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Abstract

We describe a novel computational method for estimating the probability that a point mutation at 

each position in a genome will influence fitness. These fitness consequence (fitCons) scores serve 

as evolution-based measures of potential genomic function. Our approach is to cluster genomic 

positions into groups exhibiting distinct “fingerprints” based on high-throughput functional 

genomic data, then to estimate a probability of fitness consequences for each group from 

associated patterns of genetic polymorphism and divergence. We have generated fitCons scores 

for three human cell types based on public data from ENCODE. Compared with conventional 

conservation scores, fitCons scores show considerably improved prediction power for cis-

regulatory elements. In addition, fitCons scores indicate that 4.2–7.5% of nucleotides in the human 

genome have influenced fitness since the human-chimpanzee divergence, and they suggest that 

recent evolutionary turnover has had limited impact on the functional content of the genome.

During the past decade, two major developments—the emergence of massively parallel, 

ultra-cheap DNA sequencing technologies and the use of these technologies as digital 

readouts for functional genomic assays—have led to a profusion of data describing various 

features of genomes, epigenomes, and transcriptomes1,2. However, investigators still have 
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only rudimentary tools for integrating these diverse sources of information to obtain useful 

insights about genomic function and evolution. The limitations of current methods are 

particularly evident in the vast noncoding regions of eukaryotic genomes, which, despite 

recent progress3–6, remain poorly annotated and understood. These limitations hamper 

progress in many areas, ranging from basic molecular genetics to disease association and 

personalized medicine7.

Many computational methods for gaining functional insights from sequence data are based 

on the simple but profound observation that functionally important nucleotides tend to 

remain unchanged over evolutionary time, because mutations at these sites generally reduce 

fitness and are therefore eliminated by natural selection7–15. A major strength of these 

conservation- or constraint-based approaches is that they sidestep thorny questions about the 

relationship between the outcomes of biochemical experiments and fitness-influencing 

functional roles16–19 by getting at fitness directly through observations of evolutionary 

change. In essence, the “experiment” considered by these methods is the one conducted 

directly on genomes by nature over millennia, and the outcomes of interest are the presence 

or absence of fixed mutations.

These conservation-based methods, however, depend critically on the assumption that 

genomic elements are present at orthologous locations and maintain similar functional roles 

over relatively long evolutionary time periods. Evolutionary turnover may cause 

inconsistencies between sequence orthology and functional homology that substantially limit 

this type of analysis. Consequently, investigators have developed two major alternative 

strategies for the identification and characterization of functional elements. The first strategy 

is to augment information about interspecies conservation with information about genetic 

polymorphism20–28. The shorter evolutionary time scales associated with intraspecies 

variation make this approach more robust to evolutionary turnover and less sensitive to 

errors in alignment and orthology detection. Polymorphic sites tend to be sparse along the 

genome, however, so this approach requires some type of pooling of information across 

genomic positions, which can be problematic in the absence high-quality genomic 

annotations. The second strategy is to forgo the use of evolutionary information and instead 

to predict functional roles from genomic data alone, typically with machine-learning 

methods for supervised classification29,30 or clustering followed by labeling based on 

known examples31–33. This approach has the limitation that it depends strongly on 

previously characterized elements, which, in noncoding regions, are typically small in 

number and perhaps unrepresentative of the genome.

In this paper, we introduce a method for genomic analysis that combines many of the 

strengths of these polymorphism-based and functional genomic approaches. Like functional 

genomic methods, our approach groups genomic regions according to functional genomic 

“fingerprints” across multiple assays. Instead of relying on known examples for 

classification, however, we characterize each group by a probability of mutational fitness 

consequences—or fitCons score—inferred from patterns of genetic variation. These fitCons 

scores are estimated using a recently developed statistical method, called Inference of 

Natural Selection from Interspersed Genomically coHerent elemenTs (INSIGHT), that 

contrasts patterns of polymorphism and divergence in a collection of dispersed genomic 
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sites with those in nearby neutrally evolving sites, accounting for negative and positive 

selection34. Thus, the method integrates both evolutionary and functional data in 

characterizing the potential functional importance of genomic regions. We demonstrate that 

these fitCons scores are useful for visualization, for prediction of cis-regulatory elements, 

and for measuring the global influence of recent natural selection across the genome.

Results

General Features of the Prediction Problem

Information about genetic variation can be used to estimate probabilities of fitness 

consequences for moderately large groups of genomic positions but not for individual loci, 

owing to the sparsity of informative sites along the genome. This property of “groupwise” 

but not “individual” predictivity is common to many statistical problems, but it is 

complicated in our case by two additional features. First, an appropriate scheme for 

grouping or stratification is not clear a priori here, because genomic correlates of fitness 

consequences are incompletely understood. Second, the outcomes of interest in our problem

—the fitness consequences of point mutations—are not directly evident from the data. To 

highlight these challenges, consider the simpler problem of estimating the expected risk of 

an automobile accident. This problem must also be addressed at the level of groups (either 

explicitly through stratification of drivers, or implicitly through regression), but in this case, 

the relevant features—such as the age, sex, and number of traffic violations of the driver—

are mostly plain to the analyst. In addition, the outcomes of interest—the occurrences and 

costs of accidents—are directly observed. In our problem, the genomic “risk factors” for 

fitness-influencing mutations, particularly in unannotated noncoding regions of the genome, 

are much less clear. Furthermore, once a grouping is determined, it is still not possible to 

read off the associated fitness consequences of mutations; instead they must be inferred from 

patterns of genetic variation using an evolutionary model.

Calculation of FitCons Scores

We have addressed these challenges using the following strategy. Beginning with genome-

wide functional genomic data sets obtained from each cell type (Fig. 1A), we first cluster 

genomic positions by their joint functional genomic “fingerprints” (Fig. 1B). We focus on 

three highly informative and largely orthogonal functional genomic data types—DNase-seq 

data, RNA-seq data, and ChIP-seq data describing histone modifications—which describe 

DNA accessibility, transcription, and chromatin states, respectively. We divide genomic 

positions into three levels of DNase-seq signal, four levels of RNA-seq signal, and 26 

distinct chromatin states based on the ChromHMM method31,33. In addition, we distinguish 

between sites that fall outside (0) or within (1) annotated protein-coding sequences (CDSs). 

We then consider all possible combinations of these four types of assignments, obtaining 

3×4×26×2 = 624 distinct functional genomic classes. We apply this clustering step 

separately to three karyotypically normal cell types: human umbilical vein epithelial cells 

(HUVEC), H1 human embryonic stem cells (H1 hESC), and lymphoblastoid cells 

(GM12878), resulting in 443–447 usable classes of sites, with median numbers of 165 to 

224 thousand sites per class (see Supplementary Table 1 and Methods for details).
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Next, we use INSIGHT to estimate the probabilities of mutational fitness consequences 

within each of these classes based on patterns of polymorphism and divergence (Fig. 1C). 

This step yields an estimate of the fraction of sites under selection (ρ) for each of the 

analyzed classes, which serves as the fitCons score for that class. Finally, we assign to each 

nucleotide position in the genome the score estimated for the corresponding functional 

genomic class (Fig. 1D). Each genomic position is thus assigned a value between 0 and 1, 

representing the probability that the nucleotide at that position influences fitness, as 

estimated from patterns of variation at all genomic sites displaying the same functional 

genomic fingerprint. A vital property of these fitCons scores is that they integrate 

information from both evolutionary data and cell-type-specific functional genomic data.

Genomic Distribution of FitCons Scores

To obtain a general overview of the genomic distribution of fitCons scores, we first 

considered the composition and coverage of nucleotide sites of various annotation types as a 

variable threshold S was applied to the fitCons score, focusing on HUVEC (see Discussion 

for other cell types). When S is zero, all sites are considered and the composition of 

annotations reflects the overall genomic distribution (Fig. 2A). As S increases, however, the 

sites in known functional classes become strongly enriched relative to the intergenic and 

intronic sites. Regions such as 5’ and 3’ UTRs, promoters, and introns are most enriched at 

intermediate scores, reflecting moderate levels of natural selection in these regions, while 

CDSs dominate at the highest scores. The coverage properties (Fig. 2B) are best for CDSs, 

3’ UTRs, and 5’ UTRs (in that order), but they are also considerably elevated above the 

intergenic background for promoters, transcription factor binding sites (TFBS), long 

intergenic noncoding RNAs (lincRNAs), and small noncoding RNAs (snRNAs). Notably, 

the enrichment for functionally annotated genomic regions at high scores occurs despite no 

use of genomic annotations in the scoring scheme (except for CDS annotations). Instead, 

these elevated scores reflect differences in patterns of polymorphism and divergence that 

arise naturally from the fitness consequences of mutations in these regions and become 

evident after clustering based on functional genomic data. The fitCons scores for each cell 

type are displayed genome-wide as tracks in our public mirror of the UCSC Genome 

Browser (Fig. 3; Supplementary Fig. 1).

The fitCons scores generally depend in expected ways on the marginal signals of functional 

genomic covariates, but they are also capable of capturing complex, non-additive 

relationships among covariates. For example, the scores outside of CDSs increase with 

marginal DNase-seq (Fig. 4A) and RNA-seq (Fig. 4B) signals, as expected; yet a closer 

examination reveals that the scores actually decrease with DNase-seq intensity in the 

presence of a high RNA-seq intensity, apparently due to an implicit partitioning of 5’ and 3’ 

UTRs (Fig. 4C). This example demonstrates that our exhaustive partitioning scheme allows 

the method to capture unanticipated relationships between functional genomic covariates 

and natural selection.

Predictive Power for Cis-Regulatory Loci

We evaluated the predictive power of the fitCons scores for known cell-type-specific 

regulatory elements in comparison with three widely used phylogenetic conservation scoring 
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methods, the phastCons12, phyloP15 and Genomic Evolutionary Rate Profiling (GERP)13 

programs. In addition, we considered a new program, called Combined Annotation 

Dependent Depletion (CADD)35, that estimates relative levels of pathogenicity of potential 

human variants using a support vector machine (SVM), many different genomic annotations, 

and simulations of nucleotide divergence rates. Where appropriate, we also considered 

RegulomeDB, a scoring system for the regulatory potential of variant sites based on 

combined experimental and computational data36, and EnhancerFinder, a kernel-based 

predictor for developmental enhancers based on multiple data types37. We evaluated the 

performance of these methods in predicting three types of functional elements that have 

putative roles in transcriptional regulation based on different data sets: (1) binding sites for 

various transcription factors supported by chromatin immunoprecipitation and sequencing 

(ChIP-seq) data from the ENCODE project3,28; (2) high-resolution expression quantitative 

trait loci (eQTL) identified in a recent large-scale study6; and (3) enhancers based on 

characteristic chromatin marks38 (see Methods for details).

To place the different predictors on equal footing, we plotted the basewise coverage of each 

type of regulatory element as a function of the total coverage of the noncoding genome, 

varying score thresholds to include 0–20% of noncoding sites (Fig. 5). This strategy allows 

us to measure the extent to which the elements of interest display signals that rise above the 

background of the noncoding genome, in a uniform manner across scoring methods. By this 

test, the fitCons scores showed dramatically better sensitivity for noncoding elements than 

almost all of the other methods considered. For example, at a total noncoding coverage of 

2.5%, fitCons scores achieve nearly 70% coverage of TFBSs, whereas the other methods all 

have less than 20% coverage. Similarly, the coverage of enhancers was about 40% at 2.5% 

noncoding coverage, while most other scoring methods showed almost no signal above 

background. Only EnhancerFinder, which is specifically designed for this task, showed 

comparable prediction performance on enhancers. We also performed a more traditional 

evaluation of the trade-off between sensitivity and specificity using receiver operating 

characteristic (ROC) curves and found that fitCons scores were considerably better 

predictors of regulatory function than all other methods considered (see Methods and 

Supplementary Fig. 2).

The tests above were based on regulatory elements that are putatively active in the cell type 

for which the scores were produced, in order to highlight the benefits of using cell-type-

specific functional data. To evaluate how well these advantages extended across cell types, 

we created an “integrated” fitCons score by combining information from three cell types 

(see Methods), and evaluated the performance of this score in predicting regulatory elements 

pooled from multiple cell types. We found that, in this less favorable setting, the fitCons 

scores still had better predictive performance for cis-regulatory elements than any of the 

other scoring methods (Supplementary Fig. 3).

To address possible deficiencies of these tests, we carried out two additional sets of 

validation experiments. First, we performed a second round of experiments on ChIP-seq-

supported TFBSs that considered only the subset of nucleotide positions at which base 

preferences were especially strong, which should be enriched for bases having fitness 

consequences. The ROC curves based on this more stringent test were very similar to the 
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original curves (Supplementary Fig. 4), demonstrating that the apparent performance of the 

fitCons scores was not artificially inflated by the coarse-grained nature of our scores and 

TFBSs. Second, we examined an alternative set of predicted enhancers for GM12878 cells 

based on characteristic patterns of divergent transcription initiation39. Unlike the chromatin-

based enhancer predictions described above, these predictions are based on data completely 

independent from those underlying the fitCons scores. Nevertheless, the fitCons scores still 

displayed excellent predictive power for this set, better than all other methods besides 

EnhancerFinder (Supplementary Fig. 5).

Proportion of the Human Genome Under Selection

The proportion of nucleotides in the human genome that directly influence fitness—

sometimes called the “share under selection” (SUS)—has primarily been estimated using 

methods that consider divergence patterns among mammals, for which turnover of 

functional elements may be an important confounding factor40–44. In addition to being 

useful as predictors of function, the fitCons scores could be useful in obtaining estimates of 

the SUS that are less sensitive to turnover because they measure natural selection over much 

shorter time scales.

An initial estimate of the SUS can be obtained by simply averaging the fitCons scores across 

all nucleotide positions in the genome. Because each score represents a probability that an 

individual nucleotide influences fitness, their average represents an expected fraction of 

nucleotides in the genome having fitness-influencing functions, or an expected SUS. This 

approach yields an estimate of 7.5% (±0.1%) for HUVEC, or 7.5–7.8% across cell types. 

These estimates are largely consistent with, but on the high end, of those based on cross-

species divergence, which generally have fallen between 3 and 8%12,40,44–46. Among sites 

under selection, we estimate that 9.0% are in CDS, 2.2% in 3’ UTRs, 35.2% in introns, 

51.7% in intergenic regions, and <1% in each of several other noncoding annotation classes 

(Supplementary Table 2). Our estimates of the SUS are somewhat lower than previous 

estimates that have explicitly allowed for evolutionary turnover, most of which have been 2–

3 times higher than the pan-mammalian estimates of ~5%26,44,46–48. However, they are 

similar to a recent estimate of 7.1–9.2% based on improved alignments and a new model for 

turnover49 (see Discussion).

Violations of modeling assumptions will tend to bias the fitCons scores upward, particularly 

for functional classes for which the true fraction is close to zero (see Supplementary Note). 

To address this problem, we performed a parallel calculation for “neutral” sites that intersect 

the large class of genomic positions having a “null” functional genomic fingerprint (i.e., no 

DNase-seq, RNA-seq, or histone modification signal). This calculation results in an estimate 

of 3.3%, which can be considered an upper bound on the contribution of error because these 

putatively neutral sites undoubtedly include some sites under selection. By subtracting this 

3.3% from our naive estimate of 7.5%, we obtain an estimated lower bound for the SUS of 

4.2%, with somewhat higher fractions of selected sites in CDSs and 3’ UTRs 

(Supplementary Table 2). (These estimates are for HUVEC, but the results for the other cell 

types were very similar.) Overall, our analysis of the SUS suggests that between 4.2% and 
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7.5% of nucleotides in the genome have direct fitness-influencing functions, and that the 

ratio of noncoding to coding functional sites is between 5.4 and 10.1.

Implications for Evolutionary Turnover of Functional Elements

To better understand the differences between fitCons scores and conventional divergence-

based scores, we devised an alternative scoring system (denoted “fitConsD”) based on the 

same site clusters but an estimator of the fraction of nucleotides under selection that instead 

considers nucleotide divergence patterns across primates (see Methods). Thus, the fitCons 

and fitConsD scores both represent probabilities of fitness consequences per nucleotide but 

over two different evolutionary time scales. Overall, these two measures are remarkably 

well correlated, with R2=0.88 (Fig. 6A). Furthermore, a measure based on the difference 

between fitConsD and fitCons scores suggests relatively low amounts of turnover across 

annotation classes, accounting for no more than about 10% of all functional sites (Fig. 6B). 

These observations suggest that the main signal for selection has been maintained over long 

evolutionary time periods and that turnover has been modest during primate evolution, but 

that there are some classes of sites that show stronger recent than ancient natural selection.

Discussion

The essential idea of our approach is to use functional genomic data to group sites into 

classes that are relatively homogeneous in terms of their functional roles, then to 

characterize the bulk influence of natural selection on those classes based on their patterns 

of polymorphism and divergence. For our estimation of natural selection, we make use of a 

recently developed probabilistic model of evolution and efficient algorithms for genome-

wide inference (INSIGHT). We interpret INSIGHT-based estimates of fractions of 

nucleotides under selection as probabilities that each nucleotide influences fitness, or fitness 

consequence (fitCons) scores. Even with a simple clustering scheme, these fitCons scores 

appear to be highly informative about genomic function.

Based on our experiments, the fitCons scores have excellent predictive performance for 

putative cis-regulatory elements, outperforming several divergence-based methods 

(phastCons, phyloP, GERP, and CADD) and one annotation-based method (RegulomeDB) 

by clear margins. They also performed slightly better in enhancer prediction than 

EnhancerFinder, a program specifically designed for this purpose, although it should be 

noted that EnhancerFinder was trained on other cell types. Notably, prediction performance 

does not appear to be sensitive to the choice of neutral sites used by INSIGHT 

(Supplementary Figs. 6 and 7). In part, the observed improvement in performance reflects 

the use of cell-type-specific data (Fig. 5 and Supplementary Fig. 2), but the fitCons scores 

also show a clear performance advantage when considering all annotated elements rather 

than just active ones (Supplementary Fig. 3). Thus, the approach of grouping genomic sites 

by functional genomic signatures and then measuring group wise fitness consequences based 

on patterns of genetic variation appears to offer real benefits for prediction of regulatory 

function, as compared with methods that consider either genetic divergence or functional 

genomic data alone.
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Interestingly, the recently published CADD method performed no better on our tests than 

conventional conservation scores, despite reports by the authors of significant advantages 

over phyloP, phastCons, GERP, and other methods35. This inconsistency appears to reflect 

several important differences between our validation experiments and those reported in 

reference [35]. First, our tests focused specifically on putative cis-regulatory elements, while 

many of their tests considered a mixture of coding and noncoding elements. In particular, 

the ClinVar database, which figured prominently in their experiments, includes very few 

noncoding variants (~5% of pathogenic variants). Second, when Kircher et al. did consider 

noncoding regions, they generally did not distinguish between cis-regulatory elements and 

sequences that more directly influence the structure and content of protein-coding 

transcripts, such as splice sites. CADD has a natural advantage with these variants due to its 

use of gene annotations, whereas the annotation-free fitCons scores may perform better in 

completely unannotated regions of the genome. Finally, the tests by Kircher et al. that 

explicitly considered putative cis-regulatory elements were limited to a few loci and 

considered only correlations with saturation mutagenesis experiments, irrespective of a 

prediction threshold. We view our ROC-type comparisons based on multiple independent 

genome-wide sets of elements as a more direct and comprehensive demonstration of 

predictive power for cis-regulatory elements. In any case, the comparison of these two 

closely related, yet distinct, approaches helps to reveal strengths and weaknesses of each, 

and may lead to new ideas for improved methodologies.

A side benefit of our model-based approach is that the basewise probabilities of fitness 

consequences lead in a straightforward manner to an estimate of the “share under selection” 

(SUS) in the human genome. This estimate of the SUS reflects time scales since the 

divergence of humans and chimpanzees, about 4–6 million years ago, unlike conventional 

estimates based on tens or hundreds of millions of years of mammalian evolution. 

Nevertheless, our estimate of the SUS—at 4.2–7.5%—ends up being remarkably similar to 

those based on longer time scales, which have generally fallen between 3 and 

8%12,40–43,45,50. It also overlaps with a recent estimate of 7.1–9.2% based on patterns of 

insertion and deletion and an explicit model of evolutionary turnover49. We take the general 

concordance of these estimates, both with one another and with our fitCons- and fitConsD-

based estimates, as a strong indication that the SUS has remained quite low (probably 

<10%) over various time-scales in mammalian evolution. This finding stands in contrast to 

estimates that ~80% of nucleotides may be functional, based on measures of “biochemical 

activity”3. However, it is important to bear in mind that these evolutionary and biochemical 

estimates reflect somewhat different definitions of “function,” and this may explain some of 

the difference between them16,18,19. For example, the fitCons- and conservation-based 

estimates (excluding those based on indels) generally represent fractions of positions at 

which point mutations will have fitness consequences, but they do not account for sequences 

(such as spacer elements) that would have fitness consequences if deleted but not mutated 

(see Supplementary Note for discussion).

Apart from the absolute fraction of functional DNA in the human genome is the question of 

how much the functional content of the genome has changed over time through gains and 

losses of functional elements. Several studies have estimated that such “turnover” could 
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allow the current SUS in the human genome to be ~2–3 times larger than estimated from 

comparisons across mammals26,44,46–48. Indeed, these findings have been proposed to 

explain, in part, the discordance between evolution-based and biochemical estimates of the 

functional fraction of the genome26,51,52. However, most of these analyses have accounted 

for turnover using relatively crude methods, for example, by relying on an apparently near-

linear relationship between pairwise divergence and the estimated SUS46,47 or by estimating 

functional content from mean SNP densities or derived allele frequencies in genomic 

regions not conserved across mammals26 (but see reference [49] for an improved model). 

Our analysis is more direct, by comparing analogous divergence-based and polymorphism-

based estimates of the SUS based on exactly the same clusters of nucleotide positions. In 

addition, our analysis focuses on primate evolution, rather than attempting to account for 

turnover across mammals, where factors such as alignment error, orthology detection, and 

genomic rearrangements can be problematic. The similarity between our estimates based on 

polymorphism (fitCons) and divergence (fitConsD) strongly suggests that evolutionary 

turnover has been modest during primate evolution, because massive turnover would be 

expected to lead to a substantial downward bias in the divergence-based estimates. Our 

power experiments indicate that this observation is not an artifact of reduced sensitivity in 

the fitCons scores. Nevertheless, we cannot rule out the possibility that compensating gains 

and losses on very recent time scales maintain a similar SUS while substantially altering the 

genomic composition of functional sequences.

We have focused on HUVEC in this paper, but we also generated fitCons scores for two 

other cell types (H1 hESC and GM12878). A comparison across cell types (see 

Supplementary Note) indicated that the genomic positions assigned to each functional class 

differed substantially across cell types, but equivalently defined clusters had concordant 

fitCons scores in the different cell types (Supplementary Fig. 8). When cell-type-specific 

scores were examined, elements “active” in that cell type displayed significantly higher 

scores than inactive elements. Moreover, particular elements had higher scores in cell types 

for which they were active than in cell types for which they were inactive (Supplementary 

Fig. 9). Notably, we found that a set of integrated scores based on a simple, heuristic 

procedure (see Methods) performed nearly as well as the cell-type-specific scores in the 

target cell types, but much better on elements from mismatched or pooled cell types 

(Supplementary Fig. 10). With more flexible and scalable clustering techniques, it may be 

possible to improve these methods by considering all cell types simultaneously, clustering 

sites by multi-cell-type functional genomic fingerprints, and then producing a single set of 

scores reflecting these joint patterns. Such improvements, together with increases in the 

resolution and quality of the available functional genomic data, should result in improved 

power for individual functional elements and refined estimates of the share under selection.

Online Methods

Functional Genomic Data

RNA-seq and DNase-seq data for HUVEC, H1 hESC, and GM12878 were downloaded 

from the University of California, Santa Cruz (UCSC) Genome Browser. Chromatin states 

for the same three cell types were downloaded from the European Bioinformatics Institute 
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ftp site (see Supplementary Table 3). For DNase-seq, we considered two replicate 

experiments from University of Washington (UW) data for each cell type. However, only 

one UW replicate was available for H1 hESC so additional DNase-seq data for this cell line 

was obtained from Duke University. For each replicate DNase-seq experiment, we 

downloaded broad and narrow peak calls. For RNA-seq, we selected a single replicate from 

the Caltech poly-A+ 75 bp paired-end read data, after examining several alternative data 

sets. For chromatin states, we used the 25-state ChromHMM segmentation generated in 

December, 201233.

Clustering Approach

We produced a separate partitioning for each cell type based on the functional genomic data. 

The broad and narrow DNase-seq peaks were used to partition sites in the genome into three 

mutually exclusive classes: sites that fall in a narrow peak in both replicate experiments (2); 

sites that fall in a broad peak in at least one replicate and do not fall in a narrow peak in both 

replicates (1); and sites that fall outside of all called peaks (0). This three-level scheme 

allows for both high sensitivity (class 1) and high specificity (class 2). For H1 hESC, only 

one set of broad peak calls was available to define class 1. For the RNA-seq data, we 

partitioned sites in the genome into four mutually exclusive classes (0–3) based on numbers 

of reads aligned at each position. Read depth thresholds were set separately for each cell 

type through a process that aims to minimize the conditional entropy of concentrations of 

predicted sites under selection (see Supplementary Note). Chromatin states were defined 

directly from the 25 states in ChromHMM, with a 26th state containing sites not assigned to 

any chromatin class. The Cartesian product of these partitions, together with the partition 

into coding and noncoding sequences (see below), resulted in 3×4×26×2 = 624 distinct 

functional classes.

Running INSIGHT

The INSIGHT method infers the fraction of nucleotide sites under selection (ρ) for a given 

collection of sites by comparing patterns of within-species polymorphism and between-

species divergence within those sites and within putatively neutrally evolving sites nearby. 

A detailed description of the method, sequence data, and data-quality filters is given in 

reference [34]. For each non-empty fitCons site cluster, INSIGHT was used to estimate ρ, 

which was used as the fitCons score of all sites in that cluster. To reduce sensitivity to 

estimates with high uncertainty, we filtered out clusters for which the estimated standard 

error was larger than 40% of the estimated value of ρ. To increase computational efficiency, 

clusters larger than 20 Mb were partitioned into smaller subclasses, and estimates of ρ were 

computed as weighted averages (by numbers of informative sites) across subclasses.

Neutral Sites

The collection of sites predicted to be free from the influence of natural selection (“neutral” 

sites) was derived from a set identified previously28,34,53. Briefly, this set is obtained by 

eliminating from the genome sites likely to be under direct natural selection, including (1) 

exons of annotated protein-coding genes and the 1000 bp flanking them on either side; (2) 

RNA genes from GENCODE v11 and 1000 bp flanks; and (3) conserved non-coding 
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elements (identified by phastCons) and 100 bp flanks. This set was used both by INSIGHT 

and for our power analysis (see below).

GENCODE Annotations

Transcript annotations from GENCODE v1554 were downloaded from the Sanger Institute 

FTP server and used to define eight site classes: coding sequences (CDS), 5’ untranslated 

regions (UTRs), 3’ UTRs, promoters, introns, long intergenic noncoding RNAs (lincRNA), 

short noncoding RNAs (sncRNA), and intergenic (sites not falling within any protein-coding 

transcription unit). Transcripts annotated with feature type=“CDS” and gene type=“protein 

coding” were used to define the CDS set for fitCons. For subsequent analysis, we used a 

slightly more conservative set, obtained by additionally requiring feature type=“gene”, gene 

status=“KNOWN”, transcript status=“KNOWN”, and the identification of both start and 

stop codons within the transcript. UTRs were defined from transcripts having feature 

type=“UTR” and gene type=“protein coding” and designated as 5’ or 3’. Introns were 

defined by positions that fall within a protein-coding transcript but outside of the CDS and 

UTR regions. Promoters were defined as the 1000 bp immediately upstream of the first (i.e., 

most upstream) transcription start site for each protein-coding gene. A similarly defined 

alternative set of 100 bp promoter regions was used in assessing differences between cell 

types (see Supplementary Fig. 9). LincRNAs were identified by transcripts with feature 

type=“exon” and gene type=“lincRNA”. Similarly, sncRNAs consisted of transcripts with 

feature type=“exon” and gene type ∈ {“miRNA”, “snRNA”, “snoRNA”}. Positions in the 

more inclusive CDS set were removed from all noncoding classes.

Cis-Regulatory Elements

Transcription factor binding sites (TFBSs) were drawn from a set for 78 transcription 

factors, based on ChIP-seq data from ENCODE28 downloadable from our Genome Browser 

mirror. This set contains roughly 1.4 million binding sites of mean length 11 bp, each of 

which is associated with the cell types in which it was detected. For some tests, we 

considered only the subset of nucleotide positions inside these TFBSs that corresponded to 

motif positions with strong base preferences, defined as those positions at which the 

consensus allele appeared in at least 90% of all binding sites (according to the inferred motif 

model). For enhancers, we used the distal regulatory modules described in reference [38]. 

We downloaded the file enets4.Distal cell line.txt from the Gerstein Lab and extracted from 

it a total of 19,005 enhancer-transcript associations, covering 5,834 unique autosomal loci 

with a mean length of 888 bp, along with the cell types associated with each predicted 

enhancer. Expression quantitative trait loci (eQTL) described in reference [6] were 

downloaded from the European Bioinformatics Institute’s E-GEUV-1 data set. We used the 

four files {EUR373, YRI89}.{exon, gene}.cis.FDR5.best.rs137.txt.gz to identify 6,760 

distinct autosomal positions and the associated transcripts, removing all positions 

overlapping CDSs.

Identifying Active Elements per Cell Type

In several analyses, we considered the subset of elements in each annotation class for which 

we had evidence of activity in a given cell type. To identify the cell types in which TFBS 

and enhancers were active, we used the cell type designations provided in the corresponding 
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annotation files (see above). For other classes of elements, we defined the active elements 

using a set of GENCODE transcripts and genes that showed significantly elevated levels of 

RNA transcription in the Caltech RNA-seq data. Those were transcripts (or genes) for which 

the 95% confidence interval of the normalized read count in a given cell type fell within the 

top one third of normalized read counts for transcripts (or genes) across all three cell types 

(threshold 1.477 for transcripts and 4.966 for genes). Active eQTLs were identified via 

associated active genes using the GENCODE gene identifier specified for each eQTL. 

Active promoters, UTRs, CDS, and introns, were identified via associated active transcripts. 

For the comparison between cell types (Supplementary Fig. 9) we also used collections of 

eQTLs and promoters found to be inactive in a given cell type. Those were defined in a 

similar way, by using transcripts and genes falling in the bottom third of the distribution of 

normalized read counts.

Comparison with Other Scores

Base-wise scores from the Genomic Evolutionary Rate Profiling (GERP)13 method, the 

Combined Annotation Dependent Depletion (CADD) method, and phastCons12 and 

phyloP15 methods were downloaded from the respective websites (see URLs; file 

hg19.GERP scores.tar.gz generated in August, 2010 for GERP, file whole genome 

SNVs.tsv.gz, downloaded in September, 2013 for CADD, and the 46 placental mammals 

conservation tracks for phastCons and phyloP). CADD scores are specified for each 

genomic position and each of the three possible variant bases in that position. We took the 

maximum of these three scores, which yielded the best performance for CADD in our 

comparisons. We also used RegulomeDB36 (downloaded in January, 2013) to rank single 

nucleotide polymorphisms (SNPs), such as eQTLs, into one of 13 categories according to 

evidence from functional genomic data. Finally, we obtained EnhancerFinder scores37 for 

1500 bp windows tiled across the genome directly from the authors. We used the general, 

non-tissue-specific scores, and averaged them at positions contained in multiple overlapping 

windows.

Receiver Operating Characteristic (ROC) Curves

We used ROC curves to measure the ability of each scoring scheme to discriminate between 

functional and nonfunctional regulatory elements. For TFBSs and enhancers, we used the 

annotations described above as “true positives” and defined “true negatives” from our 

filtered, putatively neutral sites (see above). For eQTLs, our negative set consisted of all 9.8 

million variants tested in reference [6], excluding indels, non-simple variants, and positions 

that showed possible associations at a threshold of nominal p < 0.05 (7.6 million SNPs 

remained). In all three cases, we additionally removed any sites in the positive set from the 

negative set. A point on a ROC plot indicates the fraction of annotated genomic positions 

with scores higher than a given score (true positive rate) versus the fraction of control 

genomic positions with scores higher than that score (false positive rate). Positions with no 

scores are ignored when computing fractional coverage.
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Integrating fitCons Scores across Cell Types

We generated a series of fitCons scores that integrate functional genomic data across the 

three cell types by using the original 624 fingerprints (see above) and altering the rule by 

which sites are assigned to clusters to reflect information from multiple cell types. Our 

approach attempts to select a fingerprint for each site that was likely to be most informative 

about the site’s function, while avoiding a bias toward higher scores with increasing cell 

types. See Supplementary Note for details.

Share Under Selection

Assume a partitioning of the genome into K mutually exclusive and exhaustive clusters, C1,

…,CK, and a corresponding set of fitCons scores, ρ(C1),…,ρ(CK). Note that the expected 

number of genomic positions under selection in cluster Ci is given by ρ(Ci)|Ci|, because ρ is 

an estimate of the fraction of sites under selection. For an arbitrary collection of sites, S, the 

expected number of sites in S that are under selection is given by sel(S) = ∑iρ(Ci) |Ci∩S|, and 

the average fitCons score for S is given by ρ(S) = sel(S) / |S|. To avoid under-estimation of 

ρ(S), we do not filter out fitCons scores with high uncertainty in these calculations, as we do 

for other analyses (see above). In addition, to account for possible overestimation of ρ in 

very large clusters having low fractions of sites under selection, we ran INSIGHT on the 

intersection of our neutral sites (see above) and all non-coding sites in the ‘Quiescent’ 

chromatin state with no DNase-seq or RNA-seq signal. We then subtracted the estimated 

value of ρ, denoted ρneut, from the raw fitCons score to obtain a conservative lower bound, 

ρ(S)–ρneut, for the fraction of sites under selection in S.

FitConsD and Evolutionary Turnover

To make the comparison between fitCons and fitConsD as direct as possible, fitConsD 

scores were computed using the same pipeline we developed for fitCons (see Fig. 1), except 

that in step C we replaced the INSIGHT model with an evolutionary model that considers 

sequence divergence between the human, chimpanzee, orangutan, and rhesus macaque 

genomes. The fitConsD scores are based on an estimate si for the relative evolutionary rate 

of each cluster Ci compared with a neutral model globally estimated for the four-primate 

phylogeny. This relative rate is then compared with the relative rate  estimated for the 

putative neutral regions flanking sites in Ci and a divergence-based estimate of the fraction 

of sites under selection in cluster Ci is given by  (see Supplementary 

Note).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Illustration of procedure for calculating fitCons scores. (A) Functional genomic data, such as 

DNase-seq, RNA-seq and histone modification data, are arranged along the genome 

sequence in tracks. (B) Nucleotide positions in the genome are clustered by joint patterns 

across these functional genomic tracks. For example, one cluster might contain genomic 

positions with a high DNase-seq signal, a moderate RNA-seq signal, and high signals for 

H3K4me1 and H3K27ac, suggesting transcribed enhancers. Another might contain positions 

with a low DNase-seq signal, a high RNA-seq signal, and a signal for H3K36me3, 
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suggesting actively transcribed gene bodies. Notice that clusters will generally contain 

genomic positions dispersed along the genome sequence. (C) Patterns of polymorphism and 

divergence are analyzed using INSIGHT34 to obtain an estimate of the fraction of 

nucleotides under natural selection (ρ) in each cluster. This quantity is interpreted as a 

probability that each nucleotide position influences the fitness of the organism that carries it, 

or a fitness consequence (fitCons) score. (D) The fitCons score for each cluster is assigned 

to all genomic positions that were included in the cluster. In this way, all nucleotide 

positions are assigned a score, but there can be no more distinct scores than there are 

clusters. Note that, in our initial work, the clustering of genomic positions is accomplished 

by a simple exhaustive partitioning scheme that produces 624 distinct clusters. In future 

work, however, it may be desirable to iterate between clustering and calculating scores 

(dashed line).
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Figure 2. 
Composition and coverage of high-scoring genomic regions according to fitCons. (A) 

Composition by annotation type in regions that exceed a fitCons score threshold of S, as S is 

varied across the range of possible scores. Each vertical cross-section of the plot can be 

thought of as a narrow “stacked bar” representation of the composition by annotation type of 

all genomic positions at which the fitCons score > S. At the left side of the plot, when S is 

small, the composition by annotation type is representative of the genome as a whole. As the 

threshold S increases, coding sequences (CDS; navy) are increasingly enriched and 

intergenic (gray) sequences are increasingly depleted. Regions experiencing moderate levels 

of selection, such as untranslated regions (UTRs; purple and green), promoters (orange), 

small noncoding RNAs (sncRNAs; eggplant), and introns (olive), are most enriched at 

intermediate scores. Note the logarithmic scale for the x-axis. (B) Coverage of the same 

annotation types by genomic regions having fitCons score > S, with an x-axis matching that 

in (A). The dashed line indicates the genome-wide average. At each value of S, the relative 

height of a given curve in comparison to the dashed line indicates the enrichment (or 

depletion) of the corresponding annotation type in genomic regions having score > S. The 

legend at the right lists the annotation types in order of decreasing enrichment. When 

multiple annotations applied to a single nucleotide position, one was selected in the 

following order: CDS, TFBS, promoter, sncRNA, lincRNA, 5’ UTR, 3’ UTR, intron, and 

intergenic. These figures summarize data at 2.9 billion genomic sites.
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Figure 3. 
Genome browser display showing functional genomic fingerprints and fitCons scores. 

Shown, from top to bottom, are the exons of the MIER2 gene (blue); the raw RNA-seq 

(turquoise) and DNase-seq (brown) signals; the four discretized tracks used to define the 624 

functional genomic fingerprints, including annotation-based CDSs (black), RNA-seq signal 

(green), DNase-seq signal (yellow and brown), and chromatin modifications (multiple 

colors; see key at bottom); the fitCons scores based on those fingerprints (dark blue, with 

lighter blues less statistically significant); and, for comparison, phyloP-based conservation 

scores for mammals. (A) An apparent enhancer, marked by a combination of enhancer-

associated chromatin modifications and a strong DNase-seq signal, displays elevated fitCons 

scores but no elevation in conservation scores. Many regulatory elements display such a 

pattern, either because they have arisen recently in evolutionary time or because errors in 

orthology detection or alignment result in spuriously low conservation scores. Here, a ChIP-

seq-supported TFBS for AP-1 (red arrow) and a lung-cancer-associated SNP (green arrow) 

are highlighted. (B) CDS exons show elevated scores according to both fitCons and phyloP. 

(C) The 3’ UTR, marked by transcription-associated chromatin modifications, a high RNA-

seq signal, and an absence of DNase-I hypersensitivity or CDS annotations, displays 

moderately elevated fitCons scores and patches of evolutionary conservation. The fitCons 

scores are fairly well correlated with phyloP conservation scores15 genome-wide, with some 

notable exceptions in noncoding regions (Supplementary Fig. 1). Browser tracks are 

publicly available on our genome browser mirror (hg19 assembly).
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Figure 4. 
Average fitCons scores as a function of DNase-seq and RNA-seq intensity. Results represent 

averages across all non-CDS clusters having the marginal or joint property of interest. Error 

bars represent standard errors of the aggregated scores (see Methods). (A) FitCons scores 

increase with DNase-seq intensity, probably due to an increasing density of cis-regulatory 

elements. 0: No DNase-seq signal; 1: broad peaks; 2: narrow peaks. (B) FitCons scores 

increase with RNA-seq intensity. 0: no RNA-seq reads; 1–3: weak to strong RNA-seq signal 

(see Methods). (C) FitCons scores behave in a non-additive manner as joint combinations of 

DNase- and RNA-seq intensity are considered. In particular, at medium to high RNA-seq 

read depth (classes 2 and 3), fitCons scores decrease (rather than increase) with increasing 

DNase-seq signal. This unexpected pattern is explained by an enrichment for DNase-I 

hypersensitivity near the 5’ ends of genes. Conditional on a high RNA-seq signal, a high 

DNase-seq signal tends to be associated with the 5’ UTRs and upstream regions of genes, 
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which are under fairly weak selection, while a low DNase-seq signal is associated with 3’ 

UTRs, which are under stronger selection. Each bar in (A) summarizes 104 clusters, each 

bar in (B) summarizes 78 clusters, and each bar in (C) summarizes 26 clusters.
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Figure 5. 
Coverage of active cis-regulatory elements as a function of total coverage of the noncoding 

genome. Coverage of each type of element is shown as the score threshold is adjusted to 

alter the total coverage of noncoding sequences in the genome, excluding sites annotated as 

CDS or UTR. FitCons is compared with scores from the Combined Annotation Dependent 

Depletion (CADD)35, Genomic Evolutionary Rate Profiling (GERP)13, phastCons12, and 

phyloP15 programs (see Methods). (A) Coverage of 55,844 transcription factor binding sites 

detected by ChIP-seq in HUVEC28. (B) Coverage of high-resolution eQTLs identified in a 

recent large-scale study6, restricted to 3,662 eQTLs associated with genes transcribed in 

HUVEC. Coverage of eQTLs is also shown for classification of single nucleotide variants 

by RegulomeDB36. The divergence-based scores (phastCons, phyloP, GERP, and CADD) 

all perform poorly on the eQTL data set, probably because the ascertainment for segregating 

sites creates a bias against evolutionary conservation. Note also that the apparent 

performance of RegulomeDB, particularly at low total noncoding coverage, is somewhat 

influenced by consideration of eQTL data in its scoring scheme. (C) Coverage of 462 

enhancers identified by characteristic chromatin marks38 assayed in HUVEC. Coverage of 

these enhancers by EnhancerFinder37 predictions is also shown. In all three plots, the x-axis 

represents coverage at 2.8 billion noncoding positions.
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Figure 6. 
Comparison between fitCons and fitConsD scores. FitConsD is an alternative estimate of 

fitness consequences, analogous to fitCons, but based on an estimator of the fraction of sites 

under natural selection that considers divergence patterns across four primate genomes (see 

Methods). (A) FitCons and FitConsD scores are shown for the clusters defined using 

functional genomic data from HUVEC. Scores are shown for the 348 clusters of size 10 kb 

or larger, distinguishing between coding clusters (green triangles) and non-coding clusters 

(blue squares). Both sets of scores are corrected by subtracting the possible contribution 

from model misspecification (see Methods). Correlation between the two sets of scores is 

high (R2 = 0.88) overall, and is somewhat higher for coding (R2 = 0.69) than for noncoding 

(R2 = 0.51) clusters. (B) The net gain in the fraction of sites under selection on population 

genetic time scales relative to primate-divergence time scales, computed by subtracting 

average fitConsD scores from average fitCons score for different classes of functional 

elements (negative values imply net loss). Net gain is plotted against average fitCons score, 

and lines of constant slope radiating from the origin represent constant values of a “net gain 

rate” per functional site, computed as NGR = (fitCons − fitConsD)/fitCons. The NGR is 

small (≤10%) for almost all annotation classes considered, with the main exception being 

the introns of active genes (NGR>20%; see “intron (HUVEC)”), which are enriched in 

clusters that exhibit an absence of DNase-seq or RNA-seq signal and chromatin 

modifications suggesting transcriptional elongation.
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