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Abstract: The authors present an algorithm for determining the stiffness of the bone tissue for
individual ranges of bone density. The paper begins with the preparation and appropriate mechanical
processing of samples from the bovine femur and their imaging using computed tomography and
then processing DICOM files in the MIMICS system. During the processing of DICOM files, particular
emphasis was placed on defining basic planes along the sides of the samples, which improved the
representation of sample geometry in the models. The MIMICS system transformed DICOM images
into voxel models from which the whole bone FE model was built in the next step. A single voxel
represents the averaged density of the real sample in a very small finite volume. In the numerical
model, it is represented by the HEX8 element, which is a cube. All voxels were divided into groups
that were assigned average equivalent densities. Then, the previously prepared samples were loaded
to failure in a three-point bending test. The force waveforms as a function of the deflection of samples
were obtained, based on which the global stiffness of the entire sample was determined. To determine
the stiffness of each averaged voxel density value, the authors used advanced optimization analyses,
during which numerical analyses were carried out simultaneously, independently mapping six
experimental tests. Ultimately, the use of genetic algorithms made it possible to select a set of stiffness
parameters for which the error of mapping the global stiffness for all samples was the smallest. The
discrepancies obtained were less than 5%, which the authors considered satisfactory by the authors
for such a heterogeneous medium and for samples collected from different parts of the bone. Finally,
the determined data were validated for the sample that was not involved in the correlation of material
parameters. The stiffness was 7% lower than in the experimental test.

Keywords: bone; mechanical properties; material model correlation; optimization; FEA; validation

1. Introduction

The aim of the undertaken work was to determine the basic stiffness parameters
for various ranges of bone tissue density using the results of experimental studies and
optimization based on the genetic algorithm. The proposed methodology of the procedure
was tested using a single bovine bone, which was selected due to its structure being similar
to human bones, high availability, and large dimensions, which facilitated the preparation
of a larger number of samples from just one bone.

Most bones in living organisms are supporting structures, with the exception, among
others, of teeth and auditory ossicles. Bones are made of bone tissue that is formed during
development and growth. They adapt to the transferred loads, so their structures are quite
varied. Bone has a hierarchical structure and, from the point of view of the mechanics of a
solid, at the macroscopic level, it is a composite material made of two types of bone tissue:
compact, termed cortically and spongy-trabecular [1]. In general, it is surrounded by the
periosteum, which contains osteoblasts that perform a regenerative and protective function.
Compact tissue is responsible for carrying loads and transporting nutrients. Inside it, there
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is a spongy tissue with a porous structure filled with bone marrow. The microstructure of
bones is illustrated in detail in Figure 1. It can be seen that bones do not have a simple,
layered structure and that each vascular canal is ‘encircled’ by osteons. Only the periosteum
of the bone has a typically layered structure.

Figure 1. Bone structure: (a) long bone and (b) microstructure [1].

The bone tests described in the literature can be divided into two main subcategories:
one related to determining basic material parameters and the other to determine complete,
complex material characteristics. In the first group of studies, the following are determined
mainly: Young modulus, Poisson ratio, and tensile, compressive, and bending strength [2,3].
The second group analyses the complex stress states in bones. These works focus, among
others, on research on crack development or the determination of anisotropic parameters [4–6].

The problem that arises during experimental tests on biological samples is the wide
variation in bone strength parameters for different individuals. It is influenced by factors
related to the existence of the individual from whom the material was collected, among
others, diet, way of burdening the body, past injuries and diseases, age, or gender. In
addition, certain errors or lack of care at the stage of sample preparation can also affect
bone stiffness. In the literature, several works on the modelling of animal and human
bones have been published [2–13]. Table 1 presents a comparison of the basic mechanical
properties of human bones available in the literature. The comparison shows a very large
dispersion of the Young modulus, which confirms the high differentiation of numbers for
different individuals.

From a technical point of view, the bone tests described in the literature mainly include
classic strength tests, such as uniaxial stretching, uniaxial compression, and three-point
and four-point bending [14], supported in the field of measuring deformations by optical
methods (video extensometers, laser extensometers, and the digital image correlation system—
DIC) [15]. The second group consists of hardness measurements, and methods determining
full characteristics using ultrasound, nanoindentation, computed tomography, or magnetic
resonance [16]. Many studies available in the literature show a correlation between bone
stiffness and bone density. Therefore, using the most common methods for imaging structures
at high resolution (computer tomography, CT), techniques for determining the mechanical
properties of the structures and materials were developed on the basis of the image analysis
based on the Hounsfield scale [9,10] or the grayscale (cone beam computed tomography,
CBCT). Both scales basically determine the degree of absorption of the beam by a given object.
In both scales, a pixel is assigned a value proportional to the attenuation of X-ray radiation.
For the Hounsfield scale, it is defined by the following formula [17]:

HU = 1000 ·
µ − µH2O

µH2O
(1)
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where µ is the weakening factor for a given substance, µH2O is the water weakening factor,
and HU is an HU scale number [3].

Table 1. Comparison of mechanical properties of human bones [2–13].

Tissue Young Modulus [GPa] Poisson Ratio [-] Density [kg/m3]

bone (compact) [3] 20.0 0.37 -
bone (compact) [4] 15.0 0.30 2000.0
bone (compact) [5] 14.0 0.30 -
porous tissue [6] 2.0 - -

bone (compact) [7] 20.0 0.30 -
bone (compact) [8] 10.5 0.30 -
porous tissue [8] 1.29 0.30 -

bone (compact) [9] 13.7 0.30 -
porous tissue [9] 7.93 0.30 -

tooth [9] 20.0 0.30 -
bone (compact) [10] 16.7 0.30 1750.0
bone (compact) [11] 20.0 0.30 -
bone (compact) [12] 13.8 0.30 -
bone (compact) [13] 13.7 0.38 -
bone (compact) [14] 13.7 0.30 -
porous tissue [14] 0.5 0.30 -

However, the approach of modeling bone as a structure with homogenous properties
results in a significant averaging of the properties. A high level of modeling accuracy can
be achieved by linking the mechanical properties with the local bone density.

Injuries and diseases of the human skeletal system are also a special issue from the
medical point of view, e.g., osteoporosis, which is characterized by weight loss and a
weakening of the bone structure and is now considered a disease of civilization. In the case
of advanced tissue degeneration, existing solutions in medicine enable the implantation of
artificial structures that support or perform tissue functions in the human body [18]. An
example of such a procedure is the widely used hip arthroplasty [19]. Due to the existing
individual differences in the structure of the human body, personalized medicine plays an
increasingly important role, allowing the design of personalized implants. Therefore, we
need to know the structure, properties, and material parameters of bone tissue. In addition
to experimental studies of bones, numerical modeling also plays an important role [20],
which is developed in parallel, allowing analysis of the structure and properties of bone
tissue while reducing experimental studies [21]. Commonly used numerical models of
bone assume its homogeneity and isotropy of the mechanical parameters of the tissue,
which is often an oversimplification of the bone structure. Bearing in mind the above fact
related to the hierarchical structure of bones, some scientists are developing methods of
multi-scale modeling in which modeling allows the bone microstructure to be taken into
account and allows the determination of the distributions of the analyzed local strain fields
and related strains at the micro- and macroscopic levels.

Currently, the direct voxel model and the discrete smooth model are used to develop
numerical models of bone tissues. The voxel model is the most widespread and most
widely used [22,23]. On the basis of two-dimensional images obtained from a CT, a volume
model is developed in which the smallest unit of volume (voxel) is converted into a
hexagonal finite element. The smooth model consists of segmentation and filtering of
two-dimensional images and conversion to a CAD model in the .stl format of a three-
dimensional model based on computer microtomography, followed by grid application
and volume tetrahedrization [15,24].

Using the Hounsfield scale function from radiological imaging, the modulus of elastic-
ity (Young modulus) can be estimated based on the following relation [25]:

E = a · ρapp
d where ρapp = c · HU + b (2)
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E = a · ( c · HU + b)d (3)

where ρapp is the apparent bone density (kg/m3), HU is the Hounsfield greyscale unit, E
is the Young modulus of bone (MPa), and a, b, c, and d are the coefficients determined by
empirical research.

In Equation (3), there are four unknowns that should be determined for a given value
of the Hounsfield scale in order to determine the Young’s modulus. In principle, these
parameters are constant for the entire bone, so by having a larger number of samples
with different densities at your disposal, it is possible to determine the values of these
parameters with a high level of accuracy.

Numerical optimization is one of the methods for determining the parameters men-
tioned above. A typical optimization procedure involves the computation of numerous
structural variants to evaluate their key responses [26]. Optimization procedures are often
based on simplified models of a given problem for a faster computation of multiple variants
in a reasonable time and the acquisition of an optimal solution for real-world problems.
In recent years, many publications have been published on computational optimization
within this field [27,28]. The parameters of the final structure are optimized by changing the
parameters of the components or manufacturing parameters [14], and an inverse method
is also used, in which the parameters of the constituent materials are derived from the
resulting structure properties. This method is mainly used to identify the material proper-
ties of non-homogeneous materials, such as composites [29,30], layered structures [26,31],
bones [16], or soil [32]. On the other hand, in [33,34] the authors used optimization to
identify the parameters of the homogeneous metallic alloy. In most cases, evolutionary
algorithms were used to efficiently derive material parameters using a metamodel-based
strategy [29,30] or direct optimization without surrogate models [35].

The authors of this publication, based on the literature stage, decided to verify the
possibility of determining the strength parameters for an elastic range of a compact bone
based on a simple experimental test and numerical analyses (Figure 2). A novelty in
the article is the presentation of a complete algorithm for determining the basic material
parameters of bone based on CT scans, simple strength tests, and optimization. This
algorithm can be applied to any type of bone, regardless of its structure. In addition,
the article presents a detailed methodology for conducting optimizations involving the
simultaneous running of multiple numerical tests reflecting different experimental tests to
find common parameters describing stiffness. From the point of view of numerical model
preparation, the main idea of our method is to map the voxel distribution from tomography,
where the mesh is not aligned with the sample, to the new redeveloped model based
on physical measurement (or 3D scans, CAD models, etc., if applicable). It is a method
that avoids irregularities on the outer walls of the model, improving the convergence of
nonlinear analyses and the contact algorithm.

Figure 2. Workflow of the present study.
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2. Materials and Methods
2.1. Analyzed Object

Samples with a rectangular cross-section were tested, which were cut from one bovine
thigh bone. The bone was subjected to a preliminary mechanical treatment that involved
cleaning the bone from the soft tissue. The next step was to cut the bone, using a band saw,
into smaller pieces from which cuboidal samples were cut out later. The bone, cleared from
tissues and cut into smaller pieces, is shown in Figure 3. The description of the samples
includes the following markings: F—a sample taken from the front part, R—a sample taken
from the right side, L—a sample taken from the left side, B—a sample taken from the back
part. The number after the letter indicates the sample number.

Figure 3. (a) Shows the bone after pretreatment with the relevant description, and (b) shows the
cut pieces of bone that were prepared for cutting out the samples. F1, F2, F3—first, second and
third sample from front part of the bone, L1—sample from left side, R1—sample from right side,
B1, B2—first and second sample from back part, black box—approximate cutout location of the
final sample.

In the next step, from each ‘strip’ of the central part, a rectangular sample (Figure 3b)
was prepared so that the dimensions of the samples corresponded to the adopted di-
mensions (length 80.0 mm, protruding 12.0 mm, and thickness 8.0 mm). After the entire
procedure, the samples were sanded with P120 grit sandpaper to even their outer surfaces.
The characteristic dimensions of the samples are presented in Table 2. To identify bone
samples in space, one of the corners of each sample was also ground. Samples of both the
periosteum and the spongy tissue were ground so that only the central part of the compact
tissue was used for testing. Therefore, it did not have the typical periosteal layering.

Finally, the samples were marked and sealed in zip bags. Until the experimental tests
were performed, the samples were stored at a temperature of approximately −4 ◦C.
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Table 2. Dimensions, mass properties, and support spacing for samples in the three-point bending
test.

Sample Number
Dimension A

(Height)
(mm)

Dimension B
(Thickness)

(mm)

L (Length)
(mm)

Cross-Sectional
Area P
(mm2)

Moment of
Inertia on the

Bending Plane
I

(mm4)

Bending
Strength

Index
W

(mm3)

Distance
between
Supports

∆
(mm)

F1 11.58 7.39 68.14 85.58 956.29 165.16 46
F2 11.35 6.68 70.73 75.82 813.92 143.42 46
F3 11.46 7.20 68.78 82.51 903.04 157.60 46
R1 11.56 7.34 70.10 84.85 944.91 163.48 46
L1 11.58 7.38 68.49 85.46 954.99 164.94 46
B1 11.59 7.39 69.25 85.65 958.77 165.45 46
B2 11.17 7.33 67.80 81.88 851.30 152.43 46

Mean 11.47 7.244 69.04 83.11 911.89 158.93 46
Standard deviation ±0.15 ±0.24 ±0.98 ±3.30 ±54.07 ±7.71 -

2.2. Experimental Testing

The aim of the performed experimental studies was to determine the load curves as a
function of the traverse displacement during the three-point bending of bone samples. A
total of six samples (F1, F2, F3, R1, L1, and B1) were tested (Table 2).

The way of setting the samples is shown in Figure 4. The samples were placed
on supports using a specially designed and 3D-printed positioner so that each sample
was always in the same position. The bending test equipment was a set of three-point
bending, shown in Figure 4. The lower supports were mounted on a steel beam and had
an adjustable spacing of up to 200.0 mm. The supports were made of half-rounds with a
radius of R = 5.0 mm. The supports were installed directly on the machine’s traverse in
appropriate holders. During each test, the traverse moved to the destruction of the sample
at a constant speed of 2 mm/min.

Figure 4. Sample prepared to perform three-point bending.

The tests were carried out on a Zwick Roell Kappa 50DS testing machine. The parame-
ters of the testing machine were as follows: maximum load force ±50.0 kN and maximum
displacement value 500.0 mm. The testing machine parameters are presented in Table 3. The
machine was equipped with manually clamped mechanical jaws and electro-mechanical
displacement control.
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Table 3. Parameters of Zwick Roell Kappa.

Manufacturer Testing Machine Test Load, Max. Test Speed
Range

Accuracy
of the

Test Speed

Position
Transducer

Travel
Resolution

Zwick/Roell Kappa 50 DS 50.0 kN 0.001 mm/h to
100.0 mm/min <±0.1% 0.068 nm

The stiffness of the individual samples was determined during the processing of the
results as the slope of the trend line for the linear range of the characteristic (Figure 5) in
the range of sample deflection from 0.2 to 0.8 mm.

Figure 5. The principle of determining the stiffness (Young’s modulus), kexp.

Based on the results obtained from the experiment, it was observed that the stiff-
ness of individual bone samples ranged from kexp

F2 = 4080.1 N/mm2 for the F2 sample to
kexp

L1 = 5263.7 N/mm2 for the L1 sample. The discrepancy in the results was 11.84%.

2.3. FE Models Development
2.3.1. CBCT Imaging

Before the strength tests, the bones were scanned on a computed tomography scanner
(CBCT) in order to obtain their accurate 3D model, which was broken down by the density
of the individual bone phases. Five samples (L1, F1, F2, F3 and B1) were tested and
then used in the process of numerical optimization of mechanical properties based on the
bending test (Figure 6).

The samples were tested on a Carestream CS9600 CT scanner with an X-ray generator
power of 60–120 kV and a tube focal spot equal to 0.3 mm (Table 4, Figure 7). After
the examination, a 3D image of the scanned elements was obtained and saved in the
DICOM format.
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Figure 6. Results of three-point bending test.

Figure 7. Samples prior to CT scan.

2.3.2. Generation of Voxel Mesh

DICOM images of the scanned bone samples from CBCT were imported into Mimics
software developed by Materialize NV. Detailed information on DICOM image parameters
is presented in Table 5.



Materials 2022, 15, 5163 9 of 20

Table 4. CT scanner parameters.

Manufacturer Type Tube Voltage Tube Current Frequency Tube Focal Spot (IEC
60336) Total Filtration Voxel Size

Cerastream Dental
LLC, Atlanta,

GA, USA
CS9600 60.0–90.0 kV

60.0–120.0 kV (optional) 2.0–15.0 mA 140 kHz 0.3 mm >2.5 mm eq. Al 75.0 µm
minimum

Table 5. Parameters of CT images.

Resolution Size of a Single Pixel Distance between Scans Field of View

793 × 793 pixels 0.15 mm 0.15 mm 118.95 × 118.95 mm

The first step in processing DICOM files was to define the number of grayscale ranges
from which voxels would be generated. A greater number of ranges contributes to better
accuracy in determining the characteristics of bone stiffness as a function of its density.
However, it significantly increases the amount of computing power needed to generate
voxels. Ultimately, a decision was made to define 11 ranges. For the selected ranges, masks
were created covering the areas characterized by the density in a given range. From the
masks, the Mimics system generated voxels (Figure 8), which were then replaced with
cubic elements with a side length of 0.3 mm (Figure 9). The coordinate system of the
sample was retained from the computer tomograph. All voxel sub-models created with
the Mimics software were imported into a single database of the LS-Prepost system and
numbered accordingly.

After modeling the samples from the eight-node cubic elements, the walls of the mod-
els were very uneven (Figure 9), which significantly hindered the definition of boundary
conditions, loads, and further numerical analyses. This was due to the lack of coverage
of the axes defined by the walls of the samples by the device’s coordinate system. As a
result, the Mimics system, creating voxels, generated them along lines that did not coincide
with the walls of cuboidal samples. Therefore, it was necessary to generate new finite ele-
ments (remeshing) in the next stage (Figure 10). From the original voxel model, temporary
nodes were generated in the center of the volume of each of the 8-node cubic elements
independently for each range. Using the coordinates of these nodes, new finite elements
were generated for successive ranges, appropriately rotated to the new coordinate system,
with axes coinciding with the edges of the samples. The remaining elements, which were
outside the scale ranges from 600 to 2400 grayscale units, were placed in the component
for the range <600 (Figure 8). For the mesh density of the obtained model, the number of
discrete elements in the range from 197,296 to 223,300 was generated. The dimensions of
the redeveloped models were based on the physical measurements presented in Table 2.

The determined values show that most elements of the bone on the left side (L1) are
in the range of 1600–2200 HU and (F1) 1200–2000, i.e., in the middle range. The largest
number of elements of the back of the bone (B1) are in the 1600–2200 range, and the largest
number of elements of the right side (R1) are in the 1400–2000 HU range (Table 6). The
results presented show that the largest clusters of voxels in the samples are in the range of
1200–2200 HU, that is, in the middle range.
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Figure 8. An exemplary division of the voxels sample into groups characterized by a different
grayscale range for the K2F3 sample.
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Figure 9. Unequal components of the K2F3 sample immediately after the CBCT scan.

Figure 10. (a) Exemplary model of sample no. K2P3, made from tomography consisting of 187,664
voxels, (b) midpoints created from tomography, and (c) the model of the sample after remeshing
205,128 voxels.

Table 6. Percentage distribution of voxels in the sample.

Values According to
the Hounsfield Scale

HU
Percentage of Individual Ranges According to the Hounsfield Scale

L1 F1 F2 F3 B1 R1

<600 8.96% 11.22% 13.06% 9.95% 8.16% 14.15%
600–800 3.84% 2.94% 6.17% 1.38% 1.89% 2.07%

800–1000 4.85% 3.61% 7.85% 1.88% 3.18% 2.65%
1000–1200 5.39% 7.65% 12.06% 2.99% 4.35% 3.74%
1200–1400 5.99% 20.78% 16.95% 6.05% 5.02% 6.17%
1400–1600 7.38% 27.32% 23.93% 23.14% 7.14% 18.67%
1600–1800 17.87% 18.66% 15.23% 34.48% 16.52% 34.34%
1800–2000 23.55% 5.95% 2.99% 12.98% 26.79% 18.71%
2000–2200 15.74% 1.33% 1.16% 4.14% 19.35% 4.97%
2200–2400 5.84% 0.37% 0.52% 1.83% 5.51% 0.94%

>2400 0.57% 0.18% 0.08% 1.20% 2.09% 0.36%

2.4. FE Analysis

Computations were performed using the LSTC LS-DYNA® solver (version v11) [36]
with the massively parallel processing (MPP) feature, which has been effectively adopted to
simulate various problems from different research areas [37–40]. The simulated problems
were characterized through the use of all types of nonlinearity recognized in FEA, including
large deformations (geometric nonlinearities) and nonlinear material properties (physical
nonlinearity). A computational scheme with a nonlinear implicit (iterative and incremental)
method was adopted.

To replicate the actual tests as closely as possible, the supports and the spindle were
modeled using solid elements (HEX8) (Figure 11), and the material parameters were
assigned corresponding to the elastic range of steel (E = 210,000.0 MPa, ν = 0.3). The
supports were deprived of all degrees of freedom, while for the spindle motion with a
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constant velocity was defined (in accordance with the experimental tests). A contact was
defined between the supports and the sample based on the penalty function method, with
the stiffness calculated automatically based on the stiffness of the cooperating components.

Figure 11. Scheme loading of the FE model of the bone sample characterized by a different system of
densities in the three-point bending test.

2.5. Parametric Optimization

The next step was to use the prepared finite models (FE models) to optimize parameters
a, b, c, and d of Equation (3) and to correlate the results of the experimental studies with the
results of the numerical analyses. The optimization is based on simultaneous numerical
analyses for many independent numerical models with the same input parameters.

The proposed procedure focused on minimizing the sum of the mean square error of
the average stiffness obtained from the FEA for each sample. Due to the linear behavior
obtained from the FEA, the average bending stiffness from the numerical analysis was
calculated as follows:

kFEA =
F0.8mm − F0.2mm

∆d
(4)

where F0.8mm and F0.8mm are the forces for 0.8 mm and 0.2 mm deflection, and ∆d is the
deflection increment for stiffness estimation. The stiffness error for a sample was calcu-
lated as the difference between the values calculated from the numerical analysis and the
experimental test. The error norm is the sum of squared errors for each sample:

err =
5

∑
i=1

(
kFEA

i − kExp
i

)2
(5)

where kFEA
i and kExp

i represent the stiffness of i-sample from the FEA and the experimental
test, respectively.

The adopted constraint was the limit of the Young modulus, E ≤ Elimit, based on the
literature data [12,13,22,23]. The optimization problem can be described in the following
form (see Equation (2)):

minerr(a, b, c, d) subjected to E ≤ Elimit (6)

where err(a, b, c, d) are parameters of the objective function (see Equation (2)) of a, b, c, d
variables in the following ranges, where a = <0.2;0.8>, b = <1200.0;5000.0>, c = <2.0;8.0>,
and d = <0.1;2.0>.

The ranges of variables corresponding to the domain of the input parameters were
selected on the basis of preliminary analyses in such a way that the optimal solution would
not be on the border of the search area. Furthermore, the maximum value of the obtained
Young modulus was limited by defining it on the basis of the physical values available in
the literature [2–13].
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The proposed optimization procedure contains the following steps:

(1) The sampling of variables;
(2) A parallel numerical analysis of five samples using the Newton–Raphson scheme

(analysis);
(3) The acquisition of the force–displacement curves and error norm calculation;
(4) Optimization stage.

The solution was obtained iteratively until the termination criteria were reached
(maximum number of repeated solutions) (Figure 12).

Figure 12. Optimization procedure: (1) sampling of variables, (2) parallel numerical analysis of five
samples, (3) calculation of error norms, and (4) optimization setup.

To solve this task, direct optimization based on genetic algorithms was used (without
the metamodel or response surface approximation). A population size of 200 was arbitrarily
chosen, and the maximum number of generations was 30.

Each individual optimization took 3 min and 46 s. A total of 3400 calculations were
generated. Simultaneously, 10 calculations were performed in parallel on 24 cores.

3. Results
3.1. Optimization

In the whole procedure, 17 generations of the population were computed until termi-
nation criteria were reached (the number of repeated solutions in subsequent generations).
The optimization procedure generated 3400 sample models with varying Young modulus
for each density set. From all feasible solutions, an optimal set of parameters was obtained.

The graph in Figure 13 shows the relationship between the number of iterations and
the objective function (with as little error as possible). The graph shows that after 13
iterations the optimization reached a level that could no longer be improved.

The next graph after optimization shows the relationship between coefficients a, b, c,
and d and the error sum (Figure 14). The red points on the graph are the criteria that do not
meet the requirements, while the green points are those that meet the assumed criteria. It
can be seen that, for the coefficient a, the largest cluster of optimal solutions is in the region
of 0.65, while 0.388524 is the most optimal solution. It should be noted that the optimal
values of the coefficients a*, b*, c* and d* (Table 7) are, as expected, contained within the
domain of the variables and not at their boundaries (Equation (6)).
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Figure 13. Results of the optimization procedure.

Figure 14. Results of the optimization procedure—coefficients (Equations (1) and (2)): (a) (a, b) and
(b) (c, d).

Table 7. Optimal values of the coefficients that describe stiffness.

Coefficients Value

a* 0.388524
b* 4.419.3
c* 2.20939
d* 1.17823

3.2. Method Validation—Step #1

For the set of parameters obtained from the optimization analyses, the consistency of
the coefficients for the linear range for individual samples is shown in Table 7. Figure 15
shows the comparative characteristics for the force–displacement relationship of the bone
bending tests determined experimentally and numerically. The percentage differences are
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included in Table 8. The presented results show the acceptable level of convergence between
the experimental result and the result obtained from the proposed optimization procedure.

Figure 15. Comparison of the results for the three-point bending test after the numerical optimization
of the parameters.
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Table 8. Comparison of sample stiffness with the parentage difference.

Sample

Stiffness Determined
from the Experiment

kExp

(N/mm2)

Stiffness Determined
from Optimization

kFEA

(N/mm2)

Difference (%)

L1 5263.7 5259.9 0.072%
F1 4897.4 4905.1 −0.157%
F2 4080.1 3901.9 4.368%
F3 4643.8 4543.9 2.151%
B1 4569.3 4585.8 −0.361%

A large convergence of the stiffness attained from the FEM analyses with the stiffness
values obtained from the experimental tests can be observed. The differences, especially in
the case of F2 and F3, result from a slight deviation in the force displacement curve from
the linear characteristic, although the correlation factor R2 = 0.994÷ 0.998 can be described
as very high. This may be due to both local effects at the support and loading points of the
samples, and the globally nonlinear behavior of the material. Increasing the accuracy of the
results obtained could also be achieved by increasing the number of bone stiffness ranges
and reducing the size of a single voxel. However, according to the authors, the discrepancy
level below 5% allows the developed methodology for determining bone stiffness based
on the grey scale to be considered validated. The individual values of the coefficients are
summarized in Table 7.

By substituting the coefficients determined by optimization into Formula (2), the
following equation has been obtained:

E = 0.388524 · ρapp
1.17823 where ρapp = 2.20939 · HU + 4419.3 (7)

Based on the data presented above, it is possible to calculate the density of the Young
modulus for each range of bone stiffness using Equation (2). The obtained values are
presented in Table 9.

Table 9. Bone density with Young’s modulus for individual density ranges.

Values According to
the Hounsfield Scale

HU

Middle
Value

Bone Density
ρ

(kg/m3)

Young
Modulus
E (MPa)

(Calculated)

Percentage of
Particular Layer in

the Total Sample (%)

L1 F1 F2 F3 B1

Number of Voxels

<600 500 5523.995 9969.031 10.27% 19,923 24,831 25,767 20,777 16,743
600–800 700 5965.873 10,915.16 3.24% 8533 6513 12,174 2880 3870

800–1000 900 6407.751 11,873.88 4.27% 10,781 7992 15,478 3920 6524
1000–1200 1100 6849.629 12,844.46 6.49% 11,991 16,921 23,785 6237 8931
1200–1400 1300 7291.507 13,826.27 10.96% 13,319 45,989 33,445 12,629 10,301
1400–1600 1500 7733.385 14,818.75 17.78% 16,406 60,468 47,211 48,317 14,645
1600–1800 1700 8175.263 15,821.39 20.55% 39,732 41,309 30,040 72,013 33,888
1800–2000 1900 8617.141 16,833.75 14.45% 52,351 13,160 5909 27,112 54,958
2000–2200 2100 9059.019 17,855.4 8.34% 35,001 2933 2294 8643 39,687
2200–2400 2300 9500.897 18,885.98 2.81% 12,989 812 1027 3816 11,302

>2400 2500 9942.775 19,925.13 0.82% 1274 397 166 2504 4279

Mean 7733.385 15,360.02 222,300 221,325 197,296 208,848 205,128

3.3. Method Validation—Step #2

The models and mechanical properties of the material, determined on their basis for
individual bone components (density ranges), can also be used to describe the behavior
of each sample not participating in the optimization procedure presented for a given
individual. The comparison of the resulting force–displacement waveforms for sample 6
(R1), which was not involved in optimization, served as an additional verification of the
algorithm to determine the stiffness based on the methodology of creating voxel models
and optimization (Figure 16). For the R1 sample, an appropriate numerical model was
prepared based on the determined parameters a, b, c, and d, and it was then used to map
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the experimental study. In this case, the error in mapping the mean stiffness was 7.0%
(Table 10). However, it is also worth noting that, in the case of this sample, the nature of the
force–displacement characteristic curve of the bending test differed from the linear course.
The correlation factor for this curve was R2 = 0.996.

Figure 16. Comparison of the stiffness obtained from the experiment and the numerical analysis for
the R1 sample based on the data obtained from the optimization.

Table 10. Comparison of stiffness for sample R1.

Sample

Stiffness Determined
from the Experiment

kExp

(N/mm2)

Stiffness Determined
from Optimization

kFEA

(N/mm2)

Difference (%)

R1 4682.2 4353.6 7.02%

4. Conclusions

The article presents successive stages of determining the stiffness of bone structure
for individual ranges of different density. The studies conducted were limited to the linear
characteristics and elastic range of the tested materials. They concern only the compact
part of the bone.

The voxel models obtained on tomography required rediscretization because the ori-
entation of the voxels was different from the orientation of the basic planes of the cuboidal
sample subjected to bending tests. The sample models were modified by determining the
midpoints of the individual voxel fractions, creating a new aligned FE mesh representing
the real measured dimensions of the samples, and finally mapping the voxels distribution
to create individual components with different stiffnesses based on the locations of voxel
midpoints. Furthermore, flat surfaces of the walls of the sample models in contact with the
supports were obtained, which ensured stable bending analyses, avoiding problems with
point contact for the initially determined voxel models.

The use of optimization techniques allowed for the analysis of many stiffness variants
of the samples in a short time, and the use of genetic algorithms resulted in the minimization
of the stiffness mapping error for all five samples participating in the correlation of the
material model. The discrepancies were lower than 5%, which should be considered a
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satisfactory result with such a heterogenous center and samples taken from different parts
of the bone. Finally, the determined data were validated for the next sample that did not
participate in the material parameter correlation procedure. After the bending analysis, the
stiffness was 7% lower than that obtained experimentally. The authors consider this result
to be acceptable considering the complexity of the bone structure.

Generally, it should be considered that the proposed method to determine the pa-
rameters of the bone model and, on this basis, for determining its stiffness based on the
Hounsfield scale was designed correctly. The values of the Young modulus achieved during
the numerical analysis are within the literature range given in Table 1.

In the subsequent research steps, the authors propose to conduct testing of the de-
veloped models under the conditions of the stiffness test carried out with the use of the
Vickers microhardness tester. Vickers hardness measurements have been found to be very
useful for material evaluation, quality control of the manufacturing process, and research
and development. Hardness, although empirical in nature, can be correlated with the
tensile strength of many metals and is an indicator of wear resistance and ductility. The
measurement by the Vickers method is also endowed with the lowest measurement uncer-
tainty. Taking into account the above facts, the authors plan to conduct experimental and
numerical tests that will provide the opportunity to validate the presented procedure and
the results obtained for the elastic range to develop a constitutive description methodology
for the numerical modeling of the behavior of the bone material for the inelastic (nonlinear)
range. Certainly, it will also be possible to develop hierarchical bone modeling on this basis,
which will require a multiscale approach, for example, to be able to design bone implants
on this basis.
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