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ABSTRACT

The olfactory system integrates signals from recep-
tors expressed in olfactory sensory neurons. Each
sensory neuron expresses only one of many similar
olfactory receptors (ORs). The choice of receptor is
made stochastically early in the differentiation
process and is maintained throughout the life of
the neuron. The underlying mechanism of this sto-
chastic commitment to one of multiple similar OR
genes remains elusive. We present a theoretical
analysis of a mechanism that invokes important
epigenetic properties of the system. The proposed
model combines nucleosomes and associated
read–write enzymes as mediators of a cis-acting
positive feedback with a trans-acting negative
feedback, thereby coupling the local epigenetic
landscape of the individual OR genes in a way that
allow one and only one gene to be active at any time.
The model pinpoint that singular gene selection
does not require transient mechanisms, enhancer
elements or transcription factors to separate
choice from maintenance. In addition, our hypoth-
esis allow us to combine all reported characteristics
of singular OR gene selection, in particular that OR
genes are silenced from OR transgenes.
Intriguingly, it predicts that OR transgenes placed
in close proximity should always be expressed sim-
ultaneously, though rarely.

INTRODUCTION

Mutually exclusive gene expression is described in several
organisms, from allelic exclusion in X-chromosome inacti-
vation (1) and imprinting inmammals (2), to antigenic vari-
ation by selective Variant Selective Glycoprotein (VSG)
expression in African trypanosomes (3). The present topic
of olfactory neuron differentiation is yet an example.

The first step in odour reception in mammals is
effectuated in the almost canonical one neuron-one

receptor rule (4,5). Each olfactory neuron expresses only
one allele out of a large and highly homologous gene
family, comprising almost 1400 olfactory receptor (OR)
genes in mice (6–9). Millions of olfactory neurons comprise
the olfactory epithelium (OE). Olfactory neurons express-
ing a particular OR gene are confined to zones along the
dorsal-ventral axis of the OE in mice, with possible
overlaps between differently segregated zones (10–12).
The coding region of a general OR gene is just 1 kb.
However, transgenes must include a much larger part of
the OR gene region to reproduce expression patterns
parallel to endogenous genes (13–15). During develop-
ment, the neuron extends its axon to a receptor defined
glomerulus of the olfactory bulb, ensuring the essential
conversion of olfactory signals to a typographical map
in the bulb (16–18). Main characteristics of the olfactory
neuron differentiation are summarized in Table 1 [re-
viewed recently by (7,19,20)].
In choosing to express just one among thousands of OR

genes, each olfactory neuron represents a system with
multiple stable states. Numerous mechanisms have been
put forth to describe the underlying nature of this seem-
ingly stochastic multi-stability. So far, all proposals fail to
fully encompass both the choice and the maintenance of
the expression of a single OR gene. Most descriptions like
limiting transcriptional complexes or singular enhancer
elements picture plausible ways of stochastically
choosing a single OR gene for expression but resort to
transient mechanisms to fix the memory of the chosen
OR gene (14,27,28,31,35–38). Recent reviews that hy-
pothesize the involvement of chromatin re-modelling in
upholding OR gene selection implement similar transient
mechanisms or some shielding of the chosen OR gene in
establishing the choice (7,39). Moreover, though based on
experimental observations, all proposals remain descrip-
tive and lack a mean for reliably testing if the dynamics of
the system would in fact be as envisioned.
In this article, we present a quantitative analysis of a

model of OR gene choice inspired by the proposed in-
volvement of epigenetic modifications. We revisit a theor-
etical approach on epigenetic cell memory by nucleosome
modification, initially taken by Dodd et al. (40,41) and
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explored in the context of vernalization in plants by Angel
et al. (42). In the two state version of this theoretical
analysis, a DNA region containing L nucleosomes is con-
sidered (43,44). Each nucleosome may be in one of the two
states—silent or active. Transitions between states are
made randomly or by active recruitments. In a random
event, a nucleosome spontaneously converts to the other
state. During recruitment a histone-modifying enzyme is
recruited by nearby nucleosomes and is thought to modify
the nucleosome at hand to match the modification of the
recruiting nucleosomes. When these recruitment processes
include either implicit or explicit cooperativity, the state of
the DNA region can be bistable (40,44), with the majority
of the nucleosomes being in either the silent or active state,
see Figure 1B.
One may associate the two nucleosome states of the

model with permissive and repressive methylation marks
as recently reported for the active and inactive OR gene
regions by Magklara et al. (34). Alternatively, the states
could be DNA methylation marks (45) or increasing levels
of histone acetylation. Histone de-acetylases are reported
in immature and mature olfactory sensory neurons
(46,47), and in vitro-cultured vomeronasal progenitor
cells of adult rats only develop the adult neuronal pheno-
type when subjected to histone de-acetylase inhibitors
(48). We use a compressed description of these multi-step
scenarios where different levels of histone modifications
dictate activity of the genes.
We study whether olfactory differentiation can be

described by combining several subsystems with internal
architectures similar to those of the nucleosome modifica-
tion model of cell memory. Each OR gene should then be
in one of the two general states, either activated or
silenced. To mimic the mutual exclusion of expression
amongst OR genes, we couple the sub-systems through a
hypothesized factor, effectively governed by active OR
genes, see Figure 1A. The factor is thought to prevent
the conversion of silent nucleosome marks to active
ones, perhaps through binding and shielding of the silent
marks or by inhibiting the activating enzymes. Thus ef-
fectively, the factor represses the positive feedback
towards active nucleosomes, see Figure 1C.
Formulating our model of OR gene selection as a sto-

chastic simulation, we examine how the model captures

the properties of the system and identify the effect of the
involved mechanisms. We demonstrate that combining a
cis-acting positive feedback mediated by nucleosomes and
associated read–write enzymes, with a transacting negative
feedback, encompass or reproduce all the characteristics
of OR gene selection summarized in Table 1. In particular,
we reproduce functional differentiation without the
need for transient mechanisms to fix the memory of the
chosen OR.

MATERIALS AND METHODS

In general, our model describes the OR neuron differenti-
ation as a combination of cis-acting positive feedback that
stabilize the state of the individual OR gene and a
trans-acting negative feedback governed by active OR
genes.

The model of epigenetic cell memory through nucleo-
some modification allows for sensitive gene regulation of
individual genes by positive feedback loops (40,41).
This provides us with a predefined bistable sub-system
to describe each OR gene. The individual OR genes
are coupled through modification reactions that increase
with the activity of all OR genes. This global negative
feedback favours the silent state. The model, outlined in
Figure 1, is formulated as a stochastic simulation as in
(40,41), and analysed in terms of deterministic equations.
The real OR gene family is one of the largest mammalian
gene families. In modelling, we consider system sizes of
N=10, 100 or 1000 similar genes consisting of L=50
nucleosomes.

Governing equations

In the limit of an infinite number of nucleosomes per gene,
the governing equation for the fraction of active nucleo-
somes, ai, in gene i, reads:

dai
dt
¼ R � ð1� aiÞ � a

2
i � � � ai � ð1� aiÞ

2

+� � R � ð1� aiÞ � � � ai

ð1Þ

where ai ¼ Ai=L, with Ai being the number of active nu-
cleosomes of gene i, � < 1 is the bias that favour the active
state of all genes, and R is the reduction in conversion

Table 1. Characteristics of olfactory neuron differentiation

. The OR gene family of mice includes >1000 genes spread out over most chromosomes. About 85% of these can express functional receptors
(21). In humans, only �40% are functional (22,23).

. The majority of all mature neurons express only one receptor (5,24,25).

. Expression of an OR protein enforce a feedback that (normally) keeps the neuron from expressing a second OR (24,26–28).

. Immature neurons can switch between expressing different ORs, including the two allelic versions, before maturation (24).

. At least 40% of neurons die before they fully mature (29,30).

. Pseudogenes are OR genes that do not result in a functional receptor and may not invoke the presumed feedback. Pseudogenes can be
co-expressed with a functional OR (27,28).

. Transgene expression of an OR gene from a promoter associated with early transcription results in OR expression over the full OE (15).

. Enhancer elements upstream of an OR locus alter the probability of the associated OR genes being chosen for expression (25,27,31).

. Promoter and coding region of ORs contain TF-binding sites (13,32,33). However, identical transgenes are not co-expressed, and thus OR
gene choice cannot be fully governed by TFs (5).

. Silenced OR genes are covered by nucleosomes marked with H3K9me3 and H4K20me3 methylation, whereas the nucleosomes associated to
active OR genes are marked with H3K4me3 (34).
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activity of nucleosomes in the silent state resulting from
the negative feedback that couples the OR genes. b resem-
bles nucleosome conversions owing to noise, where we
reduce the noise on silent nucleosomes by R.

The negative feedback reflects the gene activity of all
OR genes. One may imagine the feedback as some

factors that effectively are governed by the gene activity
of all genes:

P / ah1+ah2+::::+ahN ¼
X

i

ahi ð2Þ

The ‘Hill coefficient’, h, in Equation (2) quantifies the
threshold function for activity of the individual gene. If
h=1, the activity is simply proportional to having one
particular nucleosome in the active state, e.g. the nucleo-
some at the promoter. Larger h values represent an
increased threshold for production from the individual
genes. Throughout the article, we use h=2 but emphasize
that our results are robust to sharper threshold functions.
The feedback from the activity of all genes to the inhib-

ition of each individual gene is solely captured by P, which
however may act on the nucleosome conversions in differ-
ent ways. For example, P may act through a protein
binding to silenced nucleosomes and preventing their con-
version to active ones. Alternatively, the factor could act
by inhibiting/sequestering enzymes that favour the active
nucleosome state. Finally, P may act by activating
enzymes that favour the silenced state. The only require-
ment is that the coupling feedback must favour the silent
nucleosome state. For simplicity, we here concentrate on
P acting as an inhibitor.
With P describing a binding and sequestering of an

enzyme, e, required for recruited conversion to the active
state, the bound and free fraction of this enzyme eb and
efree is determined by

e ¼ eb+efree

eb ¼ P � efree ¼ r
X

i

ahi � efree
ð3Þ

where we assume fast rates for this sequestering process
and, for completeness, have included a parameter r that
parameterizes the ratio between feedback factor P and the
enzyme in the cell e. We set r=1 in our standard
modelling but demonstrate in the supplementary that
other r values works. The recruited conversion rate to
active nucleosomes is accordingly reduced by a factor

efree
e
¼

1

1+r
P
i

ahi
¼ R ð4Þ

This form of the feedback is the same in case the feedback
instead works through a shielding of silenced nucleo-
somes. In that case, only a silenced nucleosome fraction
given also by Equation (4), is accessible for conversions.

Stochastic implementation of model

The stochastic version of the model mimics a system of N
genes each covered by L nucleosomes. Let at each time
R ¼ 1=ð1+r �

P
i a

h
i Þ ¼ 1=ð1+PÞ where ai ¼ Ai=L with Ai

being the number of active nucleosomes in gene i.
At each step of the simulation one

(1) Select 2 random nucleosomes in one random gene. If
both are active, one with probability R, then select
another nucleosome in this gene and set its state to

active state of gene

silenced state of gene i

i
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Figure 1. Model for maintenance of selected gene expression in an ol-
factory neuronal cell. (A) Local positive feedback and global negative
feedback. N genes each covered by nucleosomes (red for silently
marked nucleosomes, blue for actively marked). The nucleosomes on
each gene form positive feedback systems that maintain the selected
expression state (red and blue arrows). The active gene expresses
receptor proteins, which direct enzymes that favour nucleosomes to
stay in a silenced state by repressing the positive feedback towards
the active nucleosome state (black arrow and blunted lines, respect-
ively). (B) Switching property of a single gene. Each gene is covered
by L nucleosomes that each can be in an active state that is open for
transcription (blue) or in a silenced state (red). The nucleosomes
together with associated ‘read-write’ enzymes form positive feedback
systems that allow a gene to maintain a previously selected state
(blue and red arrows). Enzymatic activity effectuated by the activity
of all active genes captures genes in the silent state (black arrow and
dashed blunted line). (C) Detailed nucleosome conversions. Nucleo-
some modifications recruit read-write enzymes within each gene, as in
(40), but for simplicity, we consider only two nucleosome states, which
each can modify the states of other nucleosomes cooperatively. In the
model implementation, b is the noise on nucleosome conversions and
� < 1 parameterizes the bias in recruited conversions. The feedback
between genes, described in (A) and (B), acts by reducing conversions
of nucleosomes to the active state, parameterized by R in our model.
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active. If the two nucleosomes are in the silenced
state, one with probability m, the select another nu-
cleosome and set its state to silenced.

(2) Select with probability b a nucleosome among all
genes in the system. If the chosen nucleosome is
active, then change it to silenced. If the chosen nu-
cleosome is silenced, then change it with probability
R to active.

One time unit corresponds to one update per nucleo-
some in the entire system of L�N nucleosomes. Thus, in
each time unit of a simulation, every nucleosome is on
average attempted converted towards the active state,
with actual conversions happening much less frequently.
In our standard simulations, we assume that P ¼

P
i a

2
i ,

which in effect implies that a gene that is half covered by
silenced nucleosomes, still retain 1/4 of its maximal
activity. This rather soft repression limits the functional
range of our model considerably. A much more robust
differentiation is obtained by using a higher value of h
or by simply assuming that there is only activity from
genes i where the fraction of active nucleosomes, ai, has
reached a finite threshold, say ai > 2=3. The latter case is
examined in Figure 4C.
The OE is constantly renewed through neurogenesis

(49–51). In adult rats, regeneration of OR neurons from
immature progenitors is achieved within 2 weeks (29).
Similar timescales of neurogenesis are observed in embry-
onic development (30,52). In contrast, reported lifetimes for
neurons in rodents are very variable, ranging from 1 month
to almost a year (29,53,54). With a turnover rate of histone
modifications in the order of 10min reported for the
de-acetylation processes (55–58), we thus want our model
to choose one subsystem within 1 week �1000 time units in
the simulations and contain exclusive expression of that
subsystem for at least 1 month �5000 time units. Other
modification processes may well be slower (59–61), but
such change of timescale does not change our overall
results. It would only move the parameter range for
which we have acceptable differentiation properties.
For each simulation, we hence run 5000 time units,

starting from an all silenced state and requiring that
only one gene turns on within this time window and that
only one gene is active in the time window. In tread with
previous nucleosome models, we score a subsystem as
activated when the fraction of actively marked nucleo-
somes exceeds 2/3. Activation is considered lost when
the fraction falls below 1/3 (40), but in fact an insignificant
fraction of the genes that switch to become the single
dominating gene will switch back to the silent state
within the plotted time frame. The model was imple-
mented in both C++ and fortran and are available on
request.

RESULTS

Stable activity of one and only one subsystem

Our model of OR gene expression captures the basic
property of the system, namely, the exclusive expression
of just one gene out a large highly homologous gene

population. We initiate the system with all nucleosomes
in the silent state consistent with the observations by
Magklara et al. (34). Within the simulations, we identify
the state of the individual gene, i, as active, when the
active fraction of nucleosomes, ai, exceeds 2/3. Figure 2
shows a simulation of N=10 genes covered by L=50
nucleosomes each. Gene 5 achieves activation as the
number of active nucleosomes exceeds 33 at time �60.
Stochastic fluctuation and internal local bias towards the
active state move the subsystem into a dominant active
state. Activation increases the globally acting negative
feedback, thus reinforcing the dominant gene by
decreasing the probability for local activation of other
genes.

Success of a simulation may be accessed on three
criteria. First, the system needs to selectively activate a
single OR gene within a given time window. Second, the
chosen gene should remain active for a considerable time.
Third, no other OR genes may be activated while the
initial OR gene is active. Figure 3A, D and G compactly
show time courses like those of Figure 2 for a system of
100 genes at three different values of the local activation
bias parameter m. It is clear that increasing m takes the
system from defying the first criteria by switching on
more than one gene, to fulfilling all criteria with a single
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Figure 2. Simulation of N ¼ 10 genes, each covered by L ¼ 50 nucleo-
somes. The simulation shows that one gene is turned on early, whereas
all other genes remain silenced throughout the simulation. In fact, with
these parameters, all these genes stay silenced up to at least t=5000
time units. Sketches in the right panel illustrate the OR gene state at the
final time of the simulation. Crossed promoters indicate silent genes. In
color version nucleosomes with silent and active modifications are
shown as red and blue, respectively. Other parameters of the simulation
are � ¼ 0:50, overall repression factor r=1, hill coefficient of repres-
sion h=2 and noise conversion � ¼ 0:03.
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active gene, and to failure owing to lack of turn on of any
genes.

Activation barriers capture genes in silent state

Although simulations present a proof of concept for our
model in reproducing the exclusive gene expression, the
theoretical formulation of the model also let us examine
in detail how the dominant gene expression is achieved.
Arguing that all but the two most active genes are found
at the same low level of activation, we graphically identify
three stable fixed points for the states of the two genes (see
‘Materials and Methods’ section). The coloured regions in
Figure 3B, E and H show where the net variation in gene
activity fraction is positive for the two most active genes.
Intersections between the regional limits are fixed points
of the governing equations where the net variation in the
gene activity fraction is zero. Fix points closest to the
corners of the a, b 2 ½0; 1�2 are stable as local variation
in activity in gene ‘a’ and ‘b’ deterministically will return
the system to the states of the fixed points (see ‘Materials
and Methods’ section and Supplementary Section S1).

The 2-d planes in Figure 3B, E and H, include
trajectories of the first versus the second most active

gene from the simulations to the left and show how the
success relies on two barriers. At low m, examined in
Figure 3B, the ‘first’ barrier stalls the system at the state
where all genes are silenced until a random fluctuation
causes activation of one of the genes. Subsequently,
the system remains unstable against the passage of a
second barrier to the state in the rightmost upper corner
of Figure 3B. At larger m, only one gene switches, as the se-
cond and larger barrier along the vertical axis in Figure 3E
prevents a second gene from turning on once an initial
switch has been made. At even larger m, values the first
barrier is so high that no gene may pass it, essentially
stalling the system with all OR genes in the silent state
(see Figure 3H). Thus, for a range of m values, the
system is successfully stalled in the lower right corner of
the ½0; 1�2 phase space with just one activated OR gene.
Interestingly, when the system is stalled in the lower

right corner of Figure 3B, E or H, the repressed genes
have a small fraction of their nucleosomes in the active
state. This ‘nucleosomal noise’ should cause a residual
production of receptors from each repressed gene of
about �h (see Supplementary Section S1). Sensitivity of
the cell sensing system to the chosen gene implies that
activity of this gene should be in excess of all the
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Figure 3. Simulation of N=100 genes, each covered by L=50 nucleosomes. Left panels (A, D, G) show time course of the first activated gene
(blue), second activated (red) and a few examples of other genes (yellow and green). Inserts show the promoter status of the correspondingly colored
genes at the final simulation time. Crossed arrows indicate silent promoters. Middle panels (B, E, H) follow the trajectory of the two most expressed
genes, identified by their active nucleosome fraction a and b, in a 2-d plane that illustrates deterministic drift of two individual genes, provided all
other genes are assumed to act synchronously (see ‘Materials and Methods’ section and Supplementary Material). In the blue region, da=dt > 0,
whereas the red region shows where db=dt > 0. (C, F, I) show the probability (lighter colour for higher) for the two most active genes in the system,
obtained by stochastic simulation over 108 time-units. The negative logarithm of this probability may be interpreted as an epigenetic landscape
(62,63), with states that to varying degree prefer to be in the corners, see also Supplementary Figure S1. Parameters are (A–C) � ¼ 0:30, r=1, h=2
and � ¼ 0:03. (D–F) � ¼ 0:50, r=1, h=2 and � ¼ 0:03. (G–I) � ¼ 0:70, r=1, h=2 and � ¼ 0:03.
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remaining N-1 genes together, 1 > N � �h. A demand ful-
filled for all examined parameters. Experimentally, the
fraction of active nucleosomes in repressed genes could
be measured and provide information about the size of
b. The contrast between their gene product and the
product of the chosen gene, on the other hand, provides
information on the threshold for protein production, here
parameterized by the hill coefficient h.
The differentiation of OR genes is also examined in

terms of epigenetic landscapes generated from stochastic
simulations. Using L=50, the rightmost panels in
Figure 3C, F and I examine the probability for the two
most active genes in the system to be covered by ‘active’
nucleosomes. Light colours are associated with preferred
states, whereas blue and black represent disfavoured com-
binations of activity. In Figure 3C, one can see that both
the state where one gene is active, and the state where two
genes are active represents ‘probability peaks’, corres-
ponding to valleys of favoured states in an epigenetic land-
scape (62). In contrast, for the parameters of Figure 3F
and I, the simultaneous activity of two genes is unlikely.
Supplementary Figure S1 shows that the landscapes of
Figure 3C, F and I are robust, with ‘passages’ between
the valleys in the landscape being modulated by both L
and an eventual time delay in the negative feedback.

Parameter sensitivity

Even for the best of parameter combinations, a fraction of
the simulations will fail to fulfill the success criteria, see
Figure 4. In the olfactory neuron, the loss of OR memory
after axon extension to the pre-defined glomerulus of the
olfactory bulb would be catastrophic. However, it is seen
that �50% of neurons born in the epithelium of adult rats
are lost within 5 days and 2 weeks (29,30). There is no
explanation to this loss, but it has been argued that it
could be a control mechanism to get rid of OR neuron
expressing more than one receptor (39). Thus, for the
model to successfully represent differentiation of olfactory
neurons, only 50% of the simulations need to be success-
ful, indicated by the grey-shaded area in Figure 4A. We
initially set the criteria that the first OR gene should
activate within t < 1000 time units (see ‘Materials and
Methods’ section). However, this restriction is somewhat
conservative and relaxing it widens the success rate of the
model, shown as concurrent orange areas in Figure 4A.
Additionally, the one-neuron one-receptor rule may

not be as manifested as widely accepted within the field
(7,64,65). To this end, we include in Figure 4B, the
maximal activity of the second and third most active
genes. These show that allowing a second or even third
gene to activate further widens the m range of successes.
The model does not address how such tandem expression
would affect axon guidance.

Robustness to gene copy number

The diversity and wide chromosomal position of OR gene
clusters are generally considered a result of subsequent
tandem gene duplications, gene conversions and recom-
bination events and even conversions of entire coding
regions. Accordingly, the mechanism of gene selection

should be robust to drastic changes in gene numbers
(7,22). The model successfully addresses this issue by
selecting one OR gene, keeping the remaining genes
silent. Provided the gene activity of silenced genes is
strongly repressed, our model successfully addresses this
issue. When this repression is parameterized by our
standard value of h=2, differentiation of a N=500
system requires lower than our standard noise � ¼ 0:03,
see Supplementary Figure S2A. However, assuming a
larger h value or a sharper threshold function, one easily
obtain a larger functional range of differentiation for a
fixed set of parameters, also when system size increases
to N=500 or N=1000, see Figure 4C.

Figure 4. Model sensitivity to activation bias parameter m, for N ¼ 100
genes, L=50 nucleosomes system with repression factor r=1, hill
h=2 and noise � ¼ 0:03 fixed. Data are averaged over 200 simulations.
(A) Orange area shows the probability that one and only one gene
becomes active within 5000 time units as function of asymmetry m.
Concurrent dark orange area marks success with the additional con-
straint that one gene becomes active within the first 1000 time units.
Grey area marks the cut-off at 50% successful simulations. (B) Orange
area marks the largest number of active nucleosomes within one gene
during a 5000 time-unit simulation. When no genes reach full activity
during the first 5000 time-units, no ORs have turned on. Cyan and
dark cyan show maximal activity of the second and third most active
genes, respectively. Where the second most active gene has many active
nucleosomes, the two genes have shown simultaneous activity. (C)
Orange area as in panel A. The two black curves refer to simulations
with the sharper threshold function for gene activity described in
‘Materials and Methods’ section, and gene copy numbers as indicated.
Only assigning feedback activity to genes where more than two-third of
their nucleosomes are marked as active, even N=1000 genes can dif-
ferentiate successfully. Data for black curves are averaged over 50
simulations. See also Supplementary Figure S2 for sensitivity to
parameters r, h, and b.
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Pseudogenes defined as genes not able to effectuate
feedback

Within the model settings that restrict the stable activation
to a single OR gene, we considered the concept of pseudo-
genes. In this context, these are subsystems affected by
feedback as previously described that do not produce
the feedback them self. It will occasionally happen that
first a pseudogene is activated, however, as the active
pseudogene does not contribute to the negative
feedback, R, another subsystem will eventually be
activated and retain the dominant stable position. Thus,
in accordance with experimental observations, our model
predicts that one should often see co-expression of
pseudogenes and functional OR genes (27), see
Supplementary Figures S3 and S4.

Enhancers and modulation by transcription factors

Enhancer elements with features similar to the locus
control region of the visual pigment genes have been
identified for some subfamilies of OR genes (25,27,31).
However, such elements are yet to be identified for all
OR genes of the super gene family (31). In the context
of our standard olfactory nucleosome modification
model, we envision enhancer elements as a mean of
disposing the OR gene for epigenetic activation.
Decreasing the probability, m, of a recruited event
towards the silent state for one subsystem by as little as
15% greatly increase the frequency of that subsystem
being activated, see Figure 5A. Such an increase in fre-
quency for H-element associated genes has been reported
(31,52,66).

Conserved regions identified in alignments of OR genes
include binding sites of known transcription factors (TFs)
(13,32,33). To our knowledge, so far no single TF or
TF-binding sites have been associated with the zonal ex-
clusivity, even though TFs as Emx2 do alter the expression
frequency of a large part of the OR genes (33). In our
model, TFs may be incorporated, like enhancer
elements, as chromatin modification control mechanisms
(41), enhancing or reducing the probability of activation
of their associated genes, see Figure 5A. The model shows
that simple TF knockout experiments will not necessarily
allow for a clear identification of such TFs as full exclu-
sion of associated OR genes. Instead, the frequency by
which the genes are chosen will decrease, whereas unre-
lated OR genes increase as reported for the Emx2
knockout mice (33).

Identification of regulatory elements

Reports on the size of the regulatory elements needed for a
recapitulation of the punctuate OR gene expression in the
OE, varies from �1 to >10 kb (13–15), with varying in-
trinsic levels of spatial restriction. The short and highly
variable OR coding sequences may be sufficient to mark a
transgene for the same feedback regulation as endogenous
genes (15). In our model, we initially assume a regulatory
size of � kb or at least large enough to encompass 20–50
nucleosomes. However, in more general terms, the model
presents a way of activating a single patch of the genome,

including the feedback producing element, which is
responsible for keeping the remaining patches silent.
In our standard model, any early dominating OR gene

will prevail. Thus, our model encompasses the experimental
observations that OR transgene expression from a promoter
that is active early in the development of the olfactory
sensory neuron dominate the future differentiation (15).
The average OR genes of a locus are separated by 29 kb

(6), allowing for separation between activated and silent
regions, and implying that the activity of their respective
nucleosomes is separated by substantial barriers. In trans-
gene experiments, one may modify distances between
genes to examine the spreading mechanisms associated
to the local positive feedback. In particular, one may
insert two genes just after each other, with identical pro-
moters, and investigate whether such architecture facili-
tate non-synchronous turn-on of the genes, or
synchronous activation as our model suggests. Notice
that with standard promoter strength, the globally acting
negative feedback will counteract any activity from such a
coupled pair of genes (see Figure 5B), and thus it is rec-
ommended to reduce the strength of the two promoters.

DISCUSSION

Early in our approach to the olfactory system, we
recapitulated the need for multiple stable states in the
system. Relying on mechanisms like TF or enhancer
element binding to the chosen OR gene inevitably
couples the stability of the choice to these associations.
As a result, such models often incorporate a transient
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Figure 5. Predictions of sensitivity to enhancers and to double gene
dosage: (A) Effect of small alterations in OR specific m on the prob-
ability of switching on for the associated OR gene. Individual decrease
(light grey bars) or zonal increase (dark grey bars) in the activation
asymmetry m might represent the effect of an enhancer element or the
removal of zonal specific TFs. Each data set from 1000 simulations,
with N ¼ 10 genes, each covered by L ¼ 50 nucleosomes, � ¼ 0:50,
� ¼ 0:03, r=1, and h=2. (B) Comparison between wild-type case,
and an engineered situation where one gene contributed with double
gene dosage to the feedback R. The likelihood of turning on the
‘doubled’ gene shown with light grey bars is smaller than for a
normal gene to an extent that depend on m. In case the ‘doubled’
gene is constructed as a tandem repeat, possibly with two reporter
proteins inserted, the two identical promoters should become active
together, but with smaller probability than the wild-type system. A
reduction in probability that will pinpoint the effective value of m.
Each data set from 1000 simulations, with N ¼ 100 genes, each
covered by L ¼ 50 nucleosomes, noise � ¼ 0:03, r=1, and h=2.
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‘feedback mechanism’ to lock the system to one OR (19).
In contrast, within a considerable time window, our nu-
cleosome modification model of the OR gene regulation
does not require solidifying agents.
The model pinpoints the need for localizing the depend-

ence of olfactory co-regulation on the size and status of
chromosomal modifications of the individual olfactory
gene locus. It also identifies the need for finding the
common factor that facilitates the interplay between the
different olfactory genes. In particular, we aim to direct
the search for this later globally acting feedback factor
within pathways associated with histone-modifying
enzymes.
Important experiments addressing the former role of the

local nucleosome mediated feedback in the model could be
initiated without explicit knowledge of the players. As pre-
viously described, placing two OR genes close on the
DNA should result in co-expression, provided a reduction
in the strength of the associated promoters. A way to
experimentally circumvent this need for reduced pro-
moters would be replacing one of the proximate genes
with a pseudogene. Lack of consistent co-expression
would falsify our model. Alternatively, it should be
possible to express two ORs from non-olfactory regions,
provided that these regions of the genome in some way are
protected from silenced nucleosomes. We again emphasize
that our model does not address how the neuron will cope
with such eventual co-expression.
The problem of possibly modelling mutually exclusive

gene expression by TFs have been addressed in both the
X-chromosome inactivation (67) and in the olfactory
system (68). In both cases, the nucleation of many co-
operatively binding activators was essential, which with
the requirement of maintaining one of many hundred
genes active leads to a modelling requirement of having
essentially all activators in the cell bound to the same gene
at all times. In contrast, our model does not require
extreme binding properties but solely relies on on-going
dynamics of read–write enzymes.

Perspectives for the model beyond the olfactory system

OR neuron differentiation is a well described case of
mutually exclusive gene expression and thus presented a
compact model system for our nucleosome modification
model of epigenetic differentiation. Examples of exclusive
gene expression are described in several other organisms.
Similar to African trypanosomes, Plasmodium falciparum
malaria avoids host antibody responses by switching
between expressed surface antigens (69). At least, the
mutually exclusive gene expression of the malaria var
gene is associated with epigenetic alternations in chroma-
tin structure and has been compared with the OR gene
choice (70,71). Our model thus presents a formulation of
epigenetic differentiation that stretches far beyond the
considered model system of olfactory neurons.

Perspectives for olfactory differentiation as a model
system for coupled epigenetic landscapes

A final speculation springs from the fact that olfactory
neuronal cells and the sense of smell is associated to the

oldest part of the cortex. Thus, their genetic regulatory
design may be found more widespread. In fact, the olfac-
tory bulb may well be the predecessor of the enlarged
cortex of mammals (72), and differentiation of olfactory
neurons could give insight into the way we store memories
in the brain. In particular, Figure 4B discloses the possi-
bility to activate two receptors in a cell, a possibility that
opens for a large increase in the number of epigenetic
states. As ORs are believed to direct the axon-to-
glomerulus association at the olfactory bulb, similar
receptor families could modulate physical connections
between other neuronal cells. Thereby receptors could
couple the intrinsic epigenetic state of cells to the neural
network architecture. An architecture where neurons
expressing a common receptor could be coupled, and
build branching signalling pathways when cells are
allowed to have more than one receptor. Accordingly,
the ability for individual neuronal cells to differentiate
their behaviour on the basis of expression of membrane
bound receptors opens for a new perspective on memory.
A perspective where the epigenetic state of individual
neuronal cells may be coupled to the real memory
storage in our cortex.
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Supplementary Figures 1–5 and Supplementary Theory
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