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Abstract
The antimicrobial applications of copper (Cu) are exploited in several industries, such as agriculture and healthcare settings. 
While Cu is capable of efficiently killing microorganisms, sub-lethal doses can induce a viable-but-non-culturable (VBNC) 
state in bacteria of many distinct clades. VBNC cells cannot be detected by standard culture-based detection methods, and 
can become a threat to plants and animals as they often retain virulent traits upon resuscitation. Here we discuss the putative 
mechanisms of the Cu-induced VBNC state. Common observations in Cu-induced VBNC cells include a cellular response 
to reactive oxygen species, the exhaustion of energy reserves, and a reconfiguration of the proteome. While showing partial 
overlap with other VBNC state-inducing stressors, these changes seem to be part of an adaptive response to Cu toxicity. 
Furthermore, we argue that Cu resistance mechanisms such as P-type ATPases and multicopper oxidases may ward off 
entry into the VBNC state to some extent. The spread of these mechanisms across multi-species populations could increase 
population-level resistance to Cu antimicrobials. As Cu resistance mechanisms are often co-selected with antibiotic resist-
ance mechanisms, this threat is exacerbated.
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Introduction

The antimicrobial properties of copper (Cu) have seen 
renewed interest in recent decades, in part due to the wide-
spread increase in bacterial resistance to organic antibi-
otics. Cu-based antimicrobials are widely applied in the 
agriculture industry, e.g. to combat foot-rot in cattle and 
sheep (Rensing et al. 2018), and downy mildew in viticul-
ture (Komarek et al. 2010). In addition, Cu surfaces can be 
an integrated part of decontamination strategies in the food 
industry, since they effectively kill common bacterial patho-
gens such as Salmonella enterica and Campylobacter jejuni 
(Parra et al. 2018; Faúndez et al. 2004). However, the most 
promising applications of antimicrobial copper are found 
in the medical field, where antimicrobial-resistant (AMR) 
(opportunistic) pathogens pose severe and increasing risks to 

patients and personnel (Cassini et al. 2019). For instance, the 
prevalence of healthcare-associated infections (HAIs), often 
by AMR strains, has been linked to microbial contamination 
of high-touch surfaces (Otter et al. 2013; Boyce 2007, 2016).

Cu antimicrobials come in several distinct formulations, 
often tailored to the specific application. For instance, Cu 
salts and organic complexes are used as fungicides (Wang 
et al. 2018) and algicides (Shen et al. 2019), and Cu-doped 
zeolites are being investigated to simultaneously disinfect 
and remove metals from wastewater (Fanta et al. 2019). Cu 
salt-based formulations can be applied topically to combat 
infections, e.g. herpes (Clewell et al. 2012; Chen et al. 2016) 
and vaginitis (Abbott and Abbott 2014). In addition, sev-
eral Cu salt-based therapies have been developed in recent 
years (Clewell et al. 2012; Styczynski et al. 2015). In paral-
lel, a surging contribution of Cu nanoparticle (CuNP) for-
mulations, which are intrinsically of interest due to their 
high surface to volume ratio, has been noted, again often in 
healthcare settings. For applications, CuNPs can be incor-
porated into polymeric matrices such as textiles, glass, and 
polypropylene, as reviewed by Tamayo et al. (2016) and 
Borkow (2014). These CuNP-infused matrices convey sev-
eral key advantages, among which the controlled release of 
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Cu ions and the increased surface area of the antimicrobial 
material. Such materials can be used for food packaging, 
water disinfection and medical applications. For example, 
CuNP-containing cotton and bamboo rayon clothing is toxic 
towards Staphylococcus aureus, which is associated with 
many HAIs (Anita et al. 2011; Perelshtein et al. 2009; Teli 
and Sheikh 2013). A final formulation of Cu antimicrobials 
comes in the shape of solid surfaces of Cu metal and its 
alloys. Noyce et al. (2006) found that a positive correlation 
exists between the killing rates of Cu alloy surfaces and their 
Cu content. The potential antimicrobial applications of Cu 
surfaces have been reviewed by Vincent et al. (2016), who 
emphasized their utility in hospital environments owing to 
their ability to efficiently inactivate HAI-associated strains 
such as methicillin-resistant S. aureus and vancomycin-
resistant enterococci.

Mechanisms of copper toxicity

While highly toxic at excess amounts, Cu ions function 
as a micronutrient and intracellular Cu ion concentrations 
must consequently be carefully regulated to achieve viable 
homeostasis. Specifically related to bacteria, Cu ion toxic-
ity has been shown to have multiple modes of action, and 
has been expertly reviewed both by Lemire et al. (2013) 
and Giachino and Waldron (2020). The cell envelope rep-
resents an important target since Cu can inhibit the correct 
enzymatic maturation of lipoproteins by binding to catalytic 
cysteine residues. This leads to an increased level of toxic 
intermediates in the inner membrane, in turn activating the 
envelope stress response (May et al. 2019). In a similar man-
ner, Cu can impede the crosslinking of peptidoglycan and its 
binding to membrane lipoproteins, thus weakening the cell 
envelope (Peters et al. 2018). Cu can also oxidize thiol resi-
dues involved in the maturation of periplasmic polypeptides, 
again leading to the buildup of misfolded intermediates (Ito 
and Inaba 2008).

For CuNPs and Cu surfaces, the direct contact with bacte-
rial cells seems to be an essential facet of toxicity, next to the 
release of Cu ions (Vincent et al. 2018). This phenomenon 
is termed ‘contact killing’, and has been elegantly demon-
strated by Mathews et al. (2013), by comparing killing rates 
of naked Cu surfaces to Cu surfaces covered with an inert 
polymeric grid, inhibiting contact killing but not the release 
of ions into the medium. Membrane lipid peroxidation has 
been proposed as a key process in contact killing (Hong 
et al. 2012; Grass et al. 2011), but the exact mechanism of 
toxicity remains unclear.

Finally, another general mechanism of Cu toxicity is 
the generation of reactive oxygen species (ROS), such as 
hydroxyl and hydroperoxyl radicals, which can damage 
cellular components. Since it remains difficult to directly 

identify intracellular ROS, evidence for this toxicity mech-
anism has been mostly circumstantial. Consequently, the 
exact contribution of ROS generation to overall Cu toxic-
ity is ambiguous. However, Macomber et al. (2007) have 
shown that Cu catalyzes hydroxyl radical formation in the 
periplasm in vivo, and Cu-catalyzed ROS generation via a 
Fenton-like process has been demonstrated in vitro (Valko 
et al. 2005; Stohs and Bagchi 1995). In addition, the high 
affinity of the cuprous ion for thiol groups can lead to the 
depletion of antioxidants like glutathione and the destruction 
of redox-active Fe-S clusters (Macomber and Imlay 2009; 
Arguello et al. 2013).

Copper toxicity induces the VBNC state

It is clear that elevated Cu concentrations are highly toxic to 
bacteria. In order to understand the bacterial response to this 
toxicity, it is relevant to study the effects of sub-lethal Cu 
concentrations. A curious observation in this regard is the 
apparent loss of culturability of Cu-exposed bacterial cells. 
At the same time, these cells often retain characteristics of 
viability such as intact cell membranes and metabolic activ-
ity. An overview of tested strains exhibiting this behavior is 
provided in Table 1. The latter includes human as well as 
plant pathogens, reflecting the medical and agricultural use 
of Cu antimicrobials.

The question arises whether these observations are 
merely a consequence of sustained cell damage, which we 
will denote as ‘sublethal injury’, or whether it concerns the 
active induction of a regulated cellular state as a response 
to the perceived Cu stress. This cellular state is often 
denoted as the ‘viable-but-non-culturable’ (VBNC) state. 
An excellent review on the phenotypic characteristics and 
the mechanisms of identification has been written by Pinto 
et al. (2015). VBNC cells cannot be cultured on standard 
laboratory media, but retain membrane integrity, and low 
but measurable levels of metabolism and gene expression 
(Davey 2011; Schottroff et al. 2018). They are formed under 
harsh conditions like starvation and in the presence of vari-
ous chemical and physical stressors. The VBNC state dis-
plays similar traits to the so-called ‘cellular quiescence’, a 
noted survival strategy of Mycobacterium tuberculosis, but 
no in-depth comparison of these states has been performed 
(Rittershaus et al. 2013; Betts et al. 2002). It is often difficult 
to experimentally verify whether a cell population is sub-
lethally injured or in the VBNC state, or both, since many 
measurable properties are shared by both cell states. One 
key distinction is the inability of sub-lethally injured cells 
to grow on selective media, while colony growth would be 
observed on non-selective media, as claimed by Bogosian 
and Bourneuf (2001). However, it is abundantly clear that no 
extant culture medium is entirely non-selective. Thus, this 
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definition of sub-lethal injury seems untenable, especially 
when comparing species over multiple clades, each with 
their own optimal growth conditions. Consequently, many 
researchers do not make the above distinction and term both 
cell states under the VBNC denomination. Furthermore, 
the evolutionary conservation of entering a VBNC state 
in response to a range of stress conditions and the grow-
ing body of evidence elucidating its molecular mechanisms 
indicates that it is a cell-programmed phenomenon. Finally, 
there exists an ongoing discussion about the similarities 
between VBNC cells and persister cells. Persister cells are 
slow-growing, antibiotic-tolerant cells that represent a sub-
population of actively dividing cultures. This phenotypic 
heterogeneity allows for rapid recolonization of habitats 
after transient stress conditions (Fisher et al. 2017). The 
VBNC state shares characteristics with persister cells, such 
as morphology and resuscitation characteristics. Based on 
these similarities, Kim et al. (2018) suggested that VBNC 
cells and persister cells are one and the same. However, this 
conclusion was refuted by Ayrapetyan et al. (2018). Ulti-
mately, an extensive comparison between the VBNC state 
and the persister phenotype is outside the scope of this 
review.

A fraction of the VBNC cell population can often be 
manipulated in order to make them regain culturability. This 
process is called resuscitation. The ability to show resusci-
tation is essential when arguing in favor of a programmed 
VBNC state, and has become a mainstay of VBNC studies 
(Bogosian and Bourneuf 2001; Pinto et al. 2015). Multiple 
resuscitation stimuli have been listed by Pinto et al. (2015), 
but it is difficult to distill information about putative molecu-
lar mechanisms considering the large number of experimen-
tal conditions and the phylogenetic distance of the tested 
strains. A note must be made that resuscitation is often diffi-
cult to distinguish from regrowth of the remaining culturable 
population. Protocols such as the analysis of dilution series 
exist to minimize the likelihood of mistaking regrowth for 
resuscitation, but they are not consistently used in practice 
(Whitesides and Oliver 1997). Consequently, this distinction 
must be approached with caution.

Mechanisms behind the cu‐induced VBNC 
state

Evidently, Cu is not the only stress capable of inducing the 
VBNC state. Common stressors in this regard include starva-
tion, desiccation, low temperature, pH extremes and oxida-
tive compounds like hypochlorous acid (Zhao et al. 2017; 
Pinto et al. 2015). It seems unlikely that a direct regulatory 
pathway exists between the sensing of each separate stressor 
and the induction of a general VBNC state. More plausi-
ble would be VBNC induction triggered by one or more 

common consequences elicited by these distinct stressors. 
Therefore, we may derive insights from the interpolation of 
these mechanisms.

Oxidative stress can induce the VBNC state in different 
species of bacteria (Cuny et al. 2005; Liao et al. 2020). In 
addition, Li et al. (2014) suggested that the oxidative stress 
regulator OxyR is involved in the regulation of VBNC state 
induction, based on work of Longkumer et al. (2014), Abe 
et al. (2007) and Wang et al. (2013). Oxidative stress is an 
important component of many conditions able to induce the 
VBNC state, such as desiccation (Franca et al. 2007), starva-
tion (McDougald et al. 2002) and exposure to common dis-
infectants like hypochlorous acid (da Cruz Nizer et al. 2020). 
As mentioned before, it is also a substantial component of 
Cu toxicity. Kan et al. (2020) showed increased levels of 
superoxide dismutase and alkyl hydroperoxide reductase 
proteins in Cu-induced Acidovorax citrulli VBNC cells as 
well as during the early stages of resuscitation. In addition, 
an increased  H2O2 content was detected in Cu-induced Ral-
stonia solanacearum VBNC cells (Um et al. 2013). Thus, we 
conclude that oxidative stress elicited by Cu is an important 
facet of the Cu-induced VBNC state.

The rapid response required for the detoxification of 
VBNC state-inducing stressors can put a strain on the cellu-
lar energy metabolism. For instance, Cu-exposed cells have 
a lower ATP content, and a decreased electron transport and 
dehydrogenase activity (Chen et al. 2019; Feng et al. 2020). 
In addition, this decreased ATP content has been used to 
define toxic CuNP levels (Reyes et al. 2016). While meta-
bolic activity is by definition maintained in VBNC cells, it is 
often diminished. ATP levels are often, but not always, lower 
in VBNC cells (Bai et al. 2019; Kim et al. 2015; Liao et al. 
2020). However, ATP content is not a straightforward indica-
tor of general metabolic activity (Parry and Shain 2011) and 
ATP content in Cu-induced VBNC cells is still to be evalu-
ated. All the while, many proteins involved in central meta-
bolic processes were downregulated in Cu-induced VBNC 
Acidovorax citrulli cells (Kan et al. 2020). In addition, PHB 
content, which functions as a cellular energy reserve, is 
reduced in Cu-induced VBNC Ralstonia solanacearum cells 
(Um et al. 2013). Consequently, the decrease of metabolic 
activity due to Cu stress appears to be another vital facet of 
the Cu-induced VBNC state.

Degradation of the proteome can derive both directly 
from the interaction of proteins with Cu ions, and from the 
destructive action of ROS. In addition, the proteome needs 
some measure of reconfiguration to cope with the imposed 
stresses, by repairing degraded peptides and synthesizing 
stress defense mechanisms. Proteome adaptations are com-
mon in VBNC cells (Ramamurthy et al. 2014; Zhao et al. 
2017) and in cells undergoing Cu stress (Monchy et al. 2006; 
Nandakumar et al. 2011). However, to date we could find 
only a single study investigating the proteomic composition 
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of Cu-induced VBNC cells. In Kan et al. (2020), 3 of the 5 
COG classes with the most changes in VBNC and resuscitat-
ing cells correspond to some aspect of proteome reconfigu-
ration (posttranslational modification, protein turnover, and 
chaperones; amino acid and transport; translation, ribosomal 
structure, and biogenesis). It remains unclear to what extent 
these changes are due to direct changes as a result of Cu 
toxicity, or to the adaptive response of the cell to this toxic-
ity. Evidence for the latter was found in the upregulation of a 
Cu-translocating ATPase and superoxide dismutase enzyme.

Overall, it remains clear that more research is needed to 
characterize Cu-induced VBNC cells. Additional whole-
cell proteome, transcriptome, and metabolome studies 
would provide valuable insights into the complex but simi-
lar behavior exhibited by these phenotypically distinct cells. 
Likewise, it would be interesting to study the heterogeneity 
of this behavior via single-cell techniques.

Copper resistance mechanisms and their role 
in entry into the VBNC state

We recently showed that the activity of Cu resistance 
mechanisms (CRMs) affects entering the VBNC state upon 
exposure to sub-lethal Cu concentrations (Maertens et al. 
2020). It was shown that the extent of VBNC induction was 
markedly decreased in Cupriavidus strains containing the 
pMOL30 megaplasmid, encoding many genes involved in 
Cu resistance. A further decrease was noted when CRM 
genes were pre-induced by  CuSO4. In addition, higher Cu 
concentrations lead to a higher proportion of the initial cell 
population entering the VBNC state (Ordax et al. 2006; 
Jiang et al. 2016; del Campo et al. 2009; Grey and Steck 
2001b). These results corroborate that the Cu ions are induc-
ing the VBNC state and that CRMs play an important role 
in the Cu-induced VBNC state by preventing the buildup of 
excessive amounts of Cu in the cytoplasm. Cu detoxification 
occurs via efflux systems as well as chemical modification 
of  Cu+. In Gram-negative bacteria, Cu efflux can be medi-
ated by  PI-type ATPases (e.g. CopA) and tripartite HME-
RND-driven systems (Heavy Metal Efflux Resistance-Nod-
ulation-Division) such as the CusCBA Ag/Cu efflux pump. 
Periplasmic multicopper oxidases such as CueO and PcoA 
add another layer of defense by oxidizing  Cu+ to the less 
toxic  Cu2+ (Hobman and Crossman 2015; Bondarczuk and 
Piotrowska-Seget 2013). These systems are commonly regu-
lated by Cu-responsive transcriptional regulators belonging 
to at least nine different classes (Rademacher and Masepohl 
2012). In Gram-positive bacteria, Cu efflux also seems to 
be largely mediated by P-type ATPases such as CopA and 
CopB (Solioz et al. 2010).

While it is clear that CRM activity protects the cell 
against Cu stress, this protection is not sufficient to main-
tain culturability under increased Cu concentrations. 

Culturability can often be regained upon chelation of excess 
Cu ions by EDTA, DDTC, or complex media such as LB. 
In the case of resuspension in growth media, we cannot rule 
out effects other than direct chelation of Cu ions. Conversely, 
spontaneous resuscitation, without the addition of chelat-
ing agents, has been observed in Cupriavidus, Ralstonia, 
Agrobacterium, and Rhizobium (see Table 1). This behavior 
occurs only upon low Cu toxicity. In Cupriavidus, sponta-
neous resuscitation was only observed in strains containing 
the pMOL30 megaplasmid, highlighting the necessity of 
CRM in this process. While it would be interesting to further 
compare the extent of VBNC state induction to the activ-
ity and complexity of CRM in the strains listed in Table 1, 
the multiplicity of the experimental conditions largely pro-
hibits this analysis. Indeed, retesting these strains in more 
standardized conditions could provide essential results in 
this regard. While the role of CRM in (spontaneous) resus-
citation requires further study, the risk for VBNC cells 
escaping common detection strategies while retaining the 
potential for resuscitation has been emphasized previously 
(Ding et al. 2017). An additional risk factor is the spread of 
metal resistance genes within and between bacterial popula-
tions repeatedly exposed to metal stress, which could exac-
erbate this effect. While the Cu-induced VBNC state has 
been described in (opportunistic) pathogens such as E. coli 
O104:H4 and P. aeruginosa PAO1, no in vivo studies have 
been undertaken to determine the generation of difficult-to-
detect VBNC cells by existing Cu-based therapies. However, 
such studies could provide interesting and relevant data for 
the medical field.

Concluding remarks

Recent years have seen the curious observation of a Cu-
induced VBNC state in many phylogenetically distinct bac-
terial species. Here we summarized these observations and 
investigated the mechanisms of VBNC state induction by 
Cu toxicity (Fig. 1). While more research into this matter 
is needed, we argue that the VBNC state induced by Cu is 
the result of an adaptive response to this stressor. Sub-lethal 
Cu concentrations bring about cellular damage, rendering 
the cell unable to multiply. In response it will redirect its 
metabolism to enable reparation of sustained damage and 
synthesis of CRM. This response is likely under the control 
of alternative sigma factors. In this sense, the Cu-induced 
VBNC state is a programmed phenomenon. However, many 
different stresses can result in non-culturability, so VBNC 
states seem to be a common consequence of stress rather 
than a programmed behavior with a single and discrete set of 
regulators. This is evident from the observation that different 
stressors capable of inducing a VBNC state, such as starva-
tion, hypochlorous acid, low temperatures and Cu, prompt 
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the bacterial cell to activate resistance mechanisms to each of 
these stressors separately (Pinto et al. 2015). Thus, it seems 
counterintuitive to search for common regulators controlling 
the VBNC state induced by distinct stressors with distinct 
mechanisms of toxicity. Rather, we could view the VBNC 
state as the phenotypical result of a damaged cell opting for 
survival over multiplication, governed by stressor-specific 
regulatory mechanisms. Whatever the case, it is certain that 
understanding the particularities of the VBNC state is a cru-
cial task in ensuring satisfactory biosafety and biocontrol. 
Several uncertainties remain at many levels, from the initial 
interaction of the cell with Cu ions over the type, site, and 
extent of damage accrued, to the molecular mechanisms 
governing the cellular response. Since, in most cases, only 
a certain fraction of the initial population can be converted 
to and resuscitated from the VBNC state, one research ques-
tion in particular concerns the cellular heterogeneity of these 
processes. In this sense, single cell-oriented techniques may 
provide much-needed information. All in all, it is clear that 

these studies would benefit from a standardized multifaceted 
experimental approach, integrating whole-cell analyses of 
copper chemistry, single cell proteomics and metabolomics 
in order to pinpoint the metabolic status of VBNC cells and 
the sensory system facilitating resuscitation.
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Fig. 1  Overview of pathways 
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