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Abstract: Most nutrition studies looking at the association of food with cardiometabolic markers rely
on food frequency questionnaires, which are prone to recall bias. Pentadecanoic acid, heptadecanoic
acid and trans-palmitoleic acid are fatty acids that are not synthesized endogenously but are obtained
from the diet, particularly dairy, making them reasonable biomarkers of dairy consumption. We
investigated the association of dairy fatty acid biomarkers with glycated hemoglobin (HbA1c) and
cardiovascular risk factors in type 2 diabetes (T2D). In a clinical trial, 111 participants with T2D
(age 58.5 ± 8.9 years, HbA1c 8.09 ± 0.96%) were randomized into three groups: a control group
that maintained baseline dairy intake, a low-fat (LF) group that incorporated ≥3 servings/day of
LF dairy and a high-fat (HF) group that incorporated ≥3 servings/day of HF dairy. We compared
the fatty acids (FA) composition between the three groups at 24 weeks. Pentadecanoic acid and
trans-palmitoleic acid increased in the HF group by 14.1% ± 5.4% and 17.5% ± 5.1%, respectively,
but not in the control and LF groups (p = 0.0474 and p = 0.0025 for group-by-time interaction,
respectively). Those increases were positively associated with changes in total cholesterol, very-low-
density lipoprotein cholesterol VLDL-C and triglycerides but were not associated with changes in
HbA1c from baseline to 24 weeks. These results suggest that the intervention was successful and that
participants were likely compliant, which supports the validity of the main trial.

Keywords: fatty acids; dairy; diabetes

1. Introduction

Previous reports suggest that dietary fat and saturated fat, in particular, are contribut-
ing factors to cardiovascular disease (CVD) and can cause insulin resistance. However,
it is suggested that not all saturated fats have similar cardiometabolic effects. Most ob-
servational studies have shown that full-fat dairy is not associated with higher risk of
diabetes. [1,2] In a meta-analysis of randomized controlled clinical trials with healthy
subjects, increased dairy food consumption for more than one month led to an increase
in weight but had no effect on glucose, lipid profile or blood pressure [3]. Most nutrition
studies rely on dietary recall and measure dairy intake with food frequency questionnaires.
However, with the self-reporting of dietary information, there are errors and risk of report-
ing bias. Moreover, dairy used in mixed food may not be accurately captured. Therefore,
relying on biomarkers of dairy intake may lead to a better estimate of dairy intake.

Odd-chain fatty acids; 15:0 (pentadecanoic acid) and 17:0 (heptadecanoic acid), and
natural trans-fatty acid trans-palmitoleate (C16:1 trans-n-7) are not endogenously synthe-
sized and are obtained from diet, particularly from dairy products, making them potentially
useful biomarkers of dairy fat consumption. In addition to their roles as biomarkers, it
is possible that these fatty acids may have metabolic effects. Similar to saturated fat,
observational studies suggest that not all saturated fatty acids have similar metabolic ef-
fects. For example, odd-chain saturated fatty acids (pentadecanoic acid and heptadecanoic
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acid]) were found to be inversely associated with incident type 2 diabetes in several stud-
ies [4–8]. Trans-palmitoleate has been associated with lower insulin resistance, presence of
atherogenic dyslipidemia and incident diabetes [7].

In a three-arm clinical trial in patients with type 2 diabetes, we randomly assigned
the participants into three diet groups: one group was asked to keep baseline dairy intake
and served as the control group; a low-fat (LF) group that included ≥3 servings/d of LF
dairy, and a high-fat (HF) group that included ≥3 servings/d of HF dairy. At the end of
24 weeks, there was no significant effect on glycated hemoglobin (HbA1C), lipid profile,
blood pressure or body mass index when comparing either the LF or HF group to the
control group. In that trial, we relied on dietary recalls to confirm patient compliance.

We hypothesized that biomarkers of dairy intake, specifically pentadecanoic acid
(15:0), heptadecanoic acid (17:0) and trans-palmitoleate (C16:1 trans-n-7), will not be
associated with higher HbA1c or other cardiometabolic risk factors at the end of the trial.

In this ancillary study, we aimed to look at the association between individual fatty
acids, specifically pentadecanoic acid (15:0), heptadecanoic acid (17:0) and trans-palmitoleic
acid (trans-16:1n-7), and HbA1c, body weight and cardiovascular risk factors in people
with type 2 diabetes. We also investigated the compliance within the controlled clinical trial,
looking at specific dairy fatty acid biomarkers: pentadecanoic acid (15:0), heptadecanoic
acid (17:0) and trans-palmitoleic acid (trans-16:1n7) at the start and at the end of the trial in
each of the three diet groups.

2. Materials and Methods
2.1. Study Design and Population

This is a secondary analysis of a randomized clinical trial that examined changes in
plasma fatty acids and their association with glycemic control and other CVD risk factors
in adults with type 2 diabetes. The primary trial was designed to investigate the effect of
low-fat and high-fat dairy consumption on glycemic control and other CVD risk factors in
patients with type 2 diabetes. The study protocol was approved by the Joslin institution’s
committee on human studies (2016-04), and informed consent forms were signed prior to
any trial-related activity. This trial was registered at clinicaltrials.gov as NCT02895867.

The study design, methods and results have been published previously [9]. In brief, the
study included 111 randomized subjects. The main inclusion criteria included a diagnosis
with type 2 diabetes for ≥3 months; glycated hemoglobin (HbA1c) >7%; BMI ≥25 kg/m2;
consumption of <3 servings/d of dairy products. Outcomes were assessed at three time
points: baseline, 12 weeks and 24 weeks. The primary outcome of the trial was the change
in HbA1c between the three different dietary intervention groups with varying amounts of
dairy intake and dairy fat content. Clinical and laboratory tests were conducted at baseline,
12 weeks and 24 weeks.

2.2. Biospecimen Collection

Details on the assays used to collect venous whole-blood samples were reported pre-
viously [9]. Briefly, fasting samples were collected using a BD Vacutainer® serum separator
tube (SST™, BD) (BD, Franklin Lakes, NJ, USA) and then centrifuged at 1100–1300× g for
10 min to separate serum. Then, 1 mL of serum was aliquoted in a separate cryogenic
vial and immediately stored in at −80 ◦C for later analysis of fatty acids. Samples were
collected at baseline, 12 weeks and 24 weeks.

2.3. Free Fatty Acids Analysis

Fatty acids were determined as previously described by Baylin et al. [8]. Briefly, fatty
acids were extracted and trans-methylated with methanol and sulfuric acid as described
by Zock et al. [10,11]. After esterification, the fatty acid methyl esters were re-dissolved
in iso-octane and quantitated using gas–liquid chromatography. Hydrogen was used as a
carrier gas (1.3 mL/min flow rate) and the injection port was heated to 240 ◦C and was set
to splitless mode. The GC column was a fused silica capillary cis/trans column (SP2560;
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Supelco, Bellefonte, PA, USA) that was 100 m in length, 0.25 µm in internal diameter
and had a 0.20-µm stationary phase. The gas chromatograph was a Hewlett-Packard GC
6890 (Palo Alto, CA, USA) equipped with a flame ionization detector (FID) Samples were
injected using a Hewlett-Packard 7673 Autosampler injector. The sample injection volume
was 1 µL. The GC oven started at a temperature of 90 ◦C and then rose to 170 ◦C at a rate
of 10 ◦C/min. The temperature was maintained at 170 ◦C for 5 min. Then, the temperature
rose at a rate of 5 ◦C/min from 170 to 175 ◦C, followed by a rate of 2 ◦C/min from 175 to
185◦C, a rate of 1 ◦C/min from 185 to 190 ◦C and a rate of 5 ◦C/min from 190 to 210 ◦C. The
oven temperature was held constant at 210 ◦C for 5 min. Then, the temperature increased
at a rate of 5 ◦C/min from 210 to 250 ◦C and was held constant at 250 ◦C for 10 min.
Known standards (purity >99%; NuCheck Prep, Elysium, MN, USA) were used to establish
peak retention times. Instruments were operated and chromatography was integrated
using Agilent Technologies ChemStation A.08.03. Two duplicate control samples were
run in each batch to monitor quality control. The lab participates in external validation
programs offered by the National Institute of Standards and Technology and the American
Oil Chemists Society.

2.4. Statistical Analyses

Study data were collected and managed using Research Electronic Data Capture
(REDCap). The intent-to-treat (ITT) principle was used to analyze study endpoints by
including all randomly assigned subjects. Multiple imputations were used to handle
missing values in the ITT analysis (SAS PROC MI procedure). To analyze the study
endpoints, we constructed a linear mixed-effects model (ANOVA; PROC MIXED) with
group, time and group-by-time interaction as fixed effects and subject as the random effect.
Adjusting for baseline HbA1c, homeostatic model assessment of insulin resistance (HOMA-
IR), age or sex did not affect the outcomes. Therefore, results are reported for the unadjusted
model. We used linear contrasts within the SAS Mixed Procedure (PROC MIXED) for
cross-sectional comparisons between study groups. Univariate and multivariate linear
regression models were used to explore the association between changes in plasma levels
of free fatty acids (FFA) and study outcomes while adjusting for candidate covariates. A
2-sided p < 0.05 was considered statistically significant. Statistical analyses were performed
using SAS version 9.4 (SAS Institute, Inc., Cary, NC, USA) (mixed-effects model) or STATA
SE 15.0 (StataCorp) (linear regression).

3. Results
3.1. Main Study Results

In total, 111 participants with type 2 diabetes were enrolled (aged 58.5 ± 8.9 y, 47%
females, diabetes duration 13.2 ± 8.3 y, HbA1c 8.09 ± 0.96%). The results have been pub-
lished elsewhere [9]. Briefly, at 24 weeks, the percent energy from saturated fat increased
from baseline in the HF group by 3.6% (95% CI: 2.2, 5.1) and decreased in the LF group by
−1.9% (95% CI: −3.3, −0.4). The LF group increased their percent energy from protein by
4.5% (95% CI: 2.6, 6.4). The HF group decreased their percent energy from carbohydrates
by −3.4% (95% CI: −0.2, −6.7). There were no differences in the mean changes in HbA1c,
body weight, BMI, body composition or lipid parameters or BP between the three groups
at 24 weeks.

3.2. Plasma Fatty Acids Results
3.2.1. Changes in Plasma Fatty Acid Profile after Dietary Interventions

At the end of 24 weeks, six plasma fatty acids were different among the three groups.
Of the known dairy biomarkers, both pentadecanoic acid (15:0) and trans-palmitoleic acid
(t-16:1n-7) increased from baseline in the HF group by 14.1% ± 5.4% (p = 0.011) and 17.5%
± 5.1% (p = 0.0019), respectively, compared to the control and LF groups (p = 0.0474 and
p = 0.0025 for group-by-time interaction, respectively) (Figure 1).
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Figure 1. Percent change in dairy specific plasma fatty acids among study groups. Data are least-square mean difference ±
SEM. Intent-to-treat population: control group (n = 38); low-fat group (n = 36); high-fat group (n = 37).

Both heptadecanoic acid (17:0) and hexadecanoic acid (palmitic acid) (16:0) increased
in the HF group by 6.4% ± 3.1% and 4.2% ± 2%, respectively, from baseline (p = 0.0413
and p = 0.036, respectively), but this change was not significantly different from the other
diet groups at 24 weeks, p = 0.111 and p = 0.25, respectively (Figures 1 and 2).
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Figure 2. Association between change in plasma levels of hexadecanoic acid (16:0) (palmitic acid) and change in glycated
hemoglobin (HbA1c).

Among the other fatty acids detected that are not considered biomarkers of dairy
intake, the saturated fatty acid nonadecanoic acid (19:0) increased by 20.21% ± 9.31% in
the HF group compared to an increase of 1.15% ± 9.51% in the LF group and a decrease of
−12.41 ± 8.37% in the control group (p = 0.015 for group-by-time interaction) (Table S1)

Nervonic acid (15c-tetrasenoic acid, selacholeic acid) (24:1n−9c) was the only mo-
nounsaturated fatty acid in which we noted a change: a decrease from baseline in the HF
arm by 9.6% ± 4.1% with no change in the LF and control groups (p = 0.04) (Figure 3).

The trans-fatty acid 9c,12t-octadecadienoic acid (18:2n-6ct) increased by 12.1% ± 3.6%
in the HF group at 24 weeks, while it decreased in the LF and control groups (−1.6% ± 3.8%
and −0.7% ± 3.5, respectively; p = 0.0009 for group-by-time interaction) (Table S1)

Furthermore, 9c,11t-octadecadienoic acid (18:2n−7c) increased by 20.8% ± 5.8% in
the HF group at 24 week, while it decreased in the LF and control groups (−3.27% ± 5.8%
and −3.25% ± 5.32%, respectively; p = 0.002 for group-by-time interaction) (Table S1).

There was no difference between groups in polyunsaturated fatty acids at the end of
the intervention (Table S1).
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3.2.2. Associations between Fatty Acids and Cardiometabolic Biomarkers

In the regression analysis, none of the dairy biomarkers (pentadecanoic acid (15:0),
heptadecanoic acid (17:0) or trans-palmitoleic acid (t-16:1n-7)) were associated with HbA1c.

Associations between other fatty acids not considered markers of dairy intake with
HbA1c, triglycerides (TG),low-density lipoprotein cholesterol (LDL-C) and VLDL-C are
shown in Table S2. Of note, hexadecanoic acid (palmitic acid) (16:0) was positively as-
sociated with HbA1c (p = 0.016) (Figure 2), while 15c-tetrasenoic acid (nervonic acid)
(24:1n−9c) was inversely associated with HbA1c (p = 0.04) (Figure 3). Both docosanoic
(behenic) acid (22:0) and tetracosanoic (lignoceric) acid (24:0) were inversely associated
with HbA1c (Table S2).

Pentadecanoic acid (15:0), hexadecanoic acid (palmitic acid) (16:0), heptadecanoic acid
(17:0), trans-palmitoleic acid (t-16:1n-7), nonadecanoic acid (19:0), 9c,11t-octadecadienoic
acid (18:2n−7c) and 9c,12t-octadecadienoic acid (18:2n−6ct) were positively associated
with VLDL-C and triglycerides, whereas only 11t-octadecadienoic acid (18:2n−7c) was
positively associated with total cholesterol, and 15c-tetrasenoic acid (24:1n−9c) (nervonic
acid) was inversely associated with TG and VLDL-C (Table S2).

None of the changes in fatty acids were associated with weight or blood pressure
(data not shown).

4. Discussion

In this ancillary study, an increase in high-fat dairy consumption to ≥3 servings/day
compared to <3 servings/day while maintaining energy intake was associated with an
increase in pentadecanoic acid (15:0) and trans-palmitoleic acid (t-16:1n-7) in patients with
type 2 diabetes. Heptadecanoic acid (17:0), another dairy biomarker, was also increased in
the high-fat dairy arm, but the change was not statistically significant. Those three dairy
fatty acids were not associated with HbA1c, but they were positively associated with TG
and VLDL-C. We have previously shown that in patients with type 2 diabetes, an increase
in dairy consumption to ≥3 servings/day compared to <3 servings/day in an isocaloric
diet, irrespective of its fat content, has no effect on HbA1c, body weight, body composition,
lipid profile or BP. This study found that the fatty acid biomarkers of dairy intake increased
in the high-fat dairy arm; therefore, the lack of effect found in the abovementioned study
was not due to non-compliance.

The fatty acid biomarkers of dairy actually make up a small proportion of the fat in
milk; the proportions of fat for 15:0, 17:0 and 16:1-trans are 1.1%, 0.6% and 0.3%, respectively.
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Despite these low proportions, our intervention was associated with a significant increase
in the levels of those fatty acids. This confirms previous studies that suggest that there is
utility in these three fatty acids as biomarkers of dairy intake despite their low relative
abundance in both plasma and milk.

There is a persistent notion that saturated fatty acids should be avoided generally.
This is likely due to the known effect of saturated fat on insulin resistance and incidence of
type 2 diabetes [12,13]. Not all saturated fatty acids have the same biological effects. In
a Swedish cohort, the highest quintile of regular-fat dairy consumption was associated
with a 23% lower risk of type 2 diabetes (T2D) in comparison to the lowest quintile [14]. In
addition, it is important to note that we do not consume specific nutrients in isolation but
rather consume them as part of complex foods. Therefore, although a specific saturated
fatty acid may have a beneficial or harmful effect, complex foods may have different
influences. Dairy food is a good example of this. Though high in saturated fat with
myristic (14:0), palmitic (16:0) and stearic (18:0) acids comprising over 50% of the total fat
content, a review of several studies found no increase in risk of T2D with increased intake
of dairy products [15].

Odd-chained saturated fatty acids (SFAs) and very long saturated fatty acids may
have protective effects, whereas even-chained SFAs may have detrimental effects [16,17].
In regard to dairy fatty acids, most of the previous studies have shown either a neutral
association or a beneficial effect on incidence of diabetes. In multivariate analyses, FFA 15:0
and FFA 17:0 were inversely associated with fasting plasma glucose [18]. In two separate
cohorts of US men and women, three plasma biomarkers of dairy fat, namely 15:0, 17:0, and
trans-16:1n-7, were associated with a lower risk of incident diabetes mellitus [5]. Dairy fat
intake, on the other hand, has been associated with glucose tolerance, hepatic and systemic
insulin sensitivity and liver fat but not β-cell function in humans [18].

Circulating and tissue biomarker concentrations of odd-chain saturated fats (15:0, 17:0)
and natural ruminant trans-fats (trans-16:1n-7) partly reflect dairy fat consumption, help
capture multiple dietary sources without relying on memory or subjective reporting and
reflect a complementary approach to look at compliance with dairy food interventions.

In the Insulin Resistance Atherosclerosis Study (IRAS) cohort, saturated fatty acids
that are even-chained and shorter in length (14:0 and 16:0) were positively related to pro-
inflammatory markers. Longer even-chained SFAs (20:0 and 22:0) and an odd-chained SFA
(15:0) had inverse associations [19].

It is not surprising to see the inverse association of both docosanoic (behenic) acid
(22:0) and tetracosanoic (lignoceric) acid (24:0) with HbA1c as higher plasma concentrations
of very-long-chain saturated fatty acids have been associated with lower risk of type
2 diabetes [20].

Most of the studies that looked at the association of dairy fatty acids with dairy intake
relied on dietary recall [5]. However, dairy fat is consumed not just as a whole food only
but mixed into numerous foods. Food frequency questionnaires that estimate dairy fat
intakes from whole foods and major mixed sources may not accurately capture quantities
in mixed food. In our study, we have seen an increase in dairy free fatty acids directly
associated with the intervention, providing stronger evidence that these fatty acids could
serve as biomarkers of dairy fat.

In the main study results, we did not see a significant difference between the three
groups at 24 weeks in the mean changes in HbA1c, body weight, BMI, body composition
or lipid parameters or BP; however, there was a trend of higher HbA1c in the LF and HF
groups. It is possible that higher HbA1c with dairy could be confounded by increased
carbohydrate intake in the LF group only as we saw an increase in the total energy ex-
penditure from carbohydrates in the LF group in the main trial. Although dairy is often
sweetened, dairy-based desserts or cream did not count toward the three daily servings
of dairy in the dairy groups. In this ancillary analysis, while biomarkers of dairy fat were
not associated with HbA1c, palmitic acid (16:0) was positively associated with HbA1c, and
15c-tetrasenoic acid (24:1n−9c) was negatively associated with HbA1c. Palmitic acid is



Nutrients 2021, 13, 1145 7 of 9

naturally produced at low levels by a wide range of plants and organisms. It is not only
present in dairy but can also be found in cocoa butter, soybean oil and sunflower oil. On the
other hand, nervonic acid (15c-tetrasenoic acid (24:1n−9c)), a monounsaturated fat present
in seed oils of plants, was decreased from baseline in the HF arm by 0.06% in comparison
to the low-fat and control groups (p = 0.04).

It is interesting that not all saturated fats were associated with higher TG and VLDL-C,
only dodecanoic acid (12:0), tetradecanoic acid (14:0), pentadecanoic acid (15:0), hex-
adecanoic acid (palmitic acid) (16:0), heptadecanoic acid (17:0), nonadecanoic acid (19:0)
(Table S2). Based on other studies, this suggests that apoC3 would likely be increased and,
together with increases in TG and VLDL-C, would be expected to increase risk of type 2
diabetes and heart disease. Previous analyses have shown a moderate association between
fatty acids and levels of triglycerides, and while SFA had a positive association with TG,
long-chain polyunsaturated fatty acids (PUFAs) had a negative one [21].

This study is limited by the fact that it is an ancillary study and the association that
we found does not imply a true causation. In addition, it has been suggested that trans-
palmitoleic acid (trans-16:1, n−7) can be synthesized endogenously from vaccenic acid
(trans−18:1, n−11), which can be present in partially hydrogenated fats and oils [22]. How-
ever, one of the major strengths of our study is the use of biomarkers of diary consumption
in a clinical control setting, unlike other publications that correlated those biomarkers with
self-reported dietary recalls or food frequency questionnaires.

5. Conclusions

In conclusion, consumption of ≥3 servings of high-fat dairy per day can be main-
tained over 24 weeks and has no significant effect on HbA1c. However, the association of
biomarkers of fatty acids with higher triglycerides and VLDL-C suggests the need to better
understand potential health effects of dairy fat and metabolic determinants of fatty acids
especially when dairy fats are replacing other fats in the diet.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nu13041145/s1, Table S1: Associations between analyzed plasma fatty acids and selected
cardiometabolic biomarkers; Table S2: Change in analyzed plasma fatty acids from baseline to 12 and
24 weeks in study groups.
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