
RESEARCH ARTICLE

Enhanced cytotoxicity of a redox-sensitive hyaluronic acid-based nanomedicine
toward different oncocytes via various internalization mechanisms
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ABSTRACT
Receptor-mediated active targeting and tumor microenvironment responsive systems from polymeric
micelles have been studied for rapid cellular internalization and triggered drug release. Previously we
have constructed redox-responsive polymeric micelles composed of vitamin E succinate conjugated
hyaluronic acid (HA-ss-TOS), which are able to actively target CD44 proteins and quickly release loaded
drugs upon exposure to high levels of glutathione (GSH) in tumor cells. In the present study, we found
that despite different cellular internalization mechanisms, micelles showed strong antineoplastic effects
on 4T1 and B16F10 cells due to redox responsiveness. HA-ss-TOS-PTX micelles exhibited an excellent
tumor targeting ability and prolonged retention time compared to Taxol in vivo. In addition, a superior
antitumor effect was achieved compared to PTX-loaded insensitive micelles (HA-TOS-PTX) and Taxol.
Our results revealed that PTX-loaded HA-ss-TOS micelles could enhance the antineoplastic efficacy of
PTX for breast cancer and melanoma treatment and, thus, deserve further attention.
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Introduction

Clinical studies have found that although nano-drugs can
effectively reach the tumor site, limited amounts are trans-
ported into tumor cells, resulting in decreased anti-tumor
efficacy (Stras et al., 2016). Most of the cytotoxic drugs cur-
rently used in the clinic are required to enter cancer cells to
exert inhibitory functions (Bailly 2014; Dissanayake et al.,
2017; Jin et al., 2019). Therefore, in order to kill tumor cells,
it is inevitable to elevate the concentration of drugs inside
tumor cells (Chen et al., 2016). It is well known that tumor
cells usually overexpress specific receptors on their mem-
branes, which are potential targets for select ligands, such as
antibodies (Dumont et al., 2019; Liu et al., 2019), transferrin
(Ke and Xiang 2018; Venkatesan et al., 2019), hyaluronic acid
(Jeong et al., 2019; Wang et al., 2019), etc. By coupling these
ligands onto the surface of nancarriers, their affinity toward
tumor cells can be dramatically improved, thereby increasing
the intratumor accumulation of chemotherapeutics via recep-
tor-mediated internalization.

Bio-responsive nanocarrier delivery systems are dependent
on the physiological characteristics of the tumor microenvir-
onment for charge reversal, triggered drug release and other
functions (Cheng et al., 2015; Chen et al., 2019). Biological
response signals in the tumor microenvironment include
extracellular and intracellular pH changes or specific
enzymes, a strong reduction environment in the tumor cells

and other signals (Tang et al., 2018; Uthaman et al., 2018).
The glutathione (GSH) level in tumor cells is up to 2–20mM,
which is 4–10 times higher than that in normal cells and
nearly 1000 times than that in the extracellular fluid and
blood(Huang et al., 2018; Ling et al., 2019). Therefore, a rela-
tively strong reduction environment in tumor cells could be
a promising bio-signal for smart drug delivery.

In our previous study (Xia et al., 2018), we constructed
GSH-responsive polymeric micelles composed of vitamin E
succinate conjugated hyaluronic acid (HA-ss-TOS), which had
a desirable average particle size (150 nm) and a high drug
loading content (about 37%). The GSH-induced disassembly
of HA-ss-TOS-PTX was validated by TEM, drug release behav-
ior as well as a change of particle size in the reducing envir-
onment, while the biological evaluation of HA-ss-TOS-PTX in
different cancer cells with distinct CD44 expression was not
conducted. In the present study, we have chosen A549,
B16F10 and 4T1 cells with different CD44 expression to study
their cellular internalization mechanism and included anti-
neoplastic studies (Figure 1).

Results and discussion

Preparation and characterization of PTX-loaded micelles

The amount of TOS grafting on HA had a large influence on
drug loading, drug encapsulation and the particle size of the
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micelles. Previously, we optimized the preparation process
which revealed a preferred degree of substitution (DS, 11%)
of TOS in HA-ss-TOS and HA-TOS conjugates and exhibited a
desirable particle size (about 150 nm) which were prone to
self-assemble into micelles in aqueous media. Moreover, the
HA-ss-TOS conjugates and HA-TOS conjugates with 11% DS
showed excellent physical compatibility with PTX, and a high
drug loading (about 37%) as well as drug encapsulation
(about 90%) capability (Xia et al., 2018).

The particle size and morphology of the PTX loaded HA-
ss-TOS and HA-TOS micelles were characterized by TEM. Both
micelles had a spherical shell-core structure and their particle
size was approximate 120 nm (Figure 2(A,B)). The existing
state of PTX in the micelles was investigated by DSC. As
shown in Figure 2(C), PTX had two Tonset values, i.e. 215.7 �C
and 238.9 �C, and the Tonset of the blank HA-ss-TOS micelles
was 221.5 �C. However, after formulation, HA-ss-TOS-PTX
exhibited the only Tonset at 223.5 �C, indicating the successful
encapsulation of PTX into the core of the HA-ss-TOS micelles.
XRD analysis showed that PTX had strong peaks at 5.50�,
8.87�, and 12.24� (Figure 2(D)), which also appeared in the
XRD spectra of the two pre-mentioned physical mixtures
containing PTX. On the contrary, there were no obvious
peaks in the XRD spectra of HA-ss-TOS-PTX micelles and HA-
TOS-PTX micelles, revealing the complete entrapment of PTX
in these two micelles. We found (Figure 2(E)) when pyrene
loaded HA-ss-TOS micelles were incubated with 10mM GSH
or 20mM GSH for 12 h, there was a prominent decrease in
fluorescence intensity of pyrene compared to that incubated
without the addition GSH. For comparison, pyrene loaded

HA-TOS micelles displayed no apparent changes of fluores-
cence intensity after being incubated with 20mM GSH.
These results demonstrated that the micellar structure of HA-
ss-TOS was easily disrupted when exposed to a high concen-
tration of reduction agents.

Cellular uptake and location of C6-labeled HA-ss-TOS
micelles on different oncocytes

As is commonly known, highly expressed CD44 receptors are
beneficial to the internalization of HA-covered nanoparticles.
Thus, before the cell studies, we tried to validate the CD44
expression level on the surface of different cells, i.e., A549,
B16F10 and 4T1 cells. As a result, B16F10 and 4T1cells highly
expressed CD44, accounting for approximately 73.2% and
91.5%, respectively, while A549 cells showed extremely lower
CD44 expression with a mere 8.5% (supplementary Figure
S1). The HA based active targeting nanomedicines have been
a research hotspot in the field of cancer therapy duo to the
enhanced targeting efficacy and improved antineoplastic
activities (Lv et al., 2018; Paidikondala et al., 2019; Phua
et al., 2019). 4T1, B16F10 and A549 cells were chosen for this
research and we have figured out B16F10 cells were highly
expressed CD44 proteins, while A549 cells showed low
expression of CD44 proteins, which were exploited for the
biological evaluation of a redox-sensitive hyaluronic acid-
based nanomedicine

The CLSM results in Figure 3(A) showed that the HA-ss-
TOS-C6 micelles were mainly located in the cytoplasm which
was the effective target site of PTX in A549, B16F10 and 4T1

Figure 1. Schematic illustration of different antitumor mechanisms of HA-ss-TOS-PTX against 4T1 cells and B16F10 cell bearing mice, respectively. After being intra-
venously administrated, HA-ss-TOS micelles rapidly accumulated in 4T1 tumor tissue and B16F10 melanoma cells.
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cells. The results achieved by flow cytometry showed that
the mean fluorescent intensity of the HA-ss-TOS-C6 micelles
in the 4T1 cells was almost triple as that in B16F10 cells and
approximately 2.5 times higher than that in A549 cells
(Figure 3(B)), which was consistent with the CLSM results.
Furthermore, as was shown in Figure 3(B), we found the

addition of free HA (10mg/mL) dramatically decreased
(p< .001) the fluorescent intensity of HA-ss-TOS-C6 micelles
in 4T1 cells and a lower green fluorescence (p< .01) was
measured after treatment with free HA in B16F10 cells.
However, there was no distinct change in fluorescent inten-
sity in the presence of HA in A549 cells. These results implied

Figure 2. (A) TEM image of the HA-ss-TOS-PTX micelles. (B) TEM image of the HA-TOS-PTX micelles. (C) DSC curves of PTX, HA-ss-TOS, the physical mixture of
PTX and HA-ss-TOS, and HA-ss-TOS-PTX. (D) WARD of PTX, the physical mixture of PTX and HA-ss-TOS, HA-ss-TOS-PTX, the physical mixture of PTX and HA -TOS,
HA-TOS-PTX. (E) Fluorescence intensity of pyrene in the presence of different concentrations of GSH: (a) HA-ss-TOS without GSH; (b) HA-ss-TOS with 10mM GSH;
(c) HA-ss-TOS with 20mM GSH; and (d) HA-TOS with 20mM GSH.

Figure 3. (A) CLSM images of A549, B16F10 and 4T1 cells after 1 h and 4 h in incubation with HA-ss-TOS-C6 micelles. Scale bars are 10lm. (B) Intracellular uptake
of HA-ss-TOS-C6 micelles, free-HA polymer pretreated HA-ss-TOS-C6 micelles and HA-TOS-C6 micelles at 1 h upon incubation with B16F10, A549 and 4T1 cells. (C)
Intracellular uptake of HA-ss-TOS-PTX micelles, HA-TOS-PTX micelles and Taxol at 4 h upon incubation with B16F10, A549 and 4T1 cells. �p< .05,��p< .01, ���p< .001.
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that free HA could competitively restrain the uptake of HA-
ss-TOS-C6 micelles by B16F10 and 4T1 cells. Finally, it was
found that cells highly expressing CD44, especially 4T1 cells
(p< .001), were inclined to take up HA-ss-TOS-PTX more than
Taxol (Figure 3(C)).

Cellular uptake mechanisms of C6 -labelled HA-ss-TOS
micelles on different oncocytes

As shown in Figure 4, the addition of sucrose and chlorpromaz-
ine significantly decreased the uptake of micelles in 4T1 cells
(p< .05), which implied that a clathrin-mediated internalization
should be the major pathway for 4 T-1 cells. To our surprise,
amiloride was able to dramatically block the endocytosis of
micelles by B16F10, while no distinct changes were observed
for 4T1 and A549 cells. Thus, we understood that the micelles
were taken up by B16F10 cells mainly via micropinocytosis,
which can explain the negligible influence of the addition of
free HA on the internalization of micelles into B16F10 cells.

Figure 4. Relative internalization efficiency of HA-ss-TOS-C6 micelles by
B16F10, A549 and 4T1cells in the presence of various endocytosis inhibitors.�p< .05 vs. control and ��p< .01 vs. control.

Figure 5. (A) Co-localization of the micelles into macropinosomes of 4T1 and B16F10 cells at 30min as observed by CLSM. The macropinosomes were stained with
Dextran-rhodamine. Scale bars are 20 lm. (B) Co-localization of the micelles into endo/lysosomes of 4T1 and B16F10 cells at 30min as observed by CLSM. The
endo/lysosomes were stained with Lyso-tracker red. Scale bars are 20lm.
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The CLSM images in Figure 5(A) displayed that a strong
yellow fluorescence appeared in the B16F10 cells, while only
a weak yellow fluorescence was observed in the 4T1 cells.
These data further validated the micropinocytosis pathway of
B16F10 to translocate the HA-ss-TOS micelles. As shown in
Figure 5(B), intensive yellow was observed when the green
fluorescence of HA-ss-TOS-C6 was overlaid with the red fluor-
escence from the Lyso-tracker red in the 4T1 cells, while no
obvious yellow was observed in the B16F10 cells. These
results indicated that HA-ss-TOS-C6 was endocytosed by 4T1
cells via a clathrin-mediated route.

We found high expression of CD44 is beneficial for the
internalization of micelles covered with an HA shell, while
4T1 and B16F10 cells displayed such a big difference in cellu-
lar uptake although they both expressed a high level of
CD44. To figure it out, we have demonstrated 4T1 cells and
exerted different cellular internalization mechanisms. More
specifically, HA-ss-TOS-C6 was endocytosed by 4T1 cells via
the clathrin-mediated route which enhanced the cell uptake
by 4T1 cells via interaction of CD44 with HA while, interest-
ingly, macropinocytosis of HA-ss-TOS-C6 into B16F10 melan-
oma cells was found, which was identical to the previous

report that inducible macropinocytosis of HA in B16F10 mel-
anoma cells (Greyner et al., 2010).

In vitro antineoplastic effects

The anti-proliferative effects of PTX-loaded micelles against
cancer cells were evaluated via the MTT method. Different
from the A549 cells and B16F10 cells, 4T1 cells were more
sensitive to HA-ss-TOS-PTX micelles rather than Taxol and
HA-TOS-PTX micelles even at a low concentration, i.e.
0.001 lg/mL (Figure 6(A–C)). The blank HA-ss-TOS micelles
exerted a synergistic antineoplastic effect with PTX against
B16F10, A549, and 4T1 cells (Supplementary Figure S2). In
comparison, blank HA-TOS micelles exhibited lower antineo-
plastic activities. Furthermore, both of the blank HA-ss-TOS
micelles and HA-TOS micelles showed no significant cytotox-
icity against L-02 cells, suggesting that the redox-sensitive
nanocarrier exerted synergistic anti-cancer effects with PTX
and were nontoxic to normal cells (Supplementary
Figure S2).

The IC50 values calculated from the MTT results in Figure 6(D,E)
revealed that, compared to inert HA-TOS micelles, redox-

Figure 6. Anti-proliferative activity of (A) A549 cells, (B) B16F10 cells, and (C) 4T1 cells for (a) 24 h and (b) 48 h. IC50 values calculated from the cytotoxicity of
Taxol, HA-TOS-PTX and HA-ss-TOS-PTX micelles against A549, B16F10 and 4T1cells after (D) 24 h and (E) 48 h. (F) Apoptosis of B16F10, A549 and 4T1 cells observed
by CLSM after treatment with Taxol, HA-TOS-PTX and HA-ss-TOS-PTX at a PTX concentration of 1 lg/mL for 24 h. �p< .05, ��p< .01, ���p< .001.
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responsive HA-ss-TOS-PTX micelles exhibited 2 times lower
cell viability in A549 cells, 3.1 times lower in B16F10 cells,
and 5.5 times lower in 4T1cells, after 24 h of incubation.
Apparently, HA-ss-TOS-PTX micelles showed the best antitu-
mor effect against 4T1 cells (Figure 6(F)). When compared to
A549 cells, HA-ss-TOS-PTX micelles exhibited a stronger
inhibition effect on B16F10 cells. The apoptosis experiment
demonstrated that the HA-TOS-PTX group always displayed
the lowest cell apoptosis among all groups, which was pri-
marily due to the intracellular slow drug release. Besides,
apoptotic bodies in B16F10 and 4T1 cells could be observed
with the obvious karyopyknosis after treatment with PTX for-
mulations (Supplementary Figure S3).

In vitro cytotoxicity revealed HA-ss-TOS-PTX micelles
showed the best antitumor effect against 4T1 cells. 4T1 cells
overexpressed CD44 and internalized HA-covered micelles
via endocytosis. Thereafter, when exposed to a high concen-
tration of GSH in endosomes/lysosomes, HA-ss-TOS-PTX
micelles could be easily disassembled and release PTX. For
B16F10 cells compared to A549 cells, HA-ss-TOS-PTX micelles
exhibited a stronger inhibition effect on the former. Taking
the macropinocytosis pathway and porous membrane struc-
ture of macropinosomes into account (Yuan et al., 2012; Mo
et al., 2013), HA-ss-TOS-PTX micelles could simply diffuse
from the vesicle into the cytoplasm after being taken up by

B16F10 cells. Moreover, the cytoplasm is the site of GSH syn-
thesis and has a higher level of GSH compared to other sub-
cellular organelle (Cheng et al., 2015), thus, inducing the
disassembly of HA-ss-TOS-PTX micelles resulting in drug
release and toxicity to B16F10 cells.

In vivo tumor targeting ability and pharmacokinetics of
HA-ss-TOS micelles

Figure 7(A) revealed that a strong fluorescence was also
observed in the tumor site after 6 h post-injection of DiR-HA-
TOS and DiR-HA-ss-TOS micelles, while a negligible tumor
targeting effect was found for free DiR. Moreover, a much
stronger fluorescent signal in tumors at 12h vs. at 6 h revealed
a prolonged circulation time and a tumor-targeting ability of
both micelles, which can be also regarded as a powerful proof
of great in vivo stability for these micelles. Besides, the
micelles had a prolonged tumor retention period for more
than 24h, reflecting a potential long-term action of the nano-
materials for tumor therapy. On the contrary, free DiR showed
negligible tumor accumulation and quick clearance from the
body. The ex vivo fluorescent images taken by IV-IS demon-
strated a consistent result with the in vivo data (Figure 7(B)).

The pharmacokinetic curves (Figure 7(C)) of HA-ss-TOS-
PTX and HA-TOS-PTX micelles presented a slower downtrend

Figure 7. (A) In vivo imaging of DiR-loaded formulations in 4T1 tumor-bearing mice. Tumor sites were marked by pink circles. (B) Ex vivo imaging of the isolated
organs in mice. (C) The change of PTX concentration over a period of time (n¼ 5).
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when compared to Taxol, indicating that the PTX-loaded
micelles decreased blood clearance and had a prolonged
blood circulation time. The pharmacokinetic parameters cal-
culated by the PK Solver are shown in Supplementary Table
S1. Taxol showed the lowest Mean Retention Time (MRT)
(p< .05) when compared to HA-ss-TOS-PTX and HA-TOS-PTX
micelles. The AUC0-t of Taxol was 1.9 times and 1.7 times
lower than HA-ss-TOS-PTX micelles and HA-TOS-PTX micelles,
respectively. HA based micelles performed slower drug clear-
ing rate than Taxol (p< .01).

The excellent in vivo tumor targeting ability and improved
pharmaceutics of nanomedicine were helpful to facilitate the
efficacy and control the toxicity (Sun et al., 2017). HA-ss-TOS-
PTX exhibited a superior tumor targeting ability and dramat-
ically prolonged the circulation time of PTX. It was mainly
due to the polysaccharide with abundant carboxyl side
chains (Zhong et al., 2019). Hydrophilic HA was used to form
the shell of the micelles and make them negative. Thus, the

negatively charged feature would lower the opportunity of
micelles to interact with the anionic plasma protein and be
trapped by the reticuloendothelial system (RES) in the liver.

Evaluation of in vivo anti-tumor activities and systemic
toxicity

As previously mentioned, 4T1 cells overexpressed CD44,
which was closely related to the internalization and cytotox-
icity of the HA-covered micelles. Thus, 4T1 cells were sup-
posed to be the most suitable cell line to establish the
tumor-bearing animal model and investigate the in vivo anti-
tumor performance of our preparations. The tumor growth
rate significantly slowed down after treatment with the PTX-
loaded formulation and the HA-ss-TOS-PTX micelles showed
the strongest tumor inhibition efficacy among all groups
(Figure 8(A)). Mice receiving HA-ss-TOS-PTX micelles had the

Figure 8. (A) The growth of tumors after being treated with saline, Taxol, HA-TOS-PTX and HA-ss-TOS-PTX (n¼ 11). (B) The weight of isolated tumor tissues from
mice treated with saline, Taxol, HA-TOS-PTX, and HA-ss-TOS-PTX after 2 weeks (n¼ 3). (C) Images of isolated tumor tissues from mice treated with saline, Taxol,
HA-TOS-PTX, and HA-ss-TOS-PTX after two weeks. (D) The survival rate of mice treated with saline, Taxol, HA-TOS-PTX, and HA-ss-TOS-PTX (n¼ 8). (E) The HE stain-
ing of isolated tumor tissues treated with saline, Taxol, HA-TOS-PTX and HA-ss-TOS-PTX after 2 weeks. Scale bars are 100lm. �p< .05, ��p< .01.
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smallest tumors after a 2-week treatment (Figure 8(B,C)). In add-
ition, the intravenously administered micelles raised the survival
rate and markedly prolonged the mean survival time of 4T1
cell-bearing mice (Figure 8(D)). After sectioning and HE staining
of the harvested tumor tissues, it was obvious that the HA-ss-
TOS-PTX micelles successfully induced cancer cell apoptosis at
a significant measure. In addition, HA-ss-TOS-PTX micelles could
dramatically extend the survival time of B16F10 melanoma
bearing mice (Supplementary Figure S4). Meanwhile, no signifi-
cant weight loss was observed after injection with micelles and
saline other than Taxol formulation (Supplementary Figure S5).
Moreover, HA-ss-TOS-PTX also exhibited inappreciable stimula-
tion (Supplementary Figure S6) and the maximum tolerable
dose (Supplementary Table S2).

4T1 breast cancer and B16F10 melanoma models were
exploited for evaluation of anti-tumor efficacy. The thera-
peutic HA-ss-TOS-PTX effectively halted the growth of
aggressive 4T1 breast tumor in comparison with HA-TOS-PTX
micelles (p< .01) and Taxol (p< .001). In addition, the admin-
istrated intravenously HA-ss-TOS-PTX raised the survival rate
and markedly prolonged the survival time of 4T1 cell-bearing
mice and B16F10 cell-bearing mice, respectively. Finally, HA-
ss-TOS-PTX exhibited inappreciable toxicity at the treatment
dose in vivo demonstrating HA-ss-TOS-PTX was biocompat-
ible and nontoxic nanocarrier for PTX delivery.

Conclusions

In this study, the biological evaluation of a redox-sensitive
hyaluronic acid-based nanomedicine was intensively investi-
gated on cancer cells with diverse expressed CD44 proteins.
We found that despite different cellular internalization mech-
anisms, hyaluronic acid-based nanomedicine showed strong
antineoplastic effects on 4T1 and B16F10 cells due to redox
responsiveness. The enhanced therapeutic effect of HA-ss-
TOS-PTX on breast cancer and melanoma by comparison to
HA-TOS-PTX and Taxol supports the applicability of redox
responsiveness and different cellular internalization mecha-
nisms resulting in a similar antitumor efficacy. Thus, it is
strongly suggested to develop relationships between the
physicochemical characteristics of nanomedicines and the
biological characteristics of diseases to achieve desirable
therapeutic outcomes in the clinic.
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