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Abstract

Background: The patient population receiving long-term oxygen therapy has increased with the rising morbidity
of COPD. Although high-dose oxygen induces pulmonary edema and interstitial fibrosis, potential lung injury
caused by long-term exposure to low-dose oxygen has not been fully analyzed. This study was designed to clarify
the effects of long-term low-dose oxygen inhalation on pulmonary epithelial function, edema formation, collagen
metabolism, and alveolar fibrosis.

Methods: Guinea pigs (n = 159) were exposed to either 21% or 40% oxygen for a maximum of 16 weeks, and
to 90% oxygen for a maximum of 120 hours. Clearance of inhaled technetium-labeled diethylene triamine
pentaacetate (Tc-DTPA) and bronchoalveolar lavage fluid-to-serum ratio (BAL/Serum) of albumin (ALB) were
used as markers of epithelial permeability. Lung wet-to-dry weight ratio (W/D) was measured to evaluate
pulmonary edema, and types | and |ll collagenolytic activities and hydroxyproline content in the lung were analyzed
as indices of collagen metabolism. Pulmonary fibrotic state was evaluated by histological quantification of fibrous
tissue area stained with aniline blue.

Results: The clearance of Tc-DTPA was higher with 2 week exposure to 40% oxygen, while BAL/Serum Alb and
WI/D did not differ between the 40% and 21% groups. In the 40% oxygen group, type | collagenolytic activities at
2 and 4 weeks and type Ill collagenolytic activity at 2 weeks were increased. Hydroxyproline and fibrous tissue
area were also increased at 2 weeks. No discernible injury was histologically observed in the 40% group, while
progressive alveolar damage was observed in the 90% group.

Conclusion: These results indicate that epithelial function is damaged, collagen metabolism is affected, and both
breakdown of collagen fibrils and fibrogenesis are transiently induced even with low-dose 40% oxygen exposure.
However, these changes are successfully compensated even with continuous exposure to low-dose oxygen. We
conclude that long-term low-dose oxygen exposure does not significantly induce permanent lung injury in guinea

pigs.
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Background

Chronic obstructive pulmonary disease (COPD) has been
expected to become a major cause of morbidity and mor-
tality worldwide [1-3]. The patient population receiving
long-term oxygen therapy has been increasing with rising
morbidity of COPD. Although oxygen supplementation is
indispensable in the management of hypoxemia in
patients with various respiratory disorders such as COPD,
high-dose oxygen inevitably produces free radicals [4].
High-dose oxygen also induces lethal pulmonary injury in
humans as well as various animal models [5-10]. How-
ever, the potential lung injury caused by long-term expo-
sure to relatively low-dose supplemented oxygen has not
been fully analyzed. Exposure to low-dose oxygen (less
than 50%) has been reported to induce no designable
injury [5,7]. On the other hand, there have also been con-
tradicting reports; an increase of albumin concentration
in human bronchoalveolar lavage (BAL) fluid with only
30% oxygen exposure for 45 hours, alterations in type II
pneumocytes with relatively low (60%) oxygen exposure
in rats [11], and increased lung catalase activity with 50%
oxygen exposure in rats [12]. Exposure to 60% oxygen for
2 weeks was recently demonstrated to induce thickening
of inter-alveolar septa, intense cellular infiltration and
deposition of interstitial collagen fibers in rats [13].

The discrepant results regarding the pulmonary toxicity of
relatively low-dose oxygen exposure may be attributed to
the different injury markers, oxygen concentrations and
exposure durations used in these studies. In order to elu-
cidate the mechanism of possible lung injuries induced by
chronic exposure to an adaptive dose of oxygen, selections
of systemic injury markers, the oxygen concentrations
used and exposure duration are critical. Therefore, we
aimed to clarify the effects of long-term low-dose oxygen
inhalation on lung epithelial permeability, induction of
pulmonary edema, collagen metabolism and interstitial
fibrosis by exposing guinea pigs to various oxygen concen-
trations.

Methods

Animals and oxygen exposure

Specific pathogen-free male Hartley guinea pigs (Sankyo
Labo Service, Tokyo, Japan), 4 weeks of age at the begin-
ning of exposure, weighing 270-300 g, were used (n =
159). All of the experimental protocols were approved by
the institutional Animal Experiment Committee and con-
formed to the Guide for the Care and Use of Laboratory
Animals published by the National Institutes of Health.

Oxygen exposure was conducted by placing animals in a
semi-sealed vinyl isolation chamber (volume 450 L),
throughout the experimental period. Sterile food and
water were provided regularly through a double outlet,
and the chamber was kept clean with daily care. Through
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a 0.2 micrometer filter, 40% oxygen or room air was deliv-
ered at a flow rate of 15 L/min. Oxygen and carbon diox-
ide concentrations in the chamber were measured with a
gas analyzer (Type 1312, Instrumentation Laboratory,
Lexington, MA). The oxygen concentration was main-
tained and consistently confirmed to be 21 + 1% (mean +
SD), 40 + 2% or 90 + 3%, and the carbon dioxide concen-
tration was always below 0.5% at the outlet of the cham-
ber. Humidity was maintained at 55-60%.

Total animal numbers for the examination of BAL/Serum
ALB and TP, lung W/D or collagen metabolism were n =
10 in the pre-exposure group; n = 8 (2 weeks), 10 (4
weeks), 6 (8 weeks) and 6 (16 weeks) in the 40% oxygen
exposure groups; n = 5 (2 weeks), 8 (4 weeks), 6 (8 weeks)
and 6 (16 weeks) in the 21% oxygen exposure groups; n =
5 (24 hours), 5 (48 hours), 5 (72 hours), 10 (96 hours)
and 5 (120 hours) in the 90% oxygen exposure groups.
For examination of the clearance of inhaled Tc-DTPA: n =
5 in the pre-exposure group; n = 5 in each (2, 4, 8 or 16
weeks) 40% oxygen exposure group; n = 5 in each (2, 4, 8
or 16 weeks) 21% oxygen exposure group; n = 5 (24
hours), 6 (48 hours) and 8 (72 hours) in the 90% oxygen
exposure groups.

Assay of inhaled Tc-DTPA clearance

Sixty millicuries of 99 mTcO,  were eluted from a 29 mMb-99
mTc generator and bound to DTPA (Daiichi Radioisotope
Labs, Tokyo). Eight milliliters of Tc-DTPA saline solution
were aerosolized using an ultrasonic nebulizer (Model 65,
Devilbiss Sunrise Medical, Carlsbad, CA). The aerosol was
kept in the bag for 5 min to allow the large droplets to set-
tle to the bottom [14]. The animals were placed supine,
and Tc-DTPA aerosol was delivered via the cannulated
inspiratory circuit under spontaneous breathing. Radioac-
tivity was measured each minute for 10 minutes in the
anterior view using a gamma camera (GCA 401-5,
Toshiba, Tokyo). A logarithmic plot of activity vs time was
obtained from a region of interest. We corrected for phys-
ical decay and the background was subtracted. Monoex-
ponential equations were fitted to the curves by the least
squares method and the clearance rate was expressed as
kep.

Histological examination

Deep surgical anesthesia was achieved with 100 mg/kg of
ketamine (Ketalar; Parke Davis & Co., Detroit, MI) and 5
mg/kg of xylazine (Rompun; Cutter Laboratories,
Shawnee, KS) injected intraperitonealy. The animals were
then sacrificed by exsanguination. The chest was opened,
and the lung was taken out of the thorax. A catheter was
inserted into the right bronchus. The right lung tissue was
embedded in paraffin after fixation with 4% paraformal-
dehyde in 0.1 M phosphate buffer (pH 7.4) for 24 hours
at 4°C. Three sections (each 3 pm thick) were made from
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the upper, middle and lower lobes at an equal distance
from the top to the bottom of the right lung and stained
with aniline blue or hematoxylin-eosin.

Determination of fibrous tissue stained with aniline blue

The area of aniline blue-stained fibrous tissue, which
mainly consists of collagen fibers, was measured with a
color image analyzing system (SP500, Olympus, Tokyo).
An area of fibrous tissue around a bronchus stained with
aniline blue (Fig. 1A) was selected with the color image
analyzing system (Fig. 1B). The stained portion and the
extracted portion were matched. The selected area was
measured and expressed as a percentage of the total area
(Fig. 1C) [15]. The fibrous tissue area was measured using
ten different fields of three different sections correspond-
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ing to the upper, middle and lower lobes of the right lung.
These areas were selected at random from peripheral parts
of the lung. If there was a bronchus, a large vessel or
pleura inside the area, another area was selected because
collagen fibers were abundant around these tissues. The
fibrous tissue area to total area was expressed as the mean
+ SD. Histological changes in hematoxylin-eosin stained
lung sections with 0, 2, 4, 8 and 16 week-exposure periods
in the 40% oxygen groups and pre, 72, 96 and 120 hour-
exposure periods in the 90% oxygen groups were also
examined.

Lung water measurement
The lung W/D in the left caudal lobe was measured to
quantify the pulmonary edema induced by 40% or 90%

Figure |

Determination of fibrous tissue stained with aniline blue and peripheral lung sections with 2 week exposure to
room air or 40% oxygen. The area of fibrous tissue stained with aniline blue (A) was selected with the color image analyzing
system (B). The stained portion and the extracted portion were matched. The selected area was measured and expressed as a
percentage of the total area (C). Panels D and F show staining with aniline blue. Panels E and G show areas of fibrous tissue
selected with the image analyzing system. Panels D and E are from animals on room air, F and G from those on 40% oxygen,

after 2 weeks of exposure. Bar = 100 pm.
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oxygen exposure. After the wet weights of the lung tissue
samples had been measured, the tissues were completely
dried in a vacuum oven (DP22; Yamato Scientific, Tokyo)
at 95°C and at 0 cmH,O for 48 hours [16].

Bronchoalveolar lavage

Bronchoalveolar infiltrating cells were assessed by BAL of
the left cranial lobe [16]. The lobe was weighed and its
bronchus was catheterized, then lavaged twice with 5 ml
of saline and 1 ml of air. BAL fluid was collected, placed
on slides, then fixed and stained with a modified Wright's
staining technique (Diff-Quik; American Scientific Prod-
ucts, McGraw Park, IL). BAL cell differentials were based
on the means of five separate counts of 100 cells on the
high power field of light microscopic slides. BAL fluid
samples were centrifuged at 400 x g at 4°C for 10 min to
obtain a cell pellet. Each cell pellet was suspended in 1 ml
of saline, and a cell count was obtained using a modified
hematocytometer method (Unopet Microcollection Sys-
tem; Becton Dickinson, Rutherford, NJ). BAL cell counts
were expressed as counts per 1 mg lung tissue. The albu-
min concentrations in plasma and BAL fluid were deter-
mined using the bromcresol green dye binding method
(Sigma Chemical Co., St. Louis, MO) [17]. Total protein
was determined using the Biuret method. The BAL fluid-
to-serum (BAL/Serum) albumin (ALB) and total protein
(TP) ratios were used as parameters of alveolar-capillary
permeability [18] and lung injury [19], respectively.

Hydroxyproline measurement

Measurement of total collagen contents in the peripheral
portions of the lung was based on the estimation of
hydroxyproline contents. Saline solution (1.5 ml) was
added to an approximately 30 mg tissue sample which
was collected from the peripheral part of the left lower
lobe. Then, the sample was homogenized on ice and used
for the hydroxyproline content measurement, and to
determine types I and III collagenolytic enzyme activities.
Hydroxyproline contents were measured by the spectro-
photometrical method [20,21], which allows quantifica-
tion of the amount of hydroxyproline in a small sample.

Purification and labeling of type Ill collagen
Pure type III collagen was prepared according to the
method of Glanville [22], and type III collagen labeling
was performed as previously described [23].

Assays of collagenolytic enzyme activities

In order to measure type I and type III collagenolytic activ-
ities in lung tissues, we utilized bacterial collagenase to
obtain a standard curve [23]. Purified collagenase from
Clostridium histolyticum (EC 3.4.24.3, bacterial collagenase
type 11, Sigma Chemical, St. Louis, MO) was dissolved in
Tris-HCI buffer to obtain a 1 mg/ml concentration of the
standard solution, which was then diluted to various con-
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centrations (10! to 10> mg/ml) to provide the standard
curves of types I and III collagenolytic enzyme activities.
One unit of collagenolytic enzyme activity was defined as
the weight of the bacterial collagenase having the same
collagenolytic activity (pg bacterial collagenase/g protein)
as the lung tissue sample. This standardization with bac-
terial collagenase made it possible to compare types I and
III collagenolytic activities [23].

Protein contents

Protein contents of the samples were determined by the
Lowry method [24]. Hydroxyproline content was
expressed as pg per 1 mg protein, and types I and III col-
lagenolytic activities were expressed as pg bacterial colla-
genase per 1 g protein.

Statistical analysis

The results were presented as means + standard deviation
(SD). Statistical analyses were conducted using one-way
analysis of variance (ANOVA) followed by Tukey post-hoc
test to detect differences among groups. Differences
between two groups were assessed using the unpaired t-
test or Welch's test. A p-value < 0.05 was considered statis-
tically significant.

Results

Changes in BAL cells, BAL/Serum Alb and TP ratio

The average count of BAL cells was higher in the 40% than
in the 21% oxygen groups, and this increase was statisti-
cally significant after 2 weeks of exposure (Fig. 2). BAL cell
counts in the 40% oxygen 2 week-, 4 week- and 8 week-
exposure groups were significantly increased as compared
to those in the pre-exposure group. After 72 hour exposure
to 90% oxygen, BAL cell counts were increased as com-
pared to the pre-exposure level. The percentages of the
BAL neutrophils were not different between the 40% and
the 21% oxygen groups at any time examined (Table 1).
The percentages of the BAL macrophages and lym-
phocytes were not different between the 40% and the
21% oxygen groups either (Table 1). On the other hand,
after 24 and 48 hour exposure to 90% oxygen, the per-
centages of the BAL eosinophils were significantly
increased as compared to those in the pre-exposure condi-
tion (Table 2). After 72 hour exposure to 90% oxygen, the
percentage of the BAL neutrophils was significantly
increased as compared to the pre-exposure level (Table 2).

The BAL/Serum Alb ratio in the 40% oxygen groups did
not differ from that in the 21% exposure groups for any of
the durations examined (Fig. 2). The Alb ratio in the 40%
or 21% oxygen 16 week-exposure group was significantly
increased as compared to those in the pre-exposure group.
This increase, however, did not differ between the 40%
and the 21% oxygen groups. After 96 hour exposure to
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Figure 2

Changes in BAL cells, BAL/Serum Alb and TP ratio. Broncho-alveolar infiltrating cells (top panel) were expressed as % |02 counts/mg lung tissue.
The average count of BAL cells was higher in the 40% oxygen group than in the 21% oxygen group. The increase was statistically significant after 2 weeks
of exposure. BAL cell counts in the 40% oxygen 2 week-, 4 week- and 8 week-exposure group were significantly increased as compared to those in the
pre-exposure group. After 72 hour exposure to 90% oxygen, BAL cell counts were increased as compared to the pre-exposure level. n = 9 in the pre-
exposure group; 8 (2 weeks), 9 (4 weeks), 6 (8 weeks) and 5 (16 weeks) in the 40% oxygen exposure groups; n = 4 (2 weeks), 8 (4 weeks), 5 (8 weeks)
and 5 (16 weeks) in the 21% oxygen exposure groups; n = 5 (24 hours), 4 (48 hours), 5 (72 hours) and 8 (96 hours) in the 90% oxygen exposure groups.
The BAL/Serum Alb ratios (middle panel) in the 40% oxygen groups did not differ from those in the 21% exposure groups at any of the durations exam-
ined. The Alb ratio in the 40% or 21% oxygen |6 week-exposure group was significantly increased as compared to those in the pre-exposure group. This
increase, however, did not differ between the 40% and the 21% oxygen groups. After 96 hours of exposure to 90% oxygen, the Alb ratio was increased as
compared to the pre-exposure level. n = 5 in the pre-exposure group; 8 (2 weeks), 9 (4 weeks), 6 (8 weeks) and 6 (16 weeks) in the 40% oxygen exposure
groups; 6 (2 weeks), 7 (4 weeks), 5 (8 weeks) and 6 (16 weeks) in the 21% oxygen exposure groups; 5 (24 hours), 5 (48 hours), 5 (72 hours) and 6 (96
hours) in the 90% oxygen exposure groups. The BAL/Serum TP ratios (bottom panel) in the 40% oxygen groups did not differ from those in the 21% expo-
sure groups at 2, 4 and 8 week-exposure periods. After 16 weeks of exposure, the BAL/Serum TP ratio in the 40% oxygen group was higher than that in
the 21% 16 week-exposure group. The BAL/Serum TP ratio in the 40% oxygen 8 and |6 week-exposure groups and the 21% oxygen 4 and 16 week-expo-
sure groups were significantly increased as compared to those in the pre-exposure group. After 96 hours of exposure to 90% oxygen, the increased TP
ratio was not statistically significant as compared to the pre-exposure level. n = 5 in the pre-exposure group; 8 (2 weeks), 7 (4 weeks), 6 (8 weeks) and 5
(16 weeks) in the 40% oxygen exposure groups; 6 (2 weeks), 8 (4 weeks), 5 (8 weeks) and 6 (16 weeks) in the 21% oxygen exposure groups; 5 (24 hours),
5 (48 hours), 5 (72 hours) and 5 (96 hours) in the 90% oxygen exposure groups. Values are expressed as means  SD; * p < 0.05 as compared to the value
of the 21% oxygen exposure duration-matched control. + p < 0.05 and **p < 0.01 as compared to the value of the pre-exposure group.
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Table I: Changes in nucleated cells in BAL fluid during 40% oxygen exposure

pre 2 weeks 4 weeks 8 weeks 16 weeks
Macrophage (%) 40% oxygen 86.9 + 4.0 88.8 + 4.6 91.5+34 928+ 1.9
Room air 9l.1 £23 89.8 +3.7 875+5.0 924+ 15 89.6 + 3.6
Lymphocyte (%) 40% oxygen 12.1 £3.8 10.0 + 4.6 70+30 64+19
Room air 8.1+26 85+24 10.9 +5.2 58+08 92+40
Neutrophil (%) 40% oxygen I.I£1.0 12+£0.8 1.5+2.1 08+0.38
Room air 08+ 1.0 1.8+2.1 1.5+ 1.1 1.8+0.8 12+ 1.1

Values are mean * SD.

90% oxygen, the Alb ratio was significantly increased as
compared to the pre-exposure level.

The BAL/Serum TP ratio in the 40% oxygen groups did not
differ from that in the 21% exposure groups with 2, 4 and
8 week exposures (Fig. 2). After 16 weeks of exposure, the
BAL/Serum TP ratio in the 40% oxygen group was higher
than that in the 21% exposure group. The BAL/Serum TP
ratio in the 40% oxygen 8 and 16 week-exposure groups
and the 21% oxygen 4 and 16 week-exposure groups were
significantly increased as compared to those in the pre-
exposure group. After 96 hours of exposure to 90% oxy-
gen, the increased TP ratio was not statistically significant
as compared to the pre-exposure level.

Lung clearance of inhaled Tc-DTPA

The kep of the 40% oxygen 2 week-exposure group was
higher than that of the 21% oxygen 2 week-exposure
group (Fig. 3). The kep of the 40% oxygen 2, 4, 8 and 16
week-exposure groups and the 21% oxygen 8 week-expo-
sure group were significantly increased as compared to
that of the pre-exposure group. This increase did not differ
between the 40% and the 21% oxygen groups. The kep of
the 90% oxygen 24 hour-exposure group was higher than
that of the pre-exposure group, and that of the 48 hour-
exposure group was higher than that of the 24 hour group.

Lung WID

No significant differences were observed between the 40%
and 21% oxygen groups at any of the durations examined
(Fig. 4). The lung W/D of the 40% or 21% oxygen 16
week-exposure group was significantly decreased as com-
pared to that of the pre-exposure group. Lung W/D of the

120 hour-exposure group was increased as compared to
that of the pre-exposure group.

Type | collagenolytic enzyme activity

Type I collagenolytic enzyme activity in the 40% oxygen 2
week-exposure group was significantly higher than that in
the 21% oxygen 2 week-exposure group (Fig. 5). This
increase was, however, not significantly different as com-
pared to that in the pre-exposure group. Type I collageno-
lytic activity in the 40% oxygen 4 week-exposure group
was also higher than that in the 21% oxygen 4 week-expo-
sure group, although not significantly higher than that
before exposure. Type I collagenolytic activity in the 40%
oxygen 8 week-exposure group was lower than that in the
40% oxygen 2 week-exposure group. After 8 or 16 weeks
of exposure, there were no differences between the 40%
and 21% exposure groups or between the 40% and pre-
exposure groups. There were no significant differences
among the 90% oxygen exposure groups.

Type Il collagenolytic enzyme activity

Type I1I collagenolytic enzyme activity in the 40% oxygen
2 week-exposure group was significantly higher than that
in the 21% oxygen 2 week-exposure group (Fig. 6). This
increase was, however, not significantly different as com-
pared to that in the pre-exposure group. After 4, 8 or 16
weeks of exposure, there were no differences in type III
collagenolytic enzyme activity between the 40% and 21%
exposure groups, or between the 40% and pre-exposure
groups. Type III collagenolytic activities in the 40% oxy-
gen 8 week-exposure group was lower than that in the
40% oxygen 2 week-exposure group. There were no signif-
icant differences among the 90% oxygen exposure groups.

Table 2: Changes in nucleated cells in BAL fluid during 90% oxygen exposure

pre 24 hours 48 hours 72 hours 96 hours 120 hours
Macrophage (%) 90.8 + 3.8 85.6 +2.6 80.7 + 3.2+ 85.0 + 3.3* 73.1 £ 5.7+ 53.7 £ 7.7+
Lymphocyte (%) 8340 88+0.8 16.0 £ 3.6%* 40+ 1.2% 7.5+ 3.1 58+ 1.7
Neutrophil (%) 08+0.8 1.0+£22 0.0+ 0.0 11.0+27+ 18.5 + 7.0+ 403 + 7.8+
Eosinophil (%) 0.0+0.0 46+ .1+ 3.3 £ 04 0.0+0.0 0.0+0.0 0.0 £0.0
Values are mean * SD. + p < 0.05, ++ p < 0.0] as compared to the pre-exposure level.
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Figure 3

Lung clearance of inhaled Tc-DTPA. The kep of the 40% oxygen 2 week-exposure group was increased than that of the
21% oxygen 2 week-exposure group. The kep of the 40% oxygen 2, 4, 8 and |6 week-exposure groups and the 21% oxygen 8
week-exposure group were significantly increased as compared to that of the pre-exposure group. This increase, however, did
not differ between the 40% and the 21% oxygen groups. The kep of the 90% oxygen 24 hour-exposure group was higher than
that of the pre-exposure group, and that of the 48 hour-exposure group was higher than that of the 24 hour-exposure group.
Values are expressed as means + SD; * p < 0.05 and ** p < 0.0 as compared to the value of the 21% oxygen exposure dura-
tion-matched control or pre and the 90% oxygen 24 hour-exposure group. *p < 0.05 and **p < 0.01 as compared to the value
of the pre-exposure group. n = 5 in the pre-exposure group; n = 5 in each 40% oxygen exposure group; n = 5 in each 21% oxy-
gen exposure group; n = 5 (24 hours), 6 (48 hours) and 8 (72 hours) in the 90% oxygen exposure groups.

Changes in hydroxyproline content during oxygen
exposure

The hydroxyproline content with 2 week exposure to 40%
oxygen was significantly increased as compared to that
with 2 week exposure to 21% oxygen (Fig. 7). This
increase was not significantly different as compared to
that in the pre-exposure group. After 4, 8 or 16 weeks of
exposure, there were no differences in hydroxyproline
content between the 40% and 21% exposure groups, or
between the 40% and pre-exposure groups. There were no

significant differences among the 90% oxygen exposure
groups.

Quantification of fibrous tissue area

Sections of peripheral parts of the lungs stained with ani-
line blue and the estimated area of fibrous tissue with 2
week exposure to 21% or 40% oxygen are shown in Fig. 1.
The percentage of fibrous tissue with 2 week exposure to
40% oxygen was significantly increased as compared to
that with 2 week exposure to 21% oxygen (Fig. 8). There
were no differences between the 40% and 21% exposure
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Figure 4

Lung W/D as a marker of pulmonary edema. No significant differences were observed between the 40% and 21% oxy-
gen groups at any of the durations examined. The lung W/D of the 40% or 21% oxygen 16 week-exposure group was signifi-
cantly decreased as compared to that of the pre-exposure group. Lung W/D of the 120 hour-exposure group was increased as
compared to that of the pre-exposure group. Values are expressed as means + SD; ** p < 0.0] and ** p < 0.0 as compared to
the value of the pre-exposure group. n = 8 in the pre-exposure group; n = 8 (2 weeks), 10 (4 weeks), 5 (8 weeks) and 6 (16
weeks) in the 40% oxygen exposure groups; n = 5 (2 weeks), 8 (4 weeks), 6 (8 weeks) and 6 (16 weeks) in the 21% oxygen
exposure groups; n =5 (72 hours), 5 (96 hours) and 5 (120 hours) in the 90% oxygen exposure groups.

groups at 4, 8 or 16 weeks. There were no significant dif-
ferences among the 90% oxygen exposure groups. Fibrous
tissue levels in 2 and 16 week-21% oxygen groups were
not lower as compared to that in pre-exposure

Sections of peripheral parts of the lungs stained with
hematoxylin-eosin

Although the image analyzing system revealed that the
fibrous tissue in the aniline blue stained section was
increased with 2 weeks exposure to 40% oxygen, neither
discernible injury nor architectural disorganization was
observed in these groups (Fig. 9). In the 90% oxygen
groups, inflammatory cell infiltration was recognized
after 72 hours of exposure, and alveolar septal destruction
was apparent by 96 hours (Fig. 10). Diffuse alveolar dam-
age was apparent after 120 hours of exposure.

Discussion

In the present study, we have demonstrated that pulmo-
nary epithelial functions, detected by sensitive markers
were damaged and that both breakdown of collagen
fibrils and fibrogenesis were transiently (in the 2 and 4
week-exposure groups) induced even with low-dose
(40%) oxygen exposure. These changes were, however,
successfully compensated by 8 weeks with continuous
oxygen exposure, and neither significant epithelial injury
nor fibrosis occurred by long-term low-dose (up to 40%)
oxygen supplementation. On the other hand, 90% oxygen
exposure caused rapid and progressive destruction of the
lung without compensation. The clearance of Tc-DTPA
was increased by 24 hours, inflammatory cell infiltration
was recognized by 72 hours, and alveolar septal destruc-
tion by 96 hours and diffuse alveolar damage, as is
observed in ARDS, by 120 hours in 90% oxygen exposure.
Although neutrophils in BAL fluids were progressively
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Figure 5

Type | collagenolytic enzyme activity. Type | collagenolytic enzyme activity in the 40% oxygen 2 week-exposure group
was significantly higher than that in the 21% oxygen 2 week-exposure group (Fig. 5). This increase was, however, not signifi-
cantly different as compared to that in the pre-exposure group. Type | collagenolytic activity in the 40% oxygen 4 week-expo-
sure group was also higher than that in the 21% oxygen 4 week-exposure group, although not significantly higher than that
before exposure. Type | collagenolytic activity in the 40% oxygen 8 week-exposure group was lower than that in the 40% oxy-
gen 2 week-exposure group. After 8 and |6 weeks of exposure, there were no differences between the 40% and 21% expo-
sure groups or between the 40% and pre-exposure groups. There were no significant differences among the 90% oxygen
exposure groups. Values are expressed as means £ SD; n = 9 in the pre-exposure group; n = 8 (2 weeks), 10 (4 weeks), 6 (8
weeks) and 6 (16 weeks) in the 40% oxygen exposure groups; n = 5 (2 weeks), 8 (4 weeks), 6 (8 weeks) and 6 (16 weeks) in
the 21% oxygen exposure groups; n = 4 (72 hours), 5 (96 hours) and 5 (120 hours) in the 90% oxygen exposure groups. * p <
0.05 as compared to the value of the 21% oxygen exposure duration-matched control. **p < 0.0] as compared to the value of
the 40% oxygen 2 week-exposure group.

increased after 72 hour-exposure to 90% oxygen, there
were no significant changes in percentage of individual
cell types in the 40% oxygen exposure group. The differ-
ence between the 40% and 90% oxygen exposure groups
indicates that there is a critical oxygen concentration at
which progressive lung injury is induced.

Collagen metabolism was sensitive even to low-dose oxy-
gen exposure. Biochemical measurement of total lung
hydroxyproline is a convenient method to quantitate lung
collagen. Although hydroxyproline in the lung is found
mostly in collagen, it must be noted that hydroxyproline
is also found in another protein, i.e., in elastin [25,26].
Therefore, it has generally been recommended to conduct
hydroxyproline measurement together with histological
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Type lll collagenolytic enzyme activity. Type Ill collagenolytic enzyme activity in the 40% oxygen 2 week-exposure group
was significantly increased as compared to that in the 21% oxygen 2 week-exposure group. This increase was, however, not
significantly different as compared to that in the pre-exposure group. At 4, 8 and |6 week-exposure periods, there were no
differences in type Il collagenolytic enzyme activity between the 40% and the 21% exposure groups, or between the 40% and
the pre-exposure groups. Type lll collagenolytic activities in the 40% oxygen 8 week-exposure groups was decreased as com-
pared to that in the 40% oxygen 2 week-exposure group. There was no significant difference among the 90% oxygen exposure
groups. Values are expressed as means + SD; n = 8 in the pre-exposure group; n = 7 (2 weeks), 10 (4 weeks), 6 (8 weeks) and
6 (16 weeks) in the 40% oxygen exposure groups; n = 5 (2 weeks), 8 (4 weeks), 5 (8 weeks) and 6 (16 weeks) in the 21% oxy-
gen exposure groups; n =5 (72 hours), 5 (96 hours) and 5 (120 hours) in the 90% oxygen exposure groups. * p < 0.05 as com-
pared to the value of the 21% oxygen exposure duration-matched control. ++ p < 0.01 as compared to the value of the 40%
oxygen 2 week-exposure group.

analysis to evaluate the fibrosing state of the lung [26]. In
histological quantification of fibrous tissue and his-
topathological observation, it is thought that oxygen-
exposed lungs show alveolar enlargement that can
obscure fibrotic change even if the total fibrous tissue con-
tent increases [27]. This could explain why the results of
our hydroxyproline measurement and histological analy-
sis of fibrous tissue showed some discrepancy. Therefore,
we conducted both hydroxyproline measurement and his-
tological analysis. However, it should be noted that there

might be the limitation of the histological quantification
of fibrous tissue, although we obtained roughly matching
result.

Sequential pathological and BAL fluid changes have
shown that the breakdown of defense mechanisms
against hyperoxia is closely related to inflammatory cell
infiltration. It has been widely recognized that hyperoxia
exerts its toxic effect by increasing oxygen radicals [28-30].
Contribution of excess reactive oxygen species released by

Page 10 of 15

(page number not for citation purposes)



Respiratory Research 2008, 9:37

http://respiratory-research.com/content/9/1/37

21%
40%
B 90%

16 week

pre 72h 96 h 120 h
90%

*

- 16 -
c -
.3 14 -
S £ .,
o % 12j
® ]
= w -
° E &
& W -
S
o i
l 4 4
1; .
T 24 %

0

pre 2 week 4 week 8 week
21% and 40%
Duration of Exposure

Figure 7

Hydroxyproline content during oxygen exposure. The hydroxyproline content with 2 week exposure to 40% oxygen
was significantly increased as compared to that with 2 week exposure to 21% oxygen. This increase was not significantly differ-
ent as compared to that in the pre-exposure group. At 4, 8 and |6 week-exposure periods, there were no differences in
hydroxyproline content between the 40% and the 21% exposure groups, or between the 40% and the pre-exposure groups.
There were no significant differences among the 90% oxygen exposure groups. Values are expressed as means = SD; n = 9 in
the pre-exposure group; n = 5 (2 weeks), 9 (4 weeks), 5 (8 weeks) and 6 (16 weeks) in the 40% oxygen exposure groups; n =
5 (2 weeks), 8 (4 weeks), 5 (8 weeks) and 5 (16 weeks) in the 21% oxygen exposure groups; n =5 (72 hours), 5 (96 hours) and
5 (120 hours) in the 90% oxygen exposure groups. * p < 0.05 as compared to the value of the 21% oxygen exposure duration-

matched control.

hyperoxia-induced activated neutrophils has been
pointed out [31,32], and blockade of the neutrophil
influx has been shown to ameliorate lung injury in new-
born rats [33]. Newborn rats exposed to 60% oxygen for
14 days developed a heterogeneous parenchymal lung
injury with areas of arrested alveolarization, while sup-
pression of neutrophil influx resulted in enhanced alveo-
lar formation: airspace size variance was reduced, mean
linear intercept was decreased, and secondary crest forma-
tion was enhanced [33]. These reports indicate that vari-
ous reactive oxygen species generated from a respiratory
burst of accumulated and activated neutrophils amplify
the process of toxic oxygen-induced lung injury [34].

Hyperoxic lethal lung injury in the present study closely
resembled endotoxin-induced acute respiratory distress
syndrome (ARDS), suggesting that common mechanisms

act on the lung injury. Firstly, histopathological findings
observed in the 90% oxygen 120 hour-exposure group is
substantially the same as those in ARDS; i.e. diffuse alve-
olar damage. Secondly, it has been reported that activated
neutrophils play a central role in the development of lung
injury in ARDS [35]. Finally, pulmonary endothelium is
the target tissue in oxygen-induced lung injury and ARDS,
both of which induce pulmonary edema and neutrophil
infiltration into alveolar spaces. Hydrogen peroxide is
produced by adherent granulocytes in the intact rat lung
treated with endotoxin, which causes the granulocyte
adhesion and oxidative stress to the endothelium within
30 min in the pulmonary microcirculation [36]. Although
pulmonary inflammation is a CD18-independent event
in a model of oxygen toxicity in the guinea pig [37],
ICAM-1, the ligand of CD18, is indispensable for neu-
trophil H,O, production in the pulmonary microcircula-
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Figure 8

Percentage of fibrous tissue stained with aniline blue. The percentage of fibrous tissue with 2 week exposure to 40%
oxygen was significantly increased as compared to that with 2 week exposure to 21% oxygen. There was no significant differ-
ence among the 90% oxygen exposure groups. Fibrous tissue levels in 2 and 16 week 21% oxygen exposure control lungs were
not lower as compared to that in pre-exposure. Values are expressed as means £ SD. n = |0 in the pre-exposure group; n = 8
(2 weeks), 10 (4 weeks), 6 (8 weeks) and 6 (|16 weeks) in the 40% oxygen exposure groups; n = 4 (2 weeks), 7 (4 weeks), 6 (8
weeks) and 5 (16 weeks) in the 21% oxygen exposure groups; n =5 (72 hours) and 9 (96 hours) in the 90% oxygen exposure
groups. * p < 0.01 as compared to the value of the 21% exposure duration-matched control.

tion of endotoxin-infused rats [38]. Upregulation of
ICAM-1 has been demonstrated in hyperoxia-exposed
pulmonary arterial endothelial cells in vitro [39,40]. Taken
together, the mechanism that leads to the fatal lung injury
by hyperoxic exposure might be induction of respiratory
burst of activated neutrophils and subsequent endothelial
injury such as by endotoxin. If a certain oxygen concentra-
tion is below the threshold needed to induce respiratory
burst, the lung might be able to compensate for oxygen
toxicity.

Imbalance between collagenolytic and collagenosynthetic
activities has been hypothesized to induce pulmonary
emphysema [41] and fibrosis [42]. Overexpression of
interstitial collagenase causes pulmonary emphysema in

mice [41], while low collagenase activity has been demon-
strated in pulmonary fibroblasts obtained from patients
with idiopathic pulmonary fibrosis [42]. In the present
study, normal guinea pig lungs exposed to relatively low-
dose oxygen concentration showed dynamic changes in
collagenase activities which resulted in the collagen bal-
ance being maintained. This finding, observed in success-
ful hyperoxia-induced remodeling in normal lungs,
indicates a striking difference from that in disease states
such as pulmonary emphysema and fibrosis.

Conclusion

We conclude that epithelial functions are transiently dam-
aged at 2 to 4 weeks and that both breakdown of collagen
fibrils and fibrogenesis are induced even with low-dose
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Figure 9

Sections of peripheral parts of the lungs stained with hematoxylin-eosin. Panels A, B, C, D and E represent pre- and,
2, 4, 8 and |6 week-exposure to 40% oxygen. Neither discernible injury nor architectural disorganization can be seen in any of

these groups. Bar = 100 pym.

(40%) oxygen exposure in the guinea pig lung. However,
these changes are compensated by 8 weeks even with con-
tinuous oxygen exposure, and neither significant epithe-
lial injury nor fibrosis occurs with long-term low-dose
oxygen supplementation.
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Figure 10
Sections of peripheral parts of the lungs stained with hematoxylin-eosin. Panels A, B, C and D represent pre- and,

72, 96 and 120 hour-exposure to 90% oxygen. Inflammatory cell infiltration was recognized at 72 hours of exposure, and alve-
olar septal destruction was apparent by 96 hours of exposure. Diffuse alveolar damage was apparent by 120 hours of exposure.
Bar = 100 pym.
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