representation on the right-hand side shows edges within and
between core and periphery sets. In adjacency matrices of real-world datasets, any structure of
the form equation (2.1), if present, is likely to be observed with random noise perturbations.

(b) Core–periphery structure in directed networks
We now introduce a block model for directed core–periphery structure where the definitions of
the core and periphery sets are edge-direction dependent. Starting from equation (2.1), a natural
extension to the directed case is to split each of the sets into one that only has incoming edges
and another that only has outgoing edges. This yields four sets, which we denote Cin (core-in),
Cout (core-out), Pin (periphery-in) and Pout (periphery-out), with respective sizes nPout , nCin , nPin and
nCout . We assume that edges do not exist between the periphery sets, and thus that every edge is
incident to at least one node in a core set. Respecting edge direction, we place edges between core-
out and all ‘in’ sets, and between each ‘out’ set and core-in. As in equation (2.1), the two core sets
are fully internally connected, and the two periphery sets have no internal edges. There are no

https://github.com/alan-turing-institute/directedCorePeripheryPaper
https://github.com/alan-turing-institute/directedCorePeripheryPaper
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multiple edges, but self-loops are permitted. The probability matrix and corresponding network
partition are given in (2.2),

(2.2)

We refer to the structure in M as an ‘L’-shaped structure. There are other directed core–periphery
structures that one can pursue. In electronic supplementary material, A, we provide a framework
of which equation (2.2) is one example, and a block model formulation of bow-tie structure is
another example. The particular formulation of the well-known bow-tie structure that falls within
our framework is the directed core–periphery structure equation (2.3), where only periphery
sets have a definition that is edge-direction dependent, and where we assume that the core and
peripheries form a hard partition [22],

. (2.3)

In general, bow-tie can allocate nodes to several sets: there is a core set, an incoming periphery set,
an outgoing periphery set and four additional sets corresponding to other connection patterns.
There are several known real-world applications of bow-tie structure, such as the Internet [20]
and biological networks [27]. We note that the structure in equation (2.2) is not a mere extension
of the bow-tie structure as, in contrast to bow-tie, the flow is not uni-directional.

We motivate the structure in equation (2.2) with a few examples. Consider networks that
represent a type of information flow, with two sets that receive information (Cin and Pin) and
two sets that send information (Cout and Pout). Furthermore, within each of these categories,
there is one set with core-like properties and another set with periphery-like properties. Inspired
by Beguerisse-Díaz et al. [3], in a Twitter network for example, Cin and Pin could correspond to
consumers of information, with Cin having the added property of being a close-knit community
that has internal discussions (e.g. interest groups) rather than individuals collecting information
independently (e.g. an average user). The sets Cout and Pout could correspond to transmitters of
information, with Cout having the added property of being a well-known close-knit community
(e.g. broadcasters) rather than individuals spreading information independently (e.g. celebrities).
Another class of examples is networks that represent a type of social flux, when there are two
sets that entities move out of and two sets that entities move towards. Furthermore, within
each of these categories, there is one with core-like properties and one with periphery-like
properties. For example, in a faculty hiring network of institutions, Cout may correspond to highly
ranked institutions with sought-after alumni, while Cin may correspond to highly sought-after
institutions which take in more faculty than they award PhD degrees. For the periphery sets, Pout

may correspond to lower-ranked institutions that have placed some faculty in the core but do not
attract faculty from higher-ranked institutions, and Pin may correspond to a set of institutions
that attract many alumni from highly ranked ones. These ideas will be showcased on real-world
data in §5, where we also illustrate that the structure in equation (2.2) yields insights that are not
captured by the bow-tie structure.

(c) Synthetic model for directed core–periphery structure
We now describe a stochastic block model that will be used as a synthetic graph model to
benchmark our methods. For any two nodes u, v, let X(u, v) denote the random variable which
equals 1 if there is an edge from u to v, and 0 otherwise. We refer to X(u, v) as an edge indicator.
For an edge indicator which should equal 1 according to the idealized structure (equation (2.2)),
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Figure 1. Heatmaps illustrating our model. We present heatmaps of the original adjacency matrix, with n= 400 nodes. We
generate thefirst three adjacencymatriceswithDCP(p1, p2) and thenext three adjacencymatriceswithDCP(1/2+ p, 1/2− p).
Blocks are equally sized in both cases. (Online version in colour.)

let p1 be the probability that an edge is observed. Similarly for an edge indicator which should
be 0 according to the perfect structure (equation (2.2)), let p2 be the probability that an edge is
observed. Interpreting p1 as signal and p2 as noise, we assume that p1 > p2 so that the noise does
not overwhelm the true structure in equation (2.2). We represent this model as a stochastic block
model, denoted by DCP(p1, p2), which has independent edges with block probability matrix

p1M + p2(1 − M) =

∣∣∣∣∣∣∣∣∣

p2 p1 p2 p2
p2 p1 p2 p2
p2 p1 p1 p1
p2 p2 p2 p2

∣∣∣∣∣∣∣∣∣
. (2.4)

Setting p1 = 1 and p2 = 0 recovers the idealized block structure in equation (2.2). The ‘L’-shaped
structure in equation (2.4) defines a partition of a network into two cores and two peripheries
(see equation (2.2) for the idealized case DCP(1, 0)). We refer to this partition as a ‘planted
partition’ throughout the paper. The DCP(p1, p2) model allows one to increase the difficulty of
the detection by reducing the difference between p1 and p2, and to independently modify the
expected density of edges matching (respectively, not matching) the planted partition by varying
p1 (respectively, p2). A case of particular interest is when only the difference between p1 and p2 is
varied; this is the DCP(1/2 + p, 1/2 − p) model, where p ∈ [0, 0.5]. This model yields the idealized
block structure in equation (2.2) when p = 0.5, and an Erdős–Rényi (ER) random graph when
p = 0.

Figure 1 displays example adjacency matrices obtained from equation (2.4), with n = 400 and
equally sized sets nPout = nCin = nCout = nPin = 100. In the first three panels, p2 = 0.1 and p1 varies.
As p1 decreases with fixed p2, the ‘L’-shaped structure starts to fade away and the network
becomes sparser. The last three panels show realizations of DCP(1/2 + p, 1/2 − p) adjacency
matrices for p ∈ {0.4, 0.2, 0.05}, n = 400 and four equally sized sets. The ‘L’-shaped structure is less
clear for smaller values of p.

(d) Measures of statistical significance and partition quality
In empirical networks, there is often no access to ground truth. It is thus crucial to determine
whether a detected partition is simply the result of random chance and does not constitute a
meaningful division of a network. Furthermore, different detection methods can produce very
different partitions (e.g. by making an implicit trade-off between block size and edge density), and
it can be very helpful in practice to have a systematic approach for choosing between methods
according to specific criteria of ‘partition quality’. As criteria of partition quality, we employ a
p-value arising from a Monte Carlo test and an adaptation of the modularity quality function of a
partition (see for example eqn (7.58) in [1]).

The p-value is given by a Monte Carlo test to assess whether the detected structure could
plausibly be explained as arising from random chance, modelled either by a directed ER model
without self-loops or by a directed configuration model as in [28]. The test statistic is the difference
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between the probability of connection within the ‘L’-structure and that outside the ‘L’-structure,
i.e. ∑n

u,v=1 Mgu,gv
Auv∑n

u,v=1 Mgu,gv

−
∑n

u,v=1(1 − Mgu,gv
)Auv∑n

u,v=1(1 − Mgu,gv
)

,

where M is as in equation (2.2) and gu is the set assigned to node u. To directly measure partition
quality, we extend the core–periphery modularity measure from [4,29] by replacing the block and
community indicators with indicators that match the ‘L’-structure, i.e.

DCPM(g) = 1
m

n∑
u=1

n∑
v=1

(Auv − 〈A〉) Mgugv
, (2.5)

where m is the number of edges (with bi-directional edges counted twice) and 〈A〉 = m/n2.
We call this measure directed core–periphery modularity (DCPM). DCPM lies in the range of
(−1, 1). If there is only one block, then DCPM = 0. If the ‘L’-structure is achieved perfectly,
then the number of edges is m = nPout nCin + (nCin )2 + nCout nCin + (nCout )

2 + nCout nPin and DCPM =
1 − (1/n2)(nPout nCin + n2

Cout
+ nCout nCin + n2

Cin
+ nPout nCin ) = 1 − (m/n2). If, instead, all edges not on

the ‘L’ are present, then DCPM = −(nPout nCin + n2
Cout

+ nCout nCin + n2
Cin

+ nPout nCin )/n2. DCPM is
related to the general form core–periphery quality function introduced in [10].

We note that, in equation (2.5), the null model we compare the observed network against is
the expected adjacency matrix under an ER null model, where each edge is generated with the
same probability m/n2, independently of all other potential edges, and the expected number of
edges is equal to m, the observed number of edges. Such a null model was used in [4] to derive
a quality function for detecting multiple core–periphery pairs in undirected networks. As high-
degree nodes tend to end up in core sets, and low-degree nodes in periphery sets (see for example
figure 4 in this paper), using a null model that controls for node degree directly in the quality
function can mask a lot of the underlying core–periphery structure [4,18,29]. To circumvent this
issue, the authors in [29] modify the core–periphery block structure definition by incorporating
an additional block that is different from the core block and its corresponding periphery block.
For the purpose of this paper, we use an ER null model and leave the exploration of further null
models to future work.

For networks with ground truth (e.g. synthetic networks with planted structure), the accuracy
of a partition is measured by the adjusted Rand index (ARI) [30] between the output partition
of a method and the ground truth, using the implementation from [31]. The ARI takes values in
[−1, 1], with 1 indicating a perfect match, and an expected score of approximately 0 under a given
model of randomness. A negative value indicates that the agreement between two partitions is
less than what is expected from a random labelling. In electronic supplementary material, D(a),
we give a detailed description of the ARI, and also consider the alternative similarity measures
VOI (variation of information [32]) and NMI (normalized mutual information [33]).

3. Core–periphery detection in directed networks
Several challenges arise when considering directed graphs, which makes the immediate extension
of existing algorithms from the undirected case difficult. As the adjacency matrix of a directed
graph is no longer symmetric, the spectrum becomes complex-valued. Graph clustering methods
which have been proposed to handle directed graphs often consider a symmetrized version of
the adjacency matrix, such as SAPA [34]. However, certain structural properties of the network
may be lost during the symmetrization process, which provides motivation for the development
of new methods. In this section, we describe three methods for detecting this novel structure. We
pay particular attention to scalability, a crucial consideration in empirical networks, and order the
methods by run time, from fast to slow. The first two methods are based on an adaptation of the
popular HITS algorithm [25], and the third method is based on likelihood maximization.
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(a) The Hyperlink-Induced Topic Search algorithm
Our first method builds on a well-known algorithm in link analysis known as Hyperlink-Induced
Topic Search (HITS) [25]. The HITS algorithm was originally designed to measure the importance
of webpages using the structure of directed links between the webpages [35]; authoritative
webpages on a topic should not only have large in-degrees (i.e. they constitute hyperlinks on
many webpages) but also considerably overlap in the sets of pages that point to them. Referring
to authoritative webpages for a topic as ‘authorities’ and to pages that link to many related
authorities as ‘hubs’, it follows that a good hub points to many good authorities, and that a good
authority is pointed to by many good hubs. The HITS algorithm assigns two scores to each of the
n nodes, yielding an n-dimensional vector a of ‘authority scores’ and an n-dimensional vector h
of ‘hub scores’, with a = ATh and h = Aa.

To each node, we assign core and periphery scores based on the HITS algorithm, which we
then cluster to obtain a hard partition; we call this the HITS method. Appealing features of the
HITS algorithm include (i) it is highly scalable; (ii) it can be adapted to weighted networks; and
(iii) it offers some theoretical guarantees on the convergence of the iterative algorithm [25].

Algorithm for HITS

(i) Initialization: a = h = 1n. Alternate between the following two steps: (a) update a =
ATh; (b) update h = Aa . Stop when the change in updates is lower than a pre-defined
threshold.

(ii) Normalize a and h to become unit vectors in some norm [35].
(iii) Compute the n × 4 score matrix SHITS = [PHITS

out , CHITS
in , CHITS

out , PHITS
in ] using the node

scores

CHITS
in (u) = h(u), PHITS

in (u) = maxv(CHITS
out (v)) − CHITS

out (u) , (3.1)

CHITS
out (u) = a(u), PHITS

out (u) = maxv(CHITS
in (v)) − CHITS

in (u). (3.2)

(iv) Normalize SHITS so that each row has an L2-norm of 1 and apply k-means++ to partition
the node set into four clusters.

(v) Assign each of the clusters to a set based on the likelihood of each assignment under our
stochastic block model formulation (see §2).

Remark 3.1.

(i) To motivate the scores equations (3.1) and (3.2), a node should have a high authority score
if it has many incoming edges, whereas it would have a high hub score if it has many
outgoing edges. Based on the idealized block structure in equation (2.2), nodes with the
highest authority scores should also have a high CHITS

in score, and nodes with the highest
hub scores should also have a high CHITS

out score.
(ii) For step (i) of the algorithm, we use the implementation from NetworkX [36], which

computes the hub and authority scores using the leading eigenvector of ATA. As [25]
proved that the scores converge to the principal left and right singular vectors of A,
provided that the initial vectors are not orthogonal to the principal eigenvectors of ATA
and AAT, this is a valid approach.

(iii) Using the same connection between the HITS algorithm and singular value
decomposition (SVD) from Kleinberg [37], our scores based on the HITS algorithm can be
construed as a variant of the low-rank method in [12], in which we only consider a rank-1
approximation and use the SVD components directly.

(iv) A scoring variant is explored in electronic supplementary material, B, with equations (3.2)
and (3.1) performing best on our benchmarks.

(v) Intuitively, the row normalization of SHITS from step (iv) allows the rows of SHITS (vectors
in four-dimensional space) not only to concentrate in four different directions but also to
concentrate in a spatial sense and have a small within-set Euclidean distance [38,39].
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(vi) Using k-means++ [40] alleviates the issues of unstable clusterings retrieved by
k-means [41].

(b) The Advanced Hits method
We now modify the HITS algorithm such that it considers four distinct scores (rather than two
core scores, from which we then compute the periphery scores); we call the resulting method
the Advanced Hits method, and abbreviate the corresponding algorithm as ADVHITS. We do this
by incorporating information about the idealized block structure into the algorithm (which, as
we show in §4, yields better results on synthetic networks). Namely, instead of using hub and
authority scores, in each set, we reward a node for having edge indicators that match the structure
in equation (2.2) and penalize otherwise, through the reward–penalty matrix associated with M,
given by

D = 2M − 1 =
−1 1 −1 −1
−1 1 −1 −1
−1 1 1 1
−1 −1 −1 −1

= d1 d2 d3 d4 =
e1
e2
e3
e4

,

where di is the ith column vector of D and ej is the jth row vector of D. The first column/row
corresponds to Pout, the second column/row to Cin, and so on. We use the matrix D to define the
ADVHITS algorithm, with steps detailed below.

Algorithm for ADVHITS

(i) Initialization:

SRaw = [SRaw
1 , SRaw

2 , SRaw
3 , SRaw

4 ] = [PRaw
out , CRaw

in , CRaw
out , PRaw

in ] = Un,

where Un is an n × 4 matrix of independently drawn uniform (0, 1) random variables.
(ii) For nodes u ∈ {1, . . . , n} let B(u) = min{PRaw

out (u), CRaw
in (u), CRaw

out (u), PRaw
in (u)}, and calculate,

for sets i ∈ {1, 2, 3, 4},
SNrm

i (u) = SRaw
i (u) − B(u)∑4

k=1
(
SRaw

k (u) − B(u)
) . (3.3)

If for a node u, the raw scores for each set are equal, up to floating point error (defined as
the denominator of equation (3.3) being less than 10−10), this implies an equal affinity to
each set and thus we set SNrm

i (j) = 0.25.
(iii) For i ∈ {1, . . . , 4}:

(a) Update SRaw
i :

SRaw
i =

(
1 − m

n2

)
ASNrmeT

i + m
n2 (1 − A)SNrm(−eT

i )

+
(

1 − m
n2

)
ATSNrmdi + m

n2 (1 − AT)SNrm(−di). (3.4)

(b) Recompute SNrm using the procedure in step (ii).
(c) Measure and record the change in SNrm

i .

(iv) If the largest change observed in SNrm
i is greater than 10−8, return to step (iii).

(v) Apply k-means++ to SNrm to partition the node set into four clusters.
(vi) Assign each of the clusters to a set based on the likelihood of each assignment under our

stochastic block model formulation (see §2).

Remark 3.2.

(i) The first term in equation (3.4) rewards/penalizes the outgoing edges, the second the
missing outgoing edges, the third the incoming edges, and the fourth the missing
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incoming edges. The multiplicative constants are chosen to weigh edges in each direction
evenly, and to fix the contribution of non-edges to be equal to that of edges.

(ii) We envision the score to represent the affinity of a given node to each set. Thus, the
normalization step is included so that the scores of an individual node sum to 1. We
include B(u) as the scores in equation (3.4) can be negative and thus we shift the values
to be all positive (and rescale).

(iii) The general iteration can fail to converge within 1000 iterations. If the scheme has not
converged after 1000 steps, we fall back to a scheme which updates the scores on each
node in turn, which often empirically removes the convergence issue with the cost of
additional computational complexity.

(c) Likelihood maximization
Our third proposed method, MAXLIKE, maximizes the likelihood of the directed core–periphery
model equation (2.4), which is a stochastic block model with four blocks and our particular
connection structure. To maximize the likelihood numerically, we use a procedure from [42],
which we call MAXLIKE; this procedure updates the set assignment of the node that maximally
increases/minimally decreases the likelihood at each step, and then repeats the procedure with
the remaining non-updated nodes. The complete algorithm is given in electronic supplementary
material, C. For multimodal or shallow likelihood surfaces, the maximum-likelihood algorithms
may fail to detect the maximum, and instead find a local optimum. To alleviate this concern, we
use a range of initial values for the algorithms.

In our preliminary analysis, we also employed a related faster, greedy likelihood maximization
algorithm. We found that MAXLIKE slightly outperformed the faster approach on accuracy, and
hence do not present the fast greedy method here.

4. Numerical experiments on synthetic data
In order to compare the performance of the methods from §3, we create three benchmarks using
the synthetic model DCP(p1, p2) from §2. Leveraging the fact that we have access to a ground
truth partition (here, a planted partition), the purpose of these benchmarks is (i) to compare
our approaches with other methods from the literature and (ii) to assess the effectiveness of the
p-value and the DCPM as indicators of core–periphery structure. We also use the benchmark to
assess the run time of the algorithms. For the methods comparison, we compare HITS, ADVHITS

and MAXLIKE with a naive classifier (DEG.), which performs k-means++ [40], clustering solely
on the in- and out-degree of each node. We also compare them against two well-known fast
approaches for directed networks, namely SAPA from [34] and DISUM from [43]; implementation
details and variants can be found in electronic supplementary material, D. For brevity, we
only include the best-performing SAPA and DISUM variant, namely SAPA2, using degree-
discounted symmetrization, and DISUM3, a combined row and column clustering into four sets,
using the concatenation of the left and right singular vectors. Both SAPA and DISUM perform
degree normalization, which may limit their performance. Moreover, our methods are compared
against the stochastic block modelling fitting approach GRAPHTOOL [44], based on [2,45], which
minimizes the minimum description length of the observed data. To make this a fair comparison,
we do not use a degree-corrected block model but instead a standard stochastic block model, and
we fix the number of sets at four.

The second goal is to assess on synthetic networks whether our ranking of method
performance based on p-value and DCPM is qualitatively robust across measures that do not
require knowledge of a ground truth partition. To this end, we compare these rankings with those
obtained with measures that do leverage ground truth, namely the ARI.
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Table 1. Average ARI of themethods under comparison on benchmark 1 (DCP(1/2 + p, 1/2 − p)) for different values of p, and
with network size n= 400. The largest values for each column are given in italics.

p 0.4 0.1 0.09 0.08 0.07

DEG 1.0 0.878 0.819 0.753 0.663
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DISUM 0.995 0.383 0.277 0.193 0.117
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SAPA 1.0 0.405 0.276 0.202 0.144
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GRAPHTOOL 1.0 0.996 0.985 0.968 0.921
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

HITS 1.0 0.909 0.852 0.78 0.692
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ADVHITS 1.0 0.972 0.946 0.901 0.814
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MAXLIKE 1.0 0.997 0.986 0.971 0.931

p 0.06 0.05 0.04 0.03 0.02
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DEG 0.536 0.408 0.281 0.163 0.0767
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DISUM 0.0506 0.0171 0.00651 0.0021 0.000614
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SAPA 0.0811 0.0306 0.00809 0.00274 0.00085
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GRAPHTOOL 0.655 0.0104 0.000119 2.08 × 10−05 2.73 × 10−05
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

HITS 0.562 0.423 0.275 0.152 0.071
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ADVHITS 0.693 0.525 0.333 0.168 0.0777
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MAXLIKE 0.831 0.675 0.42 0.195 0.0577
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a) Results for the benchmark networks
(i) Benchmark 1

We test our approaches using our 1-parameter SBM DCP(1/2 + p, 1/2 − p), with equally sized sets,
and varying p ∈ {0.5, 0.49, 0.48, . . . , 0.21} ∪ {0.195, 0.19, 0.185, . . . , 0.005}, the finer discretization
step zooming in on the parameter regime which corresponds to the planted partition being weak.
We average over 50 network samples for each value of p. Recall that for p = 0.5 the planted
partition corresponds to the idealized block structure in equation (2.2) and for p = 0 the planted
partition corresponds to an ER random graph with edge probability 0.5.

The performance results for sets of size 100 (n = 400) are shown in table 1, giving the ARI
for p = 0.4 and for values of p between 0.1 and 0.02 with step size 0.01, in decreasing order
(with results for the full parameter sweep in electronic supplementary material, D). With regards
to ARI, MAXLIKE performs best for p in the range of 0.1–0.03, with performance deteriorating
when the noise approaches the signal. Above a certain threshold of p (roughly around p = 0.25,
results shown in electronic supplementary material, D, figure SI 1I), many approaches, including
the degree-based one DEG., achieve optimal performance, indicating that, in this region of the
networks obtained with benchmark 1, the degrees alone are sufficient to uncover the structure. For
NMI and VOI, we observe similar qualitative results; see electronic supplementary material, D.

The performance of GRAPHTOOL collapses as p gets close to 0 (similar behaviour is observed
for n = 1000; see electronic supplementary material, D). Further investigation indicated that, for
low values of p, GRAPHTOOL often places most nodes in a single set (see electronic supplementary
material, D for further details).

Benchmark 1 is also used to assess the run time of the algorithms. The slowest of our methods
across all values of p is MAXLIKE. For small p, HITS is the fastest of our methods, whereas for
larger p it can be overtaken by ADVHITS; both are faster than GRAPHTOOL. Within methods, the
performance is relatively constant for HITS, while it speeds up for decreasing p in ADVHITS and
MAXLIKE. The detailed results can be found in electronic supplementary material, D.
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Figure 2. Scatter plots for p-value, DCPM and ARI, using the partitions given by each of our methods on networks taken from
DCP(1/2 + p, 1/2 − p) with p ∈ [0.015, 0.04, 0.1], with 20 networks for each p. (a) ER model p-value against ARI. (b) DCPM
against ARI. (c) ERmodel p-value against DCPM. (d) ARI against DCPMusing only networks that are significant (p-value< 0.05)
in both the ER model and the configuration model test. The colour of each of the points represents the method used. (Online
version in colour.)

(ii) Benchmark 2

We use the model DCP(p1, p2), again with all four sets of the same size n/4. In this model,
the edge probabilities (p1, p2) vary the density and the strength of the core–periphery structure
independently. To this end, we vary p1 and the ratio 0 ≤ p2/p1 < 1. For a given p1, p2/p1 = 0
corresponds to the strongest structure and p2/p1 = 1 to the weakest structure. We generate
50 networks each with p1 ∈ {0.025, 0.05, . . . , 1.0} and p2/p1 ∈ {0, 0.05, . . . , 0.95}, resulting in 820
parameter instances of (p1, p2/p1). The contours corresponding to an average ARI of 0.75 and an
average ARI of 0.9 for n = 400 and n = 1000 are shown in electronic supplementary material, D.

Similar to the situation in benchmark 1, the full-likelihood approach MAXLIKE outperforms all
other methods, with GRAPHTOOL also performing well and the performance of ADVHITS coming
close and outperforming GRAPHTOOL in certain regions.

(iii) Benchmark 3

Benchmark 3 assesses the sensitivity of our methods to different set sizes. We use the model
DCP(1/2 + p, 1/2 − p). We fix p = 0.1, as we observed in table 1 that this value is sufficiently
small to highlight variation in performance between our approaches but sufficiently large that
most of the methods can detect the underlying structure. We then consider the effect of size
variation for each set in turn, by fixing the size of the remaining three sets. For example, to
vary the size of Pout, we fix nCin = nCout = nPin = n1 and test performance when we let nPout =
n2 ∈ {2−3n1, 2−2n1, . . . , 23n1}, with equivalent formulations for the other sets. Thus for n2/n1 = 1
we have equal-sized sets, which is equivalent to the model in benchmark 1; for n2/n1 > 1 one set
is larger than the remaining sets; and for n2/n1 < 1 one set is smaller than the others.

Results are shown in electronic supplementary material, D for n1 = 100 (n2/n1 = 1 implies
a 400-node network). MAXLIKE slightly outperforms GRAPHTOOL, and is the overall best
performer, appearing to be robust to set size changes. ADVHITS usually outperforms the other
approaches; however, for larger sets, the ADVHITS is in some cases even outperformed by DEG.
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(b) Performance of the p-value and DCPM to capture ground truth
To investigate whether the p-values and DCPM introduced in §2 are appropriate to assess
partition quality, we test the relationship between our proposed quality measures and ARI on a set
of benchmark networks. We create these networks using the synthetic model for benchmark 1, i.e.
DCP(1/2 + p, 1/2 − p), with three values of p focusing on the region where the planted partition
is detectable (p = 0.1); marginally detectable (p = 0.04); and (mostly) undetectable (p = 0.02). We
note that, for large p, all of the methods will be able to uncover the exact partition and thus each
partition would have an ARI of 1 (table 1), with differences in DCPM driven by the strength of
the embedded structure. For computational reasons, we restrict the experiment to 20 networks for
each p, and use 250 null replicates for each Monte Carlo test. Each of our three methods is applied
to each network, and thus each network gives rise to three p-values and DCPM values.

For good partitions, the ARI should be high, the p-value should be low and the DCPM value
should be high. Hence ARI and the p-value should be negatively correlated, the p-value and
DCPM should be negatively correlated, and ARI and DCPM should be positively correlated.
For robustness, we assess correlation by Kendall’s τ rank correlation coefficient. For both the
ER and configuration mode p-values, we observe a moderate negative correlation with ARI
(ER: −0.599, configuration: −0.506; data for the configuration model not shown). The correlation
between DCPM and ER p-value is −0.655, and the correlation between DCPM and ARI is 0.774.
Figure 2a illustrates that selecting partitions with an ER p-value less than 0.05 is successful at
filtering out partitions with a low ARI, but struggles to separate partitions with mid-range ARI
from networks with high ARI. Focusing only on network partitions with a p-value of less than
0.05 in both the ER and the configuration model test, as shown in figure 2d, we note that DCPM
further differentiates the partitions with low p-value and gives a correlation of 0.774 with ARI. The
directions of all of these correlations are as expected. If the observations were independent, then
these correlations would be highly statistically significant. Thus, while not conclusive evidence,
the level of correlation supports the use of our p-value test and DCPM to identify partitions.

As further support for this claim, table 2 presents the average ER and configuration p-value,
average DCPM values and average ARI, broken down by method and model parameter. As
expected for good partitions, we observe low p-values for strong structures (p = 0.1, ARI> 0.9),
higher p-values for weaker structures (p = 0.04, 0.25 < ARI < 0.45) and non-significant p-values
for very weak or non-existent structures (p = 0.02, ARI < 0.1).1 In particular, whenever average
ARI ≥ 0.4 in table 2, all p-values are significant. Thus, we find that both the p-value and the
DCPM can be used as a proxy for the ARI, displaying a moderate correlation. The DCPM is
particularly useful to extract more detailed information for partitions which exhibit low p-values.
In particular, table 2 and electronic supplementary material, D indicate that using average DCPM
as an approach to rank methods overall yields qualitatively similar results to ARI.

In table 2, MAXLIKE and ADVHITS tend to have the highest average DCPM and ARI. In
electronic supplementary material, D, we show that this observation is robust across further
values of p. Overall, our ranking of method performance based on average partition quality values
is thus robust across DCPM and ARI, for different values of p in DCP(1/2 + p, 1/2 − p).

To illuminate the relationship between DCPM and ARI further, for p = 0.1 we observe a
Kendall correlation of 0.315 between them across methods; for p = 0.04 this correlation increases
to 0.753, while for p = 0.02 the correlation decreases to 0.367 (all rounded to 3 dp). For p = 0.1,
there is little noise and hence variation in DCPM, ranging between 0.0868 and 0.0964, nor in ARI,
ranging from 0.863 to 1; the structure is so strong that much of it is picked up by the methods,
and the noise which both methods pick up will be small and a Kendall correlation will mainly
relate to this noise. For p = 0.04 there is a moderate signal; DCPM ranges between 0.020 and 0.0427
while ARI ranges between 0.0186 and 0.605. Here the strong correlation between DCPM and ARI
supports the value of DCPM as a proxy for ARI in choosing partitions which resemble the ground
truth. For p = 0.02 there is little signal in the data and hence DCPM and ARI will be noisy; DCPM

1For completeness, we display the sample standard deviation for all methods in electronic supplementary material, D.



13

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A476:20190783

...........................................................

Table 2. Average p-value (ER and configuration model), DCPM and ARI, over 20 networks, with a breakdown by method and
parameter in a DCP(1/2 + p, 1/2 − p) model; p-values are rounded to 3 dp. The corresponding sample standard deviations
are shown in electronic supplementary material, D, table S5.

0.1

p-value

p ER Con. DCPM ARI

HITS 0.004 0.004 0.091 0.916
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ADVHITS 0.004 0.004 0.093 0.974
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MAXLIKE 0.004 0.004 0.093 0.997
0.04

p-value

p ER Con. DCPM ARI

HITS 0.004 0.004 0.031 0.274
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ADVHITS 0.007 0.008 0.035 0.340
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MAXLIKE 0.004 0.004 0.040 0.439
0.02

p-value

p ER Con. DCPM ARI

HITS 0.325 0.269 0.011 0.071
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ADVHITS 0.327 0.412 0.014 0.074
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MAXLIKE 0.344 0.4 0.007 0.059
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

here ranges between −0.032 and 0.033, while ARI ranges between 0.021 and 0.132. Owing to the
high level of noise, none of the methods will tend to give very good partitions, and the correlation
between the measures will be relatively weak. Notably, in all cases the correlation is larger than
0.3, revealing a moderate correlation across the range.

(c) Procedure
Our procedure to select between methods and partitions in a systematic manner is as follows.

Procedure:

(i) Compute partitions using each computationally tractable method.
(ii) For each partition, use our Monte Carlo test to see if it deviates from random, with respect

both to ER and to the directed configuration model, and exclude the partitions that are
not significant.

(iii) Rank the selected significant partitions for further analysis using DCPM.

5. Application to real-world data
In this section, we apply our methods to three real-world datasets, namely faculty hiring data
(Faculty) from [46] (§5a), trade data (Trade) from [47] (§5b) and political blogs (Blogs) from [48]
(presented in the electronic supplementary material, F for brevity). In each case, our methods
find a division into four sets, and we explore the identified structure using known underlying
attributes. We use the procedure which we validated on synthetic data in §4, using DCPM to only
rank partitions with significant p-values. We also assess the consistency of the partitions, both
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Figure 3. (a) Performance of the methods on each of the real-world datasets. The p-values are computed using our Monte
Carlo test with 250 samples from the null distribution. The values have been rounded to 3 dp. The largest values of DCPM
(from §2) for each dataset are given in italics. (b,c) The ARI between the partitions uncovered by each method: (b) Faculty,
(c) Trade. Negative values are set to 0. For our methods, we compare with 11 runs and show the average similarity between all
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square on the corresponding diagonal blocks. To comparewith bow-tie, we compare bothwith the partition into seven sets and
the BOWTIEADJ partition formed by a subset of the nodes corresponding to the main three sets. (Online version in colour.)

within and across each of the approaches, by computing the within-method ARI between the
resultant partitions and the ARI between methods of different types.

Moreover, we compare the partitions with the structure uncovered by bow-tie [20], as
discussed in §2. As bow-tie allocates nodes to seven sets, we consider the ARI between the
partition into seven sets (BOWTIE) and the partition induced only by the core set and the in-
and out-periphery sets (BOWTIEADJ). When computing the ARI between the partition given by
BOWTIEADJ with another partition S, we consider the partition induced by S on the node set in
BOWTIEADJ (by construction, the ARI between BOWTIEADJ and BOWTIE is always 1).

Figure 3a shows a summary table for the three real-world datasets; the p-values correlate
with the DCPM measure on all three datasets, and the value of DCPM is always highest for
the likelihood approach. We thus focus our interpretation on the output partition obtained with
MAXLIKE.

(a) Faculty hiring
In the faculty hiring network from [46], nodes are academic institutions, and a directed edge from
institution u to v indicates that an academic received their PhD at u and then became faculty at v.
The dataset is divided by gender and faculty position, and into three fields (business, computer
science and history). For brevity, we only consider the overall connection pattern in computer
science. This list includes 23 Canadian institutions in addition to 182 American institutions. The
data were collected between May 2011 and March 2012. They include 5032 faculty, of whom 2400
are full professors, 1772 associate professors and 860 assistant professors; 87% of these faculty
received doctorates which were granted by institutions within the sampled set. In [46], it is
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found that a large percentage of the faculty is trained by a small number of institutions, and it
is suggested that there exists a core–periphery-like structure in the faculty hiring network.

We apply our procedure to this dataset, and find that the results from the ADVHITS variants
and the likelihood method MAXLIKE are significant at 5% under both random null models,
whereas the other approaches are not (figure 3). Next, we consider the DCPM score between
the significant partitions (figure 3) and note that MAXLIKE (0.507) yields a stronger structure than
ADVHITS (0.390), and hence we focus on the MAXLIKE partition, which is shown in figure 4.

The results in figure 4 show a clear ‘L’-shaped structure, albeit with a weakly defined Pout.
To interpret these sets, we first compare them against several university rankings. In each of
the sets found using MAXLIKE, figure 4c shows the university ranking π obtained by Clauset
et al. [46], and the two other university rankings used in [46], abbreviated NRC95 and USN2010.
Here, the NRC95 ranking from 1995 was used because the computer science community rejected
the 2010 NRC ranking for computer science as inaccurate. The NRC ranked only a subset of
the institutions; all other institutions were assigned the highest NRC rank +1 = 92. The set Cout

has considerably smaller ranks than the other sets, indicating that Cout is enriched for highly
ranked institutions. Upon inspection, we find that Cout consists of institutions including Harvard,
Stanford, Massachusetts Institute of Technology, and also a node that represents institutions
outside of the dataset. The set Pin from MAXLIKE appears to represent a second tier of institutions
that take academics from the universities in Cout (figure 4) but do not return them to the job
market. This observation can again be validated by considering the rankings in [46] (figure 4c).
The Cin set loosely fits the expected structure with a strong incoming link from Cout and a strong
internal connection (figure 4), suggesting a different role from that of the institutions in Pin.
A visual inspection of the nodes in Cin reveals that 100% of the institutions in Cin are Canadian
(also explaining the lack of ranking in USN2010 (figure 4c)). By contrast, the proportion of
Canadian universities in Pout is 11.1%, in Cout it is 2.3% and in Pin it is 0.79%. This finding
suggests that Canadian universities tend to play a structurally different role from US universities,
tending to recruit faculty from other Canadian universities as well as from the top US schools.
In [46], the insularity of Canada was already noted, but without a core–periphery interpretation.
One possible interpretation of this grouping is salary. In 2012, it was found that Canadian public
universities offered a better faculty pay on average than US public universities; see [49].

Finally, Pout is weakly connected both internally and to the remainder of the network and
does not strongly match the ‘L’-structure (figure 4). In each of the rankings (figure 4c), Pout



16

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A476:20190783

...........................................................

has slightly lower average ranks than the other sets (with the exception of Cin, owing to the
default/missing rankings of Canadian institutions). This could indicate that Pout consists of
lower ranked institutions which are not strong enough to attract faculty from the larger set of
institutions. The in- and out-degree distributions (figure 4b) show that Pout has lower in- and
out-degree distributions than the other sets. Thus, an alternative hypothesis is that Pout consists
of universities with smaller computer science departments which do not interact with the wider
network. We leave addressing this interpretation to future work. In either case, the institutions in
Pout do not appear to match the pattern observed in the remainder of the network and hence it is
plausible to delegate them into one set.

Overall, in this real-world dataset, we demonstrated the power of our method by uncovering
an interesting structure that includes a Cin which captures Canadian universities that appear to
recruit faculty from top-ranked US institutions, but also recruit from other Canadian institutions
in Cin.

(b) World trade
The world trade network from [47] has countries as nodes and directed edges between countries
representing trade. For simplicity, we focus on data from the year 2000 and restrict our attention
to the trade in ‘armoured fighting vehicles, war firearms, ammunition, parts’ (Standardized
International Trade Classification class 9510). We remove trades that do not correspond to a
specific country, resulting in a total of 256 trades involving 101 countries, which leads to a network
density of approximately 0.025.

Following our procedure, we first consider the p-values of our Monte Carlo test. ADVHITS

and MAXLIKE show significant deviation from random when compared with the directed ER and
directed configuration models (figure 3). When calculating the DCPM for statistically significant
partitions, we observe a similar ordering to that of the Faculty dataset results, with MAXLIKE

having the highest DCPM (0.72), ADVHITS having the second highest DCPM (0.65) and finally
HITS with a DCPM of −0.60.

The ARIs in figure 3 show considerable similarity between the MAXLIKE and ADVHITS, with a
weaker similarity between HITS and the BOWTIE variants. Considering the similarity to BOWTIE,
the connected component-based BOWTIE performs better on this sparser dataset, producing four
sizeable sets and two singleton sets (unlike in Faculty with two sizeable sets and one singleton
set). However, while there is some similarity to our partitions (as demonstrated by a larger value
of ARI), the structures captured by each approach are distinct and complementary. For example,
focusing on the structure with the highest DCPM (MAXLIKE), the BOWTIE ‘core’ combines our
Pout and Cout, capturing ≈ 93% of the nodes in Pout (26) and ≈ 82% of the nodes in Cout (9).
Overall, this demonstrates that, in this dataset, BOWTIE does not distinguish between what we
will demonstrate below are two distinct structural roles. Furthermore, BOWTIE splits our Pin set
into two. A similar comparison of the division of the sets holds between BOWTIE and ADVHITS,
indicating that the differences between BOWTIE and the methods to which it is similar in figure 3
are robust.

Following our procedure, we now focus on the structure with the highest DCPM (MAXLIKE).
It has the ‘L’-shaped structure (figure 5a), with smaller core sets and larger periphery sets. To
support our interpretation of the structures, we also present summaries of some of their covariates
for the year 2000, namely gross domestic product (GDP) per capita research spend, and military
spend, the last two as a percentage of GDP. We obtain these covariates from the World Bank
with the ‘wbdata’ package [50], using ‘GDP per capita (current US$)’ licensed under CC-BY
4.0 [51], ‘military expenditure (% of GDP)’ from the Stockholm International Peace Research
Institute [52] and ‘research and development expenditure (% of GDP)’ from the UNESCO Institute
for Statistics and licensed under CC BY-4.0 [53]. Not all country covariate pairs have the covariate
data available. For completeness, in figure 5d, we report the percentage of data points we have
available, split by covariate and group.
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restrict the covariate data to be from the same year. We note that data from year 2000 are not available for all country covariate
pairs, and thus we present the percentage of countries with data in each group in the bottom row of each plot. (Online version
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From figure 5, key patterns emerge, with Cout consisting of somewhat wealthy countries, with a
higher research spend as a percentage of GDP and a high density of export links. This set includes
several European countries (France/Monaco, Germany, Italy, UK, Switzerland/Liechtenstein, the
Czech Republic and Slovakia), as well as Russia, China, Iran and South Africa.

By contrast, the set Cin has a higher median GDP per capita but with a lower upper quartile
and, on average, a lower research spend than Cout (figure 5). It includes several South American
countries (Argentina, Brazil, Colombia, Ecuador and Venezuela), several European countries
(Greece, Norway and Finland) and several countries in southeast Asia/Oceania (Philippines,
Indonesia and New Zealand). A key player in the network appears to be the USA, with a very
high in-degree of 45 (the country with the second-largest in-degree is Norway, also in Cin, with
an in-degree of 15) and a lower out-degree of 14 (11 of which are in Cin); the country with the
largest out-degree of 16 is the Czech Republic (six of which are in Cin). To assess the robustness
of this allocation, we removed the USA and all its degree-1 neighbours (a total of four nodes); the
resulting core–periphery structure is similar, with nine nodes changing sets.

The set Pout appears to consist of economies which are not large exporters, but support
the countries in Cin. The group consists of 14 European nations (e.g. Austria, Belgium, The
Netherlands and Spain), several nations from Asia (India, Pakistan, Japan, South Korea,
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Singapore, Taiwan and Thailand), three Latin American countries (Chile, Mexico and Peru) and
several additional countries which do not fit into a clear division. Finally, Pin consists of nations
that buy from the main exporters, but do not export themselves. This group is large (49 nodes),
and includes 17 African nations, representing most of the African nations in the dataset. An
additional set of seven nations were either part or closely aligned with the USSR (e.g. Estonia,
Latvia, Lithuania and Ukraine). Finally, there is also a group of six Latin American countries
and seven Middle Eastern countries, including Syria and Oman. The set Pin appears to have
on average lower GDP per capita than other groups (figure 5), with a higher range of military
spending as a proportion of GDP. For this group, data on the research spend as a percentage of
GDP are only available for 37% of the countries. We observe that, for these countries, it is (on
average) much lower than for the other groups.

In conclusion, our procedure uncovers four groups, each with a different structural role in the
trade network. We have explored the roles that each of these groups might play in the global
market, and while we cannot rule out data quality issues, the partition found does uncover latent
strong patterns which we have validated by considering external covariates.

6. Conclusion and future work
We provide the first comprehensive treatment of a directed discrete core–periphery structure
which is not a simple extension of the bow-tie structure. The structure we introduced consists
of two core sets and two periphery sets defined in an edge-direction-dependent way, each with a
unique connection profile.

In order to identify when this structure is statistically significant in real-world networks, and to
rank partitions uncovered by different methods in a systematic manner, we introduce two quality
measures: p-values from Monte Carlo tests and a modularity-like measure which we call DCPM.
We validate both measures on synthetic benchmarks where ground truth is available.

To detect this structure algorithmically, we propose three methods, HITS, ADVHITS and
MAXLIKE, each with a different trade-off between accuracy and scalability, and find that
MAXLIKE tends to outperform ADVHITS, as well as the standard methods from the literature
against which it was compared.

Using our quality functions to select and prioritize partitions, we explore the existence of our
directed core–periphery structure in three real-world datasets, namely a faculty hiring network,
a world trade network and a political blog network. In each dataset, we found at least one
significant structure when comparing with random ER and configuration model graphs.

(i) In the faculty hiring dataset, the MAXLIKE partition uncovers a new structure,
namely Canadian universities which have a large number of links with the top US
universities, but also appear to strongly recruit from their own universities, indicating
a complementary structure to the one found in [46].

(ii) In the trade data, we uncover four sets of countries that play a structurally different role
in the global arms trade, and we validate this structure using covariate data from the
World Bank.

(iii) In the political blogs dataset, we uncover a Cin core, which we hypothesize to consist of
authorities that are highly referenced, and a Cout core, which links to a large number of
other blogs. We support this hypothesis by noting that Cin has a much lower percentage
of ‘blogspot’ sites than the other set, and that Cin contains all but one of the top blogs
identified by Adamic & Glance [48].

In cases where one of our methods does not yield a statistically significant partition or yields
a partition with a low value of DCPM (e.g. HITS with Trade), it can be important to inspect
the output partition before disregarding it. We have observed that in certain cases this can
occur because the assignment of clusters to the sets Pout, Cin, Cout and Pin with the highest
likelihood in the final step of each method (see §3) has low density within the ‘L’ and high density
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outside the ‘L’. This phenomenon may occur because the stochastic block model which assigns
the group labels of recovered sets rewards homogeneity but does not penalize for sparseness
within the ‘L’. One could modify our implementation into a constrained likelihood optimization
where one would obtain partitions with potentially lower likelihood but a more pronounced
‘L’ structure.

(a) Future research directions
There are a number of interesting directions to explore in future work. We start with the
specification of the core–periphery structure. The faculty data highlight that some nodes simply
may not fit the core–periphery pattern, and thus, following the formulation of bow-tie, it would
be interesting to explore modifications to our approaches that would allow for not placing nodes
if they do not match the pattern (for example, by introducing a separate set for outlier nodes).
As detailed in electronic supplementary material, A, other directed core–periphery patterns
are possible. Some of our methods could be adapted to detect such core–periphery patterns.
In principle, all possible core–periphery structures could be tested simultaneously, with an
appropriate correction for multiple testing. Such a development should of course be motivated
by a suitable dataset which allows for interpretation of the results. More generally, meso-scale
structures may change over time, and it would be fruitful to extend our structure and methods to
include time series of networks.

Next, we propose some future directions regarding the methods for detecting core–periphery
structure. The first direction concerns scalability. Depending on the size of the dataset under
investigation, a user of our methods may wish to compromise accuracy for scalability (e.g.
by using HITS or ADVHITS instead of MAXLIKE). Another scalable method to potentially
consider stems from the observation that the expected adjacency matrix (under a suitable directed
stochastic block model) is a low-rank matrix. With this in mind, the observed adjacency matrix
can be construed as a low-rank perturbation of a random matrix, and, therefore, one could
leverage the top singular vectors of the adjacency matrix to propose an algorithm for directed
core–periphery detection. The advantage of this approach is that it is amenable to a theoretical
analysis and one could provide guarantees on the recovered solution, by using tools from matrix
perturbation and random matrix theory. In our preliminary numerical experiments, such an
SVD-based approach outperforms the standard methods, and, while outperformed by MAXLIKE

and ADVHITS, it is considerable faster. More details can be found in [23]. Further future work
could explore graph regularization techniques, which may increase performance for sparse
networks. Another direction for future work concerns DCPM. In this paper, we have used it as a
quality function that is method-independent for assessing the directed core–periphery partition
in equation (2.2) produced by different methods. It would be interesting to develop methods
which optimize the DCPM quality function directly.

Finally, in future work, it would be interesting to explore more datasets with complex structure.
In studies of meso-scale structure (e.g. core–periphery and community structures), there are many
possible methods for detecting a given partition structure. While our methods are designed to
detect a specific core–periphery structure, empirical networks often contain more than one type
of meso-scale structure at a time. Adapting our partition selection process to other types of meso-
scale structures and combining different methods to explore a range of meso-scale structures may
yield novel insights about empirical networks.
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