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Synchronized and mixed outbreaks 
of coupled recurrent epidemics
Muhua Zheng1,2, Ming Zhao3, Byungjoon Min2 & Zonghua Liu1

Epidemic spreading has been studied for a long time and most of them are focused on the growing 
aspect of a single epidemic outbreak. Recently, we extended the study to the case of recurrent 
epidemics (Sci. Rep. 5, 16010 (2015)) but limited only to a single network. We here report from the 
real data of coupled regions or cities that the recurrent epidemics in two coupled networks are closely 
related to each other and can show either synchronized outbreak pattern where outbreaks occur 
simultaneously in both networks or mixed outbreak pattern where outbreaks occur in one network but 
do not in another one. To reveal the underlying mechanism, we present a two-layered network model 
of coupled recurrent epidemics to reproduce the synchronized and mixed outbreak patterns. We show 
that the synchronized outbreak pattern is preferred to be triggered in two coupled networks with the 
same average degree while the mixed outbreak pattern is likely to show for the case with different 
average degrees. Further, we show that the coupling between the two layers tends to suppress the 
mixed outbreak pattern but enhance the synchronized outbreak pattern. A theoretical analysis based 
on microscopic Markov-chain approach is presented to explain the numerical results. This finding opens 
a new window for studying the recurrent epidemics in multi-layered networks.

Epidemic spreading in complex networks has been well studied and a lot of great progress have been achieved 
such as the infinitesimal threshold1–6, reaction-diffusion model7–10, flow driven epidemic11–15, and objective 
spreading etc.16, 17, see the review refs 18–20. for details. Recently, the attention has been moved to the case of mul-
tilayer networks18, 21–31, which represent the interactions between different real-world networks such as critical 
infrastructure32–34, transportation networks35, 36, living organisms37–39, and social networks21, 40 etc. These models 
enable us to determine how the interplay between network structures influences the dynamic processes taking 
place on them41–50. For instance, a pathogen spreads on a human contact network abetted by global and regional 
transportation networks21. Due to their ubiquitous applications in complex systems51–55, the understanding of the 
properties and dynamic processes in multilayered networks carries great practical significance.

Two of the most successful models used to describe epidemic spreading are the susceptible-infected-susceptible 
(SIS) and susceptible-infected-refractory (SIR) models. Mark et al. used the SIR model to multilayered networks 
in 201241. Very interesting, they found a mixed phase in weakly coupled networks where an epidemic occurs in 
one network but does not spread to the coupled network. Saumell-Mendiola et al. used the SIS model to multi-
layered networks also in 201242. However, they found that such a mixing phase doesn’t exist in both analytic and 
simulation results. In their work, they mainly focused on the epidemic threshold and studied how epidemics 
spread from one network to another.

All these studies are focused on the growing aspect of a single epidemic outbreak, no matter it is one layer or 
multilayered networks. However, in realistic situations, the empirical data shows that epidemic is recurrent, i.e. 
with outbreaks from time to time56–60. Thus, we recently extended the study to the case of recurrent epidemics57, 
but limited only to a single network. Considering that the interactions between different networks are ubiquitous, 
we here recheck several real data of coupled regions or cities such as the General Out-Patient Clinics (GOPC) 
network and its coupled General Practitioners (GP) network of Hong Kong (see Fig. 1(a) and (b)), the coupled 
regional networks of California and Nevada (see Fig. 1(c) and (d)), the coupled regional networks of Arizona and 
California (see Fig. a(a) and (b) in SI), the coupled city networks of Boston and Fall River (see Fig. 1(c) and (d) 
in SI), and the coupled city networks of Los Angeles and Sacramento (see Fig. 1(e) and (f) in SI). We interestingly 
find that their recurrent epidemics are closely related to each other. Moreover, we find that the coupled time series 
of recurrent epidemics can show either synchronized outbreak pattern where outbreaks occur simultaneously in 
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both networks or mixed outbreak pattern where outbreaks occur only in one network but do not in another one. 
This finding calls our great interest and motivates us to study its underlying mechanism. In this sense, we believe 
that it is very necessary to further extend the study of recurrent epidemics to the case of multilayered networks.

In this work, we present a two-layered network model of coupled recurrent epidemics to reproduce the syn-
chronized and mixed outbreak patterns. To guarantee the appearance of recurrent outbreaks, we choose the 
susceptible-infected-refractory-susceptible (SIRS) model for each node of network and let the infectious rate be 
time dependent, symbolizing the larger annual variation of environment. By this model, we find that the average 
degrees of both the intra- and inter-networks play key roles on the emergence of synchronized and mixed out-
break patterns. The synchronized outbreak pattern tends to be triggered in two coupled networks with the same 
average degree while the mixed outbreak pattern is likely to show for the case with different average degrees. 
Further, we show that the increasing of coupling strength, i.e. either the inter-layer infection rate or inter-layer 
average degree, will tend to suppress the mixed outbreak pattern but enhance the synchronized outbreak pattern. 
A theoretical analysis based on microscopic Markov-chain approach is presented to explain the numerical results. 
This finding may be of significance to the long-term prediction and control of recurrent epidemics in multi-areas 
or cities.

Results
The synchronized and mixed outbreak patterns of recurrent epidemics in real data. Monitoring 
epidemic spreading is vital for us to prevent and control infectious diseases. For this purpose, Hong Kong 
Department of Health launched a sentinel surveillance system to collect data of infectious diseases, aiming to 
analyze and predict the trend of infectious spreading in different regions of Hong Kong. In this system, there are 
about 64 General Out-Patient Clinics (GOPC) and 50 General Practitioners (GP), which form two sentinel sur-
veillance networks of Hong Kong56, respectively. By these two networks, we can obtain the weekly consultation 
rates of influenza-like illness (per 1000 consultations). Figure 1(a) and (b) show the collected data from 1998 to 
2014 for the GOPC and GP, respectively, where the data from 2009/6/13 to 2010/5/23 in (a) was not collected 
by Hong Kong Department of Health and the value of C in (b) is from 0 to 150. This weekly consultation rates 
of influenza-like illness can well reflect the overall influenza-like illness activity in Hong Kong. From the data in 
Fig. 1(a) and (b) we easily find that there are intermittent peaks, marking the recurrent outbreaks of epidemics. 
By a second check on the data in Fig. 1(a) and (b) we interestingly find that some peaks occur simultaneously 
in the two networks at the same time, indicating the appearance of synchronized outbreak pattern. While other 
peaks appear only in Fig. 1(a) but not in Fig. 1(b), indicating the existence of mixed outbreak pattern (see the light 
yellow shaded areas).

Is this finding of synchronized and mixed outbreak patterns in recurrent epidemics a specific phenomenon 
only in Hong Kong? To figure out its generality, we have checked a large number of other recurrent infectious 
data in different pathogens and in different states and cities in the United States and found the similar phenome-
non. Figure 1(c) and (d) show the data of weekly measles infective cases I in the states of California and Nevada, 
respectively, which were obtained from the USA National Notifiable Diseases Surveillance System as digitized by 
Project Tycho58–60. As California is adjacent to Nevada in west coast of the United States, their climatic conditions 
are similar. Thus, they can be also considered as two coupled networks. Three more these kinds of examples have 
been shown in Fig. 1 of SI where the coupled networks are based on states-level influenza data and cities-level 

Figure 1. Time series of recurrent epidemics in two coupled regions or cities. (a) and (b) represent the weekly 
consultation rates of influenza-like illness (per 1000 consultations) from 1998 to 2014 in Hong Kong for the 
General Out-Patient Clinics (GOPC) and the General Practitioners (GP), respectively, where the data from 
2009/6/13 to 2010/5/23 in (a) are not available and the value of C in (b) is from 0 to 150. (c) and (d) represent 
the time series of reported weekly measles infective cases I in California and Nevada, respectively.
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measles data, respectively. Therefore, the synchronized and mixed outbreak patterns are general in recurrent 
epidemics. We will explain their underlying mechanisms in the next subsection.

A two-layered network model of coupled recurrent epidemics. Two classical models of epidemic 
spreading are the Susceptible-Infected-Susceptible (SIS) model and Susceptible-Infected-Refractory (SIR) 
model18. In the SIS model, a susceptible node will be infected by an infected neighbor with rate β. In the mean-
time, each infected node will recover with a probability γ at each time step. After the transient process, the system 
reaches a stationary state with a constant infected density ρI. Similarly, in the SIR model, each node can be in one 
of the three states: Susceptible, Infected, and Refractory. At each time step, a susceptible node will be infected by 
an infected neighbor with rate β and an infected node will become refractory with probability γ. The infection 
process will be over when there is no infected I. These two models have been widely used in a variety of situations. 
However, it was pointed out that both the SIS and SIR models are failed to explain the recurrence of epidemics in 
real data57, 61.

To reproduce the synchronized and mixed outbreak patterns, we here present a two-layered network model of 
coupled recurrent epidemics, shown in Fig. 2 where (a) represents its schematic figure of network topology and 
(b) denotes the epidemic model at each node. In Fig. 2(a), two networks andA B are coupled through some 
interconnections between them, which form the inter-network AB. For the sake of simplicity, we let the two 
networks A Band  have the same size Na = Nb. We let 〈ka〉, 〈kb〉, and 〈kab〉 represent the average degrees of the 
networks A B AB, and , respectively, see Methods for details. In Fig. 2(b), the epidemic model is adopted from 
o u r  p r e v i o u s  w o r k 5 7 b y  t w o  s t e p s .  I n  s t e p  o n e ,  w e  e x t e n d  t h e  S I R  m o d e l  t o  a 
Susceptible-Infected-Refractory-Susceptible (SIRS) model where a refractory node will become susceptible again 
with probability δ. In step two, we let each susceptible node have a small probability p0 to be infected, which rep-
resents the natural infection from environment. Moreover, we let the infectious rate β(t) be time dependent, 
representing its annual and seasonal variations etc. To distinguish the function of the interconnections from that 
of those links in andA B, we let βab be the inter-layer infectious rate. In this way, the interaction between A Band  
can be described by the tunable parameter βab.

In numerical simulations, we let both the networks andA B be the Erdös-Rényi (ER) random networks62. To 
guarantee a recurrent epidemics in each of A Band , we follow ref. 57 to let β(t) be the truncated Gaussian distri-
bution  . .(0 1, 0 1 )2  and choose p0 = 0.01. Figure 3(a) and (b) show the evolutions of the infected density ρI in 

andA B, respectively, where the parameters are taken as 〈ka〉 = 6.5, 〈ka〉 = 1.5, 〈kab〉 = 1.0, and βab = 0.09. It is easy 
to observe that some peaks of ρI appear simultaneously in andA B, indicating the synchronized outbreak pat-
tern. We also notice that some peaks of ρI in  do not have corresponding peaks in  (see the light yellow shad-
owed areas in Fig. 3(a) and (b)), indicating the mixed outbreak pattern. Moreover, we do not find the contrary 
case where there are peaks of ρI in  but no corresponding peaks in , which is also consistent with the empirical 
observations in Fig. 1(a–d).

Mechanism of the synchronized and mixed outbreak patterns. To understand the phenomenon of 
synchronized and mixed outbreak patterns better, we here study their underlying mechanisms. A key quantity for 
the phenomenon is the outbreak of epidemic, i.e. the peaks in the time series of Fig. 1. Notice that a peak is usually 
much higher than its background oscillations. To pick out a peak, we need to define its background/baseline first. 
As the distributions of both the real data in Fig. 1 and numerical simulations in Fig. 3 are approximately satisfied 
the normal distribution (see Fig. 2 SI), we define the baseline as μ + 3σ with μ and σ being the mean and standard 
deviation, respectively, which contains about 99.7% data in the normal distribution63. Then, we can count the 
number of outbreaks in a measured time t. Let n be the average number of outbreaks in realizations of the same 

Figure 2. Schematic figure of the epidemic model to reproduce the synchronized and mixed outbreak patterns. 
(a) Schematic figure of the two-layered network, where the “black”, “blue” and “red” lines represent the links of 
the networks ,A B and the inter-network AB, respectively. βab denotes the infectious rate through one 
interconnection between andA B. (b) Schematic figure of the extended SIRS model for each node in andA B, 
where the symbols S, I and R represent the susceptible, infectious, and refractory states, respectively, and the 
parameters β, γ and δ represent the infectious, refractory and recovery rates, respectively. p0 denotes the 
probability for a susceptible node to be naturally infected by environment or other factors.
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evolution t. Larger n implies more frequent outbreaks. Let A B∆ = −n n n( ) ( )  be the difference of outbreak 
numbers between the networks andA B. Larger Δn implies more frequent emergence of the mixed outbreak 
pattern. In particular, the mixed outbreak pattern will disappear when Δn = 0.

We are interested in how the average degrees and coupling influence the numbers n and Δn. Figure 4(a) and (b)  
show the dependence of n on the average degree 〈kb〉 of network  for βab = 0.09 and 0.3, respectively, where the 
average degree of network  is fixed as 〈ka〉 = 6.5. It is easy to see from Fig. 4(a) and (b) that the number n( )  of 
network  will gradually increase with the increase of 〈kb〉, while the number n( ) of network  keeps approxi-
mately constant, indicating that a larger 〈kb〉 is in favor of the recurrent outbreaks. Specifically, n( )  will reach 
n( )  when 〈kb〉 is increased to the value of 〈kb〉 = 〈ka〉 = 6.5, see the insets in Fig. 4(a) and (b) for the minimum of 
Δn. For details, Fig. 3 in SI shows the evolution of infected densities ρI for the cases of 〈ka〉 = 〈kb〉, confirming the 
result of Δn = 0 in Fig. 4(a) and (b). On the other hand, comparing the two insets in Fig. 4 (a) and (b), we find that 
Δn in Fig. 4(a) is greater than the corresponding one in Fig. 4(b), indicating that a larger βab is in favor of sup-
pressing the mixed outbreak pattern. These results can be also theoretically explained by the microscopic 
Markov-chain approach, see Methods for details. The solid lines in Fig. 4 (a) and (b) represent the theoretical 
results from Eqs (6) and (7). It is easy to see that the theoretical results are consistent with the numerical simula-
tions very well.

Figure 4(c) and (d) show the influences of the coupling parameters such as βab and kab for the outbreak num-
ber n and the difference of outbreak number Δn, respectively, where 〈ka〉 = 6.5 and 〈kb〉 = 1.5. From Fig. 4(c) we 
see that for the case of kab = 0.6, n( ) is an approximate constant and n( ) gradually increase with βab. While for 
the case of = .k 1 2ab , both n( )  and n( ) change with βab, indicating that both kab and βab take important roles in 
the synchronized and mixed outbreak patterns. From Fig. 4(d) we see that the case of kab = 1.2 decreases faster 
than the case of kab = 0.6, indicating that both the larger kab and larger βab are in favor of the synchronized out-
break pattern. That is, the stronger coupling will suppress the mixed outbreak pattern but enhance the synchro-
nized outbreak pattern. On the contrary, the weaker coupling is in favor of the mixed epidemic outbreak pattern 
but suppress the synchronized outbreak pattern. For details, Fig. 4 in SI shows the evolution of infected densities 
ρI for different βab, confirming the above results.

Coupling induced correlation between the epidemics of the two networks. The coupling between 
the two layers is represented by the pair of variables (βab, 〈kab〉). Qualitatively, larger βab and 〈kab〉 represent 
stronger coupling. To quantitatively represent the effects of βab and 〈kab〉, we here measure the cross-correlation, 
r, defined in Eq. (19), which can show some information beyond the synchronized and mixed outbreak patterns. 
By Eq. (19) we first calculate the coefficient r between the two time series of GOPC and GP and find r = 0.66, 
indicating that these two data are highly correlated. Figure 5(a) shows the correspondence between the two time 
series of GOPC and GP. Then, we check the influence of coupling on the coefficient r. Figure 5(b) shows the 
dependence of r on βab for 〈kab〉 = 0.2, 0.5, 1.0 and 2.0, respectively. We see that r increases with βab for a fixed 〈kab〉 
and also increases with 〈kab〉 for a fixed βab, indicating the enhanced correlation by the coupling strength. Very 
interesting, we find that for the case of 〈kab〉 = 1.0 in Fig. 5(b), the point of r = 0.66 corresponds to 〈βab〉 = 0.09 (see 
the purple “star”), implying that the coupling in Fig. 5(a) is equivalent to the case of 〈kab〉 = 1.0 and 〈βab〉 = 0.09 in 
Fig. 5(b). In this sense, we may draw a horizontal line passing the purple “star” in Fig. 5(b) (see the dashed line) 
and its crossing points with all the curves there will also represent the equivalent coupling in Fig. 5(a). However, 
we notice that the horizontal line has no crossing point with the curve of 〈kab〉 = 0.2, indicating that there is a 
threshold of 〈kab〉 for the appearance of r = 0.66 in Fig. 5(a).

It is maybe helpful to understand the influence of (βab, 〈kab〉) on epidemics from the aspect of purely coupling 
in network structure. We know that a critical problem in coupled networks is when they behave as separate 
networks vs when they behave as a solid single network64, 65. In our case here, the synchrony of epidemic in the 
two layers corresponds the case of strong coupling while the mixed pattern represents the case of weak coupling. 

Figure 3. Reproduced time series of recurrent epidemics in the two-layered network model. (a) and (b) 
represent the evolutions of the infected density ρI in the two-layered networks andA B, respectively, where the 
parameters are taken as 〈ka〉 = 6.5, 〈kb〉 = 1.5, 〈kab〉 = 1.0, β ∼ . .t( ) (0 1, 0 1 )2 , βab = 0.09, γ = 0.2, δ = 0.02, 
p0 = 0.01, and Na = Nb = 1000.
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Therefore, the synchrony and mixed patterns also reflect the influence of network structure on its dynamics. On 
the other hand, we notice from Fig. 5(b) that there is a finite value of r ≈ 0.43 when βab = 0, implying that the same 
infection probability β(t) in the two networks do have a contribution to the correlation r. However, the further 
increase of r in Fig. 5(b) reflects the influence from the coupling parameters of (βab, 〈kab〉). From Fig. 5(b) we see 
that for a fixed βab, r increases with 〈kab〉, indicating the influence of 〈kab〉. While for a fixed 〈kab〉, r increases with 
βab, indicating the influence of βab. Therefore, the further increase of correlation from r ≈ 0.43 do come from the 
coupling between the two time series.

Discussion
The dependence of the synchronized and mixed outbreak patterns on the average degrees of networks andA B 
may be also understood from the aspect of their epidemic thresholds. By the theoretical analysis in Methods we 
obtain the epidemic thresholds as β β= =γ γandc

A
k c

B
ka b

 in Eq. (18), when the two networks are weakly cou-

pled. For the case of 〈ka〉 > 〈kb〉, we have β β<c
A

c
B. When β satisfies β β β< <c

A
c
B, the epidemics cannot survive 

in each of networks A Band . Thus, the infected fraction will be approximately zero, i.e. no epidemic outbreak in 
both  and . It should be noticed that this result just holds for the case of weakly coupling. When coupling is 
strong, it is possible for epidemic to occur in the coupled network even when β is below the epidemic threshold 
of each layer24. When β satisfies β β β> >c

B
c
A, the epidemics will survive in both networks A Band , indicating 

an outbreak will definitely occur in both of them. These two cases are trivial. However, when β is in between 
β βandc

A
c
B, some interesting results may be induced by coupling. When coupling is weak, it is possible for epi-

Figure 4. (a) and (b) Dependence of n on the average degree 〈kb〉 of network  for βab = 0.09 and 0.3, 
respectively, where the average degree of network  is fixed as 〈ka〉 = 6.5, 〈kab〉 = 1.0, and the insets show the 
dependence of ∆ = −n n n( ) ( )A B  on 〈kb〉. The solid lines represent the theoretical results from Eqs (6) and 
(7). (c) Dependence of n on βab with 〈ka〉 = 6.5 and 〈kb〉 = 1.5 where the “squares” and “circles” represent the 
case of 〈kab〉 = 0.6 for the networks andA B, respectively, and the “up triangles” and “down triangles” represent 
the case of 〈kab〉 = 1.2 for the networks andA B, respectively. (d) Dependence of Δn on βab with 〈ka〉 = 6.5 and 
〈kb〉 = 1.5 where the “squares” and “circles” represent the cases of 〈kab〉 = 0.6 and 1.2, respectively. The other 
parameters are set as β ∼ . .t( ) (0 1, 0 1 )

2 , γ = 0.2, δ = 0.02, p0 = 0.01, and Na = Nb = 1000. All the results are 
averaged over 1000 independent realizations with the simulation steps t = 20000.
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demic to outbreak only in network  but not in network . When coupling is increased slightly, it will be also 
possible for epidemic to outbreak sometimes in network , i.e. resulting a mixed outbreak pattern. Once coupling 
is further increased to large enough, a synchronized outbreak pattern will be resulted.

So far, the reported results are from the ER random networks andA B. We are wondering whether it is possi-
ble to still observe the phenomenon of the synchronized and mixed outbreak patterns in other network topolo-
gies. For this purpose, we here take the scale-free network62 as an example. Very interesting, by repeating the 
above simulation process in scale-free networks we have found the similar phenomenon as in ER random net-
works, see Figs 5–7 in SI for details. Therefore, the synchronized and mixed outbreak patterns are a general phe-
nomena in multi-layered epidemic networks.

In sum, the epidemic spreading has been well studied in the past decades, mainly focused on both the single 
and multi-layered networks. However, only a few works focused on the aspect of recurrent epidemics, including 
both the models in homogeneous population61 and our recent model in a single network57. We here report from 
the real data that the epidemics from different networks are in fact not isolated but correlated, implying that 
they should be considered as a multi-layered network. Motivated by this discovery, we present a two-layered 
network model to reproduce the correlated recurrent epidemics in coupled networks. More importantly, we find 
that this model can reproduce both the synchronized and mixed outbreak patterns in real data. The two-layered 
network favors to show the synchronized pattern when the average degrees of the two coupled networks have 
a large difference and shows the mixed pattern when their average degrees are very close. Besides the degree 
difference between the two networks, the coupling strength between the two layers has also significant influence 
to the synchronized and mixed outbreak patterns. We show that both the larger βab and larger 〈kab〉 are in favor 
of the synchronized pattern but suppress the mixed pattern. This finding thus shows a new way to understand 
the epidemics in realistic multi-layered networks. Its further studies and potential applications in controlling the 
recurrent epidemics may be an interesting topic in near future.

Methods
A two-layered network model of recurrent epidemic spreading. We consider a two-layered network 
model with coupling between its two layers, i.e. the networks A Band  in Fig. 2(a). We let the two networks have 
the same size Na = Na = N and their degree distributions PA(k) and PB(k) be different. We may imagine the net-
work  as a human contact network for one geographic region and the network  for a separated region. Each 
node in the two-layered network has two kinds of links, i.e. intra-links within  or  and the interconnection 
between andA B. The former consists of the degree distributions PA(k) and PB(k) while the latter the intercon-
nection network. We let 〈ka〉, 〈kb〉, and 〈kab〉 represent the average degrees of networks ,A B and interconnection 
network AB, respectively. In details, we firstly generate two separated networks A Band  with the same size N and 
different degree distributions PA(k) and PB(k), respectively. Then, we add links between A Band . That is, we ran-
domly choose two nodes from andA B and then connect them if they are not connected yet. Repeat this process 
until the steps we planned. In this way, we obtain an uncorrelated two-layered network.

To discuss epidemic spreading in the two-layered network, we use the extended SIRS model, see Fig. 2(b) for 
its schematic illustration. In this model, a susceptible node has three ways to be infected. The first one is the nat-
ural infection from environment or unknown reasons, represented by a small probability p0. The second one is the 
infection from contacting with infected individuals in the network  (or ), represented by β(t). And the third 
one is the infection from another network, represented by βab (see Fig. 2(a)). Thus, a susceptible node will become 
infected with a probability β β− − − −p t1 (1 )(1 ( )) (1 )k

ab
k

0

inf
ab
inf

 where kinf is the infected neighbors in the same 

Figure 5. Correlation between the two coupled layers. (a) Correlation between the two time series of GOPC 
and GP. (b) Dependence of the correlation coefficient r on βab for 〈kab〉 = 0.2, 0.5, 1.0 and 2.0, respectively, where 
the purple “star” and its related dashed line represent the point of r = 0.66. Other parameters are the same as in 
Fig. 3(a) and (b).
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network and kab
inf  is the infected neighbors in another network. At the same time, an infected node will become 

refractory by a probability γ and a refractory node will become susceptible again by a probability δ.
In numerical simulations, the dependence of β(t) on time is implemented as follows57: we divide the total time 

t into multiple segments with length T and let T = 52, corresponding to the 52 weeks in one year. We let β(t) be a 
constant in each segment, which is randomly chosen from the truncated Gaussian distribution . .(0 1, 0 1 )2 . Once 
a β(t) < 0 or β(t) > 1 is chosen, we discard it and then choose a new one. At the same time, we fix γ = 0.2 and 
δ = 0.2 and set βab as the tunable parameter.

A theoretical analysis based on microscopic Markov-chain approach. Let P t P t P t( ), ( ), ( )i A
S

i A
I

i A
R

, , ,  be 
the probabilities for node i in network  to be in one of the three states of S, I and R at time t, respectively. 
Similarly, we have P t P t P t( ), ( ) and ( )i B

S
i B
I

i B
R

, , ,  in network . They satisfy the conservation law

+ + = + + = .P t P t P t P t P t P t( ) ( ) ( ) 1, ( ) ( ) ( ) 1 (1)i A
S

i A
I

i A
R

i B
S

i B
I

i B
R

, , , , , ,

According to the Markov-chain approach43, 57, 66–68, we introduce

∑ ∑ ∑ρ ρ ρ= = =
= = =

t
N

P t t
N

P t t
N

P t( ) 1 ( ), ( ) 1 ( ), ( ) 1 ( ),S
A

i

N

i A
S

I
A

i

N

i A
I

R
A

i

N

i A
R

1
,

1
,

1
,

∑ ∑ ∑ρ ρ ρ= = =
= = =

t
N
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where ρ ρ ρt t t( ), ( ) and ( )S
A

I
A

R
A  represent the densities of susceptible, infected, and refractory individuals at time t 

in network , respectively. Similarly, we have ρ ρ ρt t t( ), ( ) and ( )S
B

I
B

R
B  in network .

Let, q t q t q t( ), ( ) and ( )i A
I R

i A
S I

i A
R S

,
,

,
,

,
,  be the transition probabilities from the state S to I, I to R, and R to S in network 

, respectively. By the Markov chain approach66, 68 we have
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where Λi, A represents the neighboring set of node i in network . The term (1 − p0) in Eq. (2) represents the 
probability that node i is not infected by the environment. The term β∏ −Λ∈ t P t(1 ( ) ( ))l l A

I
,i A,

 is the probability that 
node i is not infected by the infected neighbors in network . While the term β∏ −Λ∈ P t(1 ( ))v ab v B

I
,i B,

 is the prob-
abi l ity that node i  is  not infected by the infected neighbors in another network.  Thus, 

β β− ∏ − ∏ −Λ Λ∈ ∈p t P t P t(1 ) (1 ( ) ( )) (1 ( ))l l A
I

v ab v B
I

0 , ,i A i B, ,
 is the probability for node i to be in the susceptible state. 

Similarly, for the node in network , we have
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Based on these analysis, we formulate the following difference equations
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The first term on the right-hand side of the first equation of Eq. (4) is the probability that node i is remained as 
susceptible state. The second term stands for the probability that node i is changed from refractory to susceptible 
state. Similarly, we have the same explanation for the other equations of Eqs (4) and (5). Substituting Eqs (2) and 
(3) into Eqs (4) and (5), we obtain the microscopic Markov dynamics as follows
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Instead of getting the analytic solutions of Eqs (6) and (7), we solve them by numerical integration. We set the 
initial conditions as = . = . = . = . = . = .P P P P P P(0) 1 0, (0) 0 0, (0) 0 0, (0) 1 0, (0) 0 0 and (0) 0 0i A

S
i A
I

i A
R

i B
S

i B
I

i B
R

, , , , , , . To 
conveniently compare the solutions with the numerical simulations in the section Results, we use the same set of 
β(t) for both the integration and numerical simulations. Figure 6 shows the results where the left and right panels 
are for the networks  and , respectively. In Fig. 6(b–d) and (f–h), the solid curves represent the theoretical 
solutions while the “circles” represent the numerical simulations. It is easy to see that the theoretical solutions are 
consistent with the numerical simulations very well.

A theoretical analysis based on mean field theory. To go deeper into the mechanism of the synchro-
nized and mixed outbreak patterns, we try another theoretical analysis on mean field equations. Let sA(t), iA(t) and 
rA(t) represent the densities of susceptible, infected, and refractory individuals at time t in network , respec-
tively. Similarly, we have sB(t), iB(t) and rB(t) in network . Then, they satisfy

Figure 6. Comparison between the theoretical solutions and numerical simulations. The left and right panels 
are for the networks andA B, respectively. All the parameters are the same as in Fig. 3(a) and (b). (a) and (e) 
β(t) versus t; (b) and (f) ρS versus t; (c) and (g) ρI versus t; (d) and (h) ρR versus t. In (b–d) and (f–h), the solid 
curves represent the theoretical solutions while the “circles” represent the numerical simulations.
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+ + = + + = .s t i t r t s t i t r t( ) ( ) ( ) 1, ( ) ( ) ( ) 1 (8)A A A B B B

According to the mean-field theory, we have the following ordinary differential equations
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Specifically, we consider a case of single epidemic outbreak with extremely weak coupling, i.e. p0 = 0 and 
βab ≈ 0. In the steady state, we have

= = = =
ds t
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dt
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Substituting Eq. (16) into Eq. (8) we obtain
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The critical point can be given by letting iA(t) and iB(t) in Eq. (17) change from zero to nonzero, which gives

β γ β γ
= = .

k k
,

(18)
c
A

a
c
B

b

For the considered networks with 〈ka〉 > 〈kb〉, we have β β<c
A

c
B.

Cross-correlation measure. In statistics, the Pearson correlation coefficient is a measure of the linear cor-
relation between two variables. If two time series {Xt} and {Yt} have the mean values X Yand , we can define the 
correlation coefficient r as follows

= ∑ − −

∑ − ⋅ ∑ −
=

= =

r
X X Y Y

X X Y Y

( )( )

( ) ( ) (19)

t
n

t t

t
n

t t
n

t

1

1
2

1
2

To analyze the correlations of the growth trends between the two time series, we investigates their 
cross-correlation r(t) in a given window wt

69, 70, i.e. … …+ + + +{ } { }X X X Y Y Y, , , and , , ,t t t w t t t w1 1t t
. {Xt} and {Yt} 

will share the same trend in the time interval wt when r(t) > 0 and the opposite growth trend when r(t) < 0. In this 
work, we let the whole time series be one window, i.e. with wt being the total evolutionary time t.
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