
 International Journal of 

Molecular Sciences

Review

Flavonoids as Cytokine Modulators: A Possible
Therapy for Inflammation-Related Diseases

Nayely Leyva-López 1, Erick P. Gutierrez-Grijalva 1, Dulce L. Ambriz-Perez 2

and J. Basilio Heredia 1,*
1 Centro de Investigación en Alimentación y Desarrollo A.C., Carretera a Eldorado Km 5.5 Col. El Diez,

80110 Culiacán, Sinaloa, Mexico; nayely061005@gmail.com (N.L.-L.); erickpaulggrijalva@gmail.com (E.P.G.-G.)
2 Universidad Politécnica del Mar y la Sierra, Carretera a Potrerillos del Norote/La Cruz Km 3, La Cruz,

82740 Elota, Sinaloa, Mexico; dulceambriz@hotmail.com
* Correspondence: jbheredia@ciad.mx; Tel.: +52-166-776-05536

Academic Editors: Antonio Segura-Carretero and Ana Maria Gómez Caravaca
Received: 30 April 2016; Accepted: 3 June 2016; Published: 9 June 2016

Abstract: High levels of cytokines, such as interleukin (IL)-1β, tumor necrosis factor (TNF)-α and IL-6,
are associated with chronic diseases like rheumatoid arthritis, asthma, atherosclerosis, Alzheimer’s
disease and cancer; therefore cytokine inhibition might be an important target for the treatment of
these diseases. Most drugs used to alleviate some inflammation-related symptoms act by inhibiting
cyclooxygenases activity or by blocking cytokine receptors. Nevertheless, these drugs have secondary
effects when used on a long-term basis. It has been mentioned that flavonoids, namely quercetin,
apigenin and luteolin, reduce cytokine expression and secretion. In this regard, flavonoids may have
therapeutical potential in the treatment of inflammation-related diseases as cytokine modulators.
This review is focused on current research about the effect of flavonoids on cytokine modulation and
the description of the way these compounds exert their effect.
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1. Introduction

Flavonoids are natural occurring compounds with a wide range of molecular diversity, and more
than 10,000 structures have been reported [1]. Fruits, vegetables, herbs and other plant food are all
flavonoid sources [2]. The interest in flavonoids has arisen because the intake of these compounds
has been associated with the prevention and treatment of diseases, which is translated to benefits in
health [2–4]. The anti-inflammatory effect of flavonoids is one important biological activity.

The activity of flavonoids in the inflammatory response include the inhibition of inflammatory
mediators like reactive oxygen species (ROS) and nitric oxide (NO); the regulation of activity of
inflammatory enzymes, such as cyclooxygenases (COXs) and inducible nitric oxide synthase (iNOS);
the reduction in levels of production and expression of cytokines and the modulation of transcription
factors, such as the nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and activating
protein-1 (AP-1) [5–8]. When the inflammatory response is not regulated, it results in an increase
in the concentration of inflammatory mediators, which might lead to the occurrence of several
chronic diseases, namely rheumatoid arthritis, coronary diseases and cancer, among others [9,10].
There is evidence to suggest that inflammatory cytokines have potential as therapeutic targets
to treat inflammatory diseases [11], therefore, studying the effect of flavonoids on inflammatory
mediators, especially by modulating cytokines, is relevant in order to develop alternative treatments
for inflammation-related diseases.

The present manuscript will review recent evidence regarding the role of flavonoids as modulators
of inflammatory mediators, mainly cytokines, associated with the inflammatory response.

Int. J. Mol. Sci. 2016, 17, 921; doi:10.3390/ijms17060921 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2016, 17, 921 2 of 15

2. Inflammatory Response

Inflammation is a response of the organism to the presence of diverse agents, such as pathogens
(bacteria, fungi and viruses), trauma (shock or burns), toxic compounds (pollutants), as well as
reactions of the immune system (hypersensitivity) in the body, which causes a disruption of tissue
homeostasis [12,13]. There are two types of inflammation, acute or chronic. The former is the initial
response to injury and lasts a few hours or a few days. When acute inflammation does not successfully
eliminate damaging agents it can cause a chronic phase. Chronic inflammation is an extended
inflammation period (weeks to months) and is associated with the presence of lymphocytes and
macrophages, vascular proliferation, fibrosis and tissue destruction. Moreover, chronic inflammation
has been related to diseases, such as rheumatoid arthritis, asthma, atherosclerosis, Alzheimer’s disease
and cancer, among others [14–16].

During inflammation, cells of the immune system, mainly macrophages, could be activated
through the recognition of a pathogen endotoxin, lipopolysaccharide (LPS), by Toll-like receptors (TLR).
This event provokes a signaling pathway that will release the NF-κB, that activates genes associated
with the transcription of proteins related to the inflammatory process, such as iNOS, responsible for
NO synthesis, COXs, which synthetize prostaglandins, and cytokines. The TLR signaling pathway
also triggers the generation of ROS [14,17–19]. Activating protein-1 (AP-1) is another transcription
factor that is important during the inflammatory response. This factor responds to a wide variety of
stimuli such as bacterial and virus infection, stress and growth factors leading to the regulation of
gene expression of pro-inflammatory mediators, including cytokines [20]. Overproduction of some
inflammatory mediators, such as cytokines, as a result of chronic inflammation, might lead to the
occurrence of several chronic diseases [21–23].

3. Cytokines

Cytokines are proteins that play an important role in the inflammatory response. The majority of
the cytokines are produced by activated lymphocytes and macrophages, although endothelial and
epithelial cells are able to produce these proteins, too. Cytokine expression is regulated by NF-κB
and AP-1 and may be triggered by LPS, ROS and microbial species, among others [24]. Interleukin
(IL)-1β and tumor necrosis factor (TNF)-α are two of the main cytokines involved in the inflammatory
response. Briefly, these cytokines induce the expression of adherence molecules in endothelial tissue;
participate in the synthesis of other cytokines, namely IL-6, and chemokines (IL-8 and monocyte
chemoattractant protein-1 (MCP-1)), growth factors, eicosanoids and NO [14]. Other relevant cytokines
are IL-10 (anti-inflammatory cytokine), IL-4 and IL-3, which together downregulate pro-inflammatory
signals [6,25].

Cytokines can be classified into two groups: those related to acute inflammation and those
responsible for chronic inflammation [26]. The cytokines involved in acute inflammation are IL-1, TNF,
IL-6, IL-11, IL-8, IL-16 and IL-17, among others, whereas cytokines related to chronic inflammation are
those mediating humoral responses, like IL-4, IL-5, IL-6, IL-7 and IL-13; additionally, there are cellular
responses, namely IL-1, IL-2, IL-3, IL-4, IL-7, IL-9, IL-10 and IL-12, interferons (IFN), transforming
growth factor (TGF)-β and TNF-α [26].

It has been proposed that a prolonged overproduction of inflammatory cytokines without
regulation might lead to incidence of chronic diseases, such as, rheumatoid arthritis, atherosclerosis
and Alzheimer’s disease, among others [15,16,27]. So the study of these proteins as biomarkers in
inflammation-related diseases is of relevance to determine adequate treatment.

Cytokines as Biomarkes in Inflammation-Related Diseases

Of all the cytokines associated to chronic inflammation that were mentioned before, this review
will focus on IL-1β, TNF-α and IL-6, due to the fact that these are the most well-studied and have
a predominant role in chronic inflammation-related diseases. Among the chronic inflammation-
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related diseases that have shown to be associated to these cytokines are: rheumatoid arthritis;
atherosclerosis; metabolic syndrome and associated type 2 diabetes; neurodegenerative disorders
such as Alzheimer’s disease, and; some forms of cancer in which inflammatory reactions promote
tumor development [28]. Experimental research has linked cytokines IL-1β, TNF-α and IL-6
with several chronic inflammation-related diseases. For example, in Alzheimer’s disease, the
inflammatory response in neurons includes activation of microglia (cells that protect neuronal function),
astrocytes, macrophages and lymphocytes, resulting in the release of cytokines and other inflammatory
mediators [29,30]. The release of these inflammatory mediators leads to the further release of more
inflammatory factors, as well as the recruitment of monocytes. In this sense, the inflammatory
response contributes to the progress of Alzheimer’s disease accelerating the course of the disease.
When microglia are activated, it results in an increased secretion of pro-inflammatory cytokines like
IL-1β, IL-6 and TNF-α, thereby enhancing the ability of monocytes to pass through the blood-brain
barrier [29,30].

IL-6, along with its receptor sIL-6Ralfa, commands the change from acute to chronic
inflammation by shifting the nature of leucocyte infiltrate from polymorphonuclear neutrophils
to monocyte/macrophages [31]. Because of the latter, IL-6 is known to be associated with chronic
inflammation and related diseases. For example, elevated serum IL-6 levels have been detected in
patients with systemic cancers, rheumatoid arthritis, systemic lupus erythematosus, psoriasis and
Crohn’s disease as compared to healthy controls or patients with benign diseases [32–36]. It has been
demonstrated that IL-6 is secreted by many types of cancer cells as it occurs in renal cell carcinoma.
IL-6 is abundant in the serum of 50% of the patients with metastatic renal cell cancer; moreover, these
cancer cells have shown the production of IL-6 and expression of IL-6 mRNA and of the soluble and
membrane-bound gp120 chain of the IL-6 receptor [37,38]. This has turned IL-6 into a drug target in
the treatment of chronic inflammatory diseases [26,31], since the inhibition of IL-6 and its signaling
cascade was effective as treatment regimen in studies of inflammatory diseases [31,34,39,40].

IL-1β, in conjunction with other inflammatory mediators, has shown to be induced by the
activation of microglia cells, which can lead to neuronal death, and thus to the progression of
Alzheimer’s disease [29,30,41]. Additionally, higher levels of serum IL-1β have been found in patients
with abdominal obesity and periodontitis [42]. Another example of the role of cytokines in chronic
diseases can be found between TNF-α and rheumatoid arthritis, where anti-TNF-α antibodies were
added to in vitro cultures of cells from diseased joints and inhibited the production of IL-1β and other
cytokines. Additionally, the use of TNF-α inhibitors has demonstrated remarkable efficacy in the
control of diseases’ signs and symptoms [43]. Moreover, in Alzheimer’s disease, during amyloid
beta-peptide aggregation, microglia cells are activated and thus the production of TNF-α is stimulated,
promoting neuronal death [29,41,44]. IL-1β and TNF-α are produced by activated macrophages, as
well as mast cells, endothelial cells, and some other cell types. The principal role of these cytokines in
inflammation is in endothelial activation. Both IL-1β and TNF-α stimulate the expression of adhesion
molecules on endothelial cells. This increases leukocyte binding and recruitment, and enhance the
production of additional cytokines and eicosanoids. TNF-α also increases tissue fibroblasts, resulting
in increased proliferation and production of extracellular matrix [14,43,45].

Because of the important role of cytokines, and other inflammatory mediators, in the development
of diseases like rheumatoid arthritis and cancer, there have been efforts looking for pharmaceutical
drugs to treat inflammation-related diseases.

4. Anti-Inflammatory Drugs

There are two main types of anti-inflammatory drugs: the nonsteroidal anti-inflammatory drugs
(NSAIDs), which inhibit COX activity, and cytokine receptor inhibitors, which block cytokine activity.
Examples and the mode of action of these anti-inflammatory drugs will be mentioned next.
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4.1. Nonsteroidal Anti-Inflammatory Drugs (NSAIDs)

Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely prescribed and come in different
chemical groupings [46,47]. It has been reported that all the NSAIDs drugs act by inhibiting COX
enzymes, which are involved in inflammation and are responsible for the synthesis of prostaglandins
involved in normal physiological processes. The inhibition of these actions is responsible for the
majority of the adverse effects of NSAIDs in clinical use, and for their main toxicity and overdose [46,48].
All NSAIDs have been reported to increase the risk of gastrointestinal damage; the most common side
effects range from benign dyspepsia and esophagitis to upper-gastrointestinal bleeding, perforation,
and gastric outlet obstruction [49–51].

4.2. Cytokine Receptor Inhibitors

The cytokine receptor inhibitors are drugs based on the premise that, in order to function,
cytokines must bind to specific receptors. Some cytokines have one receptor chain, like type I
interferons, whilst other cytokines bind to shared receptors, like IL-4 and IL-13. In this sense, the
mechanism of action of cytokine receptors is not yet well understood, although it is thought that
receptors are pre-assembled on the cell surface and are activated by structural changes in the receptors
upon binding [52–55].

On this subject, several drugs have been developed to inhibit cytokine activity. These include the
inhibitors of TNF-α and IL-1β with different modes of action [55]. For example, Etanercept, Infliximab
and Anakinra are drugs that bind to TNF-α and IL-1 receptors, respectively [52,55].

Moreover, in the treatment of rheumatoid arthritis, several drugs have been used; among the
most common are the biologic disease-modifying antirheumatic drugs (bDMARD) or TNF-α inhibitors.
However, even with these drugs, around 20%–40% of patients have shown an inadequate response.
An alternative is the use of Tocilizumab, a humanized anti-IL-6R monoclonal antibody that prevents
IL-6 from binding to its receptor IL-6R [56–59]. Some other drugs have been studied with the purpose
of blocking cytokine actions, and some of these are summarized in Table 1 [60].

Due to its importance in the progression of chronic inflammatory diseases, the control of cytokine
action is still a major focus of drug and pharmaceutical research. With efforts in developing cytokine
antagonists like cytokine receptor blockers, it is worthwhile to mention that cytokine receptor inhibitors
have secondary effects. For example, when Tocilizumab, an anti-IL-6 receptor widely used in the
treatment of rheumatoid arthritis, is used in combination with disease-modifying antirheumatic drugs,
an elevation in cholesterol and alanine aminotransferase levels have been reported [61]. On the other
hand, Anakinra has not shown any adverse effects when used in patients with acute gouty arthritis,
while some other therapeutic agents such as Ustekinumab, Etanercept and daclizumab have proven
not to be effective against multiple sclerosis [62].

Due to secondary effects that occur when using anti-inflammatory drugs on a long-term basis, it
is primordial to find alternative therapies to treat inflammatory diseases. Natural compounds, such
as flavonoids, are among the studied molecules in alternative research treatment for inflammation-
related illness.

Table 1. Drugs used to block cytokine activity 1.

Therapeutic Agent Mode of Action Cytokine Targeted Reference

Tocilizumab Anti-IL-6 receptor IL-6 Oldfield, Dhillon and Plosker [59]
Ustekinumab Anti-P40 IL-12/IL-23 Papp, et al. [63]

Anakinra IL-1β antagonist IL-1β Waugh and Perry [64]
Amgen Anti-IL-17 TNF-α Steinman [65]

Etanercept Soluble receptor TNF-α [66,67]
Infliximab Anti-TNF-α TNF-α [67,68]

Dacliqumab Anti-IL-2 receptor IL-2 Martin [69]
1 Table adapted from Leung, Liu, Fang, Chen, Guo and Zhang [60]. IL: interleukin; TNF: tumor necrosis factor.
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5. Flavonoids and Their Anti-Inflammatory Properties

Flavonoids are natural compounds with a common C6–C3–C6 structure containing two aromatic
rings linked by a three carbon chain, typically organized as an oxygenated heterocyclic ring
(Figure 1) [70]. The main classes of flavonoids are flavonols, flavones, flavanones, flavanols, isoflavones
and anthocyanidins [71]. These compounds are produced as secondary metabolites by plants
as defense mechanism against biotic and abiotic stress conditions, mainly [70]. Furthermore, it
has been extensively demonstrated that flavonoids possess a wide range of health benefits due
to their nutraceutical properties such as antibacterial, antioxidant and anti-inflammatory, among
others [8,72,73]. The anti-inflammatory potential of flavonoids is of particular interest for the purpose
of this review.
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It has been well established that flavonoids have a similar mechanism of action to NSAIDs.
In addition, flavonoids inhibit the activity or gene expression of other pro-inflammatory mediators
aside from COX. Indeed, flavonoids can up/down regulate transcriptional factors in inflammatory
and antioxidant pathways, like NF-κB and Nrf-2 [74].

In this regard, polyphenols presented anti-inflammatory activity in LPS-induced inflammation
in RAW 264.7 macrophage cells. Flavonols from C. ternatea exhibited a strong suppression of
COX-2 activity and partial ROS inhibition, while its ternatin anthocyanins inhibited nuclear NF-κB
translocation, iNOS protein expression, and NO production [75]. Flavonoids, such as apigenin,
genistein, and luteolin glycosides from J. platyphylla, an endemic plant from Mexico, showed potential
as anti-inflammatory agents due to their significant inhibitory effects on ROS and NO levels produced
by LPS-induced inflammation in RAW 264.7 mouse macrophage cells. The authors proposed
a hypothetical mode by which flavonoids exert their anti-inflammatory role (Figure 2) [76]. Extracts
from three Mexican oregano species, containing quercetin, luteolin and scutellarein glycosides, showed
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anti-inflammatory activity by lowering ROS and NO production in LPS-induced inflammation in RAW
264.7 macrophage cells [77]. Extracts from Rhodomyrtus tomentosa, containing the flavonoid quercetin,
effectively suppressed the release of NO and prostaglandin E2 in LPS-treated RAW 264.7 cells and
peritoneal macrophages [78]. These studies were about anti-inflammatory activity of plant extracts.
Extracts are composed of a variety of flavonoids, so the bioactivity cannot be attributed to one specific
flavonoid. Nevertheless, there are other studies in which the anti-inflammatory effect of individual
flavonoids was evaluated.
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Figure 2. Hypothetical model that shows the possible effect of flavonoids from J. platyphylla on the
levels of some inflammatory mediators. Lipopolysaccharide (LPS) binds to TLR4 receptor and triggers
the generation of reactive oxygen species (ROS) from nicotinamide adenine dinucleotide phosphate
(NADPH)-oxidase and mitochondria. ROS-mediated redox reactions activate the nuclear translocation
of the nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB). The NF-κB activation mediates
inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX) expression. Both COX-1 and COX-2
activities mediate the production of prostaglandins. In addition, J. platyphylla total extracts (mixture of
flavonoids and lipophilic compounds) inhibited both COX-1 and COX-2 activities. The up black arrow
indicates an increase on inflammatory mediators when macrophage cells are stimulated with LPS.
The down blue arrow shows suppressive effect on ROS, NO and prostaglandin levels by flavonoids.
The red T-shaped symbol indicates inhibition on protein activity. Adapted from Ambriz-Perez, Bang,
Nair, Angulo-Escalante, Cisneros-Zevallos and Heredia [76].

In different mice models, apigenin (<10 µM) has shown inhibitory action on NO and prostaglandin
E2 (PGE2) by inhibiting the expression of iNOS and COX-2, respectively. Furthermore, apigenin
(25 mg/kg) suppressed p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase
(JNK) phosphorylation without affecting the activity of extracellular signal-regulated kinase (ERK) [79].
Apigenin also played a protective role against hepatocarcinogenesis on lipid peroxidation, as
an antioxidant defense [80]. Quercetin (10–25 µM) exerted an inhibitory effect on NO and TNF-α on
BV-2 LPS-stimulated microglia cells [81]. Furthermore, quercetin (10 µM) down-regulated COX-2 and
NF-κB expression and reduced NO production in ochratoxin-stimulated HepG2 (human hepatoma)
cells [82]. Luteolin (<10 µM) inhibited NO, IL-6, MCP-1 and TNF-α production, as well as iNOS and
COX-2 expression in pseudorabies virus-infected RAW 264.7 cells by inhibiting NF-κB activation [83].
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The molecular mechanisms involved in the anti-inflammatory effect of flavonoids might include
the inhibition of pro-inflammatory enzymes, such as COX-2 and iNOS; and cytokines, the inhibition
of NF-κB, AP-1 and mitogen-activated protein kinase (MAPK) [84–86]. Evidence that supports this
statement will be discussed next.

Flavonoids as Anti-Cytokine Agents

A large number of phenolic compounds have been reported to inhibit both the secretion
and expression of pro-inflammatory cytokines. Regarding the effect of flavonoids on cytokine
secretion, it has been observed that apigenin, chrysin, diosmetin, kaempferol, luteolin, naringenin
and quercetin, at 50 and 100 nM, reduced IL-6 and TNF-α secretion levels in LPS-stimulated RAW
264.7 macrophages [87]. The incubation of human periodontal ligament cells with apigenin (40 µM)
significantly decreased the nicotine- and LPS-induced production of IL-1β, TNF-α, IL-6, and IL-12 [88].
Besides this, it was established that luteolin, quercetin, genistein, kaempferol, apigenin, diosmetin and
hesperetin, at 25 and 50 µM, inhibited TNF-α release in LPS-activated macrophages, quercetin, luteolin
and genistein being the most efficient inhibitors of this cytokine secretion. Furthermore, quercetin and
luteolin exerted stimulatory effects on the expression of the anti-inflammatory cytokine IL-10, but at
low concentrations (<50 µM) [89]. Luteolin (15–20 µM) has been proven to exert anti-cytokine effects
on IL-1β and TNF-α release by murine BV-2 microgial cells stimulated with LPS/IFN-γ [90]. Moreover,
luteolin (3–10 µM) significantly reduced IL-6 and TNF-α release by suppressing NF-κB activity in
human monocytes under hyperglycemic conditions (20 mM glucose) [91].Naringenin (10–50 µM),
extracted from Nymphaea mexicana Zucc, showed a noticeable inhibitory effect on NO, MCP-1 and
TNF-α production in LPS-activated RAW 264.7 macrophages. Naringenin (10–25 µM) also inhibited
LPS-mediated induction of protein expressions of iNOS, COX-2, and phospho-ERK [92]. Quercetin
and Luteolin, both at 25 µM, effectively inhibited IL-1β, IL-6, IFN-γ and TNF-α production in human
whole blood incubated with LPS [93]. A six-week supplementation of quercetin (150 mg) given to
human subjects significantly decreased serum concentration of the cytokine TNF-α [94]. In relation to
the effect of flavonoids on cytokine expression it has been established that quercetin (100–200 mg/kg),
a very known anti-inflammatory flavonoid, reduced pancreatic histopathological damage and reduced
the mRNA and protein expression of NF-κB, IL-1β, IL-6 and TNF-α in hypertriglyceridemia-related
acute pancreatitis in rats [95]. Apigenin (20 mg/kg) administration to subarachnoid hemorrhage
suffering rats significantly attenuated mRNA expression of TNF-α, IL-6 and IL-1β when compared
to the untreated control, showing neuroprotective effects [96]. Fisetin (3–30 µM) reduced TNF-α,
IL-1β, IL-6 and IL-8 expression and production in phorbol-12-myristate-13-acetate plus calcium
ionophore (PMACI)-stimulated human mast cells. Additionally, fisetin inhibited phosphorylation of
MAPKs and nuclear translocation of NF-κB induced by PMACI [97]. It has been demonstrated that
luteolin-8-C-β-fucopyranoside (LU8C-FP) (50 µM) suppressed the expression levels of IL-6 on phorbol
12-myristate 13-acetate-treated THP-1 cells, a human leukemia monocytic cell line, by inhibiting
MAPKs and NF-κB signaling pathways in human monocytic cells. Nevertheless, LU8C-FP failed to
inhibit IL-1β and IL-8 expression, which provide information leading to the use of this flavonoid to
treat inflammatory diseases caused by IL-6 [98], such as colitis, diabetes, rheumatoid arthritis, cancer
and cardiovascular diseases [99–103].

NF-κB and AP-1 are important transcriptional factors in the modulation of pro-inflammatory
mediators, like cytokines [85,104]. The first mediates the expression of cytokines and other
inflammatory mediators [105], while the second participates in the synthesis of effector molecules
and cytokines during innate immune response [106]. Due to the important role of NF-κB and AP-1
in inflammation, studies have been conducted in order to determine the effect of flavonoids in
the modulation of these transcriptional factors. Quercetin (100 µM) significantly reduced high
glucose-induced increased NF-κB and AP-1 activity by 43% and 69%, respectively, in rat aortic
endothelial cells [107]. The treatment of IL-1β-induced human synovial sarcoma cells (SW982) with
luteolin (1–10 µM) significantly reduced TNF-α and IL-6 production, inhibited JNK and p38 activation
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and diminished the activation of NF-κB and AP-1 transcription factors. These findings suggest that
the flavonoid luteolin possess anti-cytokine activity in SW982 cells by inhibiting MAPKs (JNK and
p38) and transcriptional factors (NF-κB and AP-1) [108].

As mentioned above, cytokine overproduction is highly related to chronic diseases such as
Alzheimer’s disease, rheumatoid arthritis and cancer, among others [16,109,110]. Flavonoids being
able to downregulate cytokine expression and secretion are a very promising alternative to be used as
treatment of the diseases mentioned previously. A summary of the studies here addressed is shown in
Table 2.

Table 2. Role of flavonoids as cytokine modulators.

Flavonoid Effect Molecular Mechanism Involved Reference

Apigenin

Reduction of NO and
prostaglandin E2 (PGE2)
production. Inhibition of
IL-6, IL-1β, IL-12 and
TNF-α secretion

Inhibition in the iNOS, COX-2, IL-6, IL-1β
and TNF-α gene expression. Amelioration of
p38-MAPK, JNK and ERK phosphorylation

[79,80,87–89,96]

Fisetin
Decreased TNF-α, IL-1β,
IL-6 and IL-8 expression
and production

Inhibited p38, JNK and ERK phosphorylation.
Inhibited nuclear translocation of NF-κB [97]

Luteolin

Reduction of NO, IL-6, MCP-1,
TNF-α, IL-1β and IFN-γ
production. Stimulation of
IL-10 secretion

Reduction of iNOS and COX-2 expression.
Inhibition of the JNK and p38 activation.
Diminished NF-κB and AP-1 activation

[83,87,89–91,93,108]

Naringenin Diminished NO, MCP-1, IL-6
and TNF-α secretion Inhibited iNOS, COX-2 and ERK expression [87,92]

Quercetin

Inhibition of NO, TNF-α,
IL-1β, IL-6 and interferon
(IFN)-γ production. Increased
IL-10 secretion

Suppression in the COX-2, TNF-α, IL-1β, IL-6
and NF-κB expression. Inhibition of the
NF-κB and AP-1 activity

[81,82,87,89,93–95,107]

It has been proposed that anti-inflammatory mechanism of flavonoids is highly related to their
chemical structure. The main features of flavonoids to exert their anti-inflammatory activity are:
(I) a planar ring system in the flavonoid molecule; (II) unsaturation in the C ring at the C2–C3
position; (III) the number and position of hydroxyl groups at the A and B rings, particularly at
C5 and C7 in A ring and at C31 and C41 in B ring; (IV) the lack of hydroxyl groups on B ring
apparently eliminates the activity; (V) the keto group at C4 in C ring, and; (VI) non-glycosylation of
the molecule [111,112]. In this regard, flavonoids with hydroxyl groups in 31 and 41 position, such as
quercetin and luteolin, showed higher inhibitory effect on TNF-α release than those with only one
hydroxyl group in B ring, namely genistein, regardless of the presence of a double bound in C2–C3 [89].
Luteolin exerts anti-inflammatory activity by inhibiting iNOS, IL-1β, IL-6 and TNF-α expression in
LPS-stimulated RAW 264.7 macrophages, while O-glycosylated luteolin showed lower effect on iNOS
and IL-1β expression than the aglycone [113]. To a better understanding of structure/anti-inflammatory
activity relationship of flavonoids the study by Ribeiro et al. can be reviewed [93].

This evidence highlights that the anti-inflammatory effect of flavonoids by inhibiting expression
and secretion of cytokines, as well as diminishing NF-κB and AP-1 activity, as shown in Figure 3.
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6. Conclusions

Various inflammatory diseases up-regulate pro-inflammatory cytokines, such as TNF-α and IL-1β,
and inflammatory mediators such as NO and prostaglandins, via NF-κB, AP-1 and MAPKs, signal
pathways in inflammatory cells. All in all, this manuscript compiled a series of studies that serve as
a good basis to support the statement that flavonoids have a promising potential in the development
of new drugs to treat inflammation-related diseases. Flavonoids appear to be important modulators
of pro-inflammatory cytokines, such as IL-1β, IL-6 and TNF-α. However, the effect of flavonoids on
intracellular signaling pathways and on other inflammatory mediators still remains to be investigated,
since it would depend on the type of cells, the studied disease and the applied stimulus. Extensive
research in this area is therefore required.
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