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Abstract: Non-uniform gray distribution and blurred edges often result in bias during the superpixel
segmentation of medical images of magnetic resonance imaging (MRI). To this end, we propose a
novel superpixel segmentation algorithm by integrating texture features and improved simple linear
iterative clustering (SLIC). First, a 3D histogram reconstruction model is used to reconstruct the
input image, which is further enhanced by gamma transformation. Next, the local tri-directional
pattern descriptor is used to extract texture features of the image; this is followed by an improved
SLIC superpixel segmentation. Finally, a novel clustering-center updating rule is proposed, using
pixels with gray difference with original clustering centers smaller than a predefined threshold.
The experiments on the Whole Brain Atlas (WBA) image database showed that, compared to existing
state-of-the-art methods, our superpixel segmentation algorithm generated significantly more uniform
superpixels, and demonstrated the performance accuracy of the superpixel segmentation in both
fuzzy boundaries and fuzzy regions.

Keywords: superpixel segmentation; 3D histogram reconstruction; simple linear iterative clustering;
local tri-directional pattern

1. Introduction

With the rapid development of medical imaging technology, medical images play an increasingly
important role in clinical diagnosis and treatment. The medical image segmentation technique, as the
basis of medical image applications, has been broadly used in various medical research areas and
practices, such as CAD computer aided diagnosis (Computer Aided Diagnosis), IGS (Imaging Guided
Surgery), and ORT (Operative Radiation Therapy). There are multiple kinds of medical imaging
techniques, such as CT (Computed Tomography), MRI (Magnetic Resonance Imaging), ultrasound
imaging, and PET (Positron Emission Tomography). Among them, MRI is a kind of tomography that
uses the magnetic resonance phenomenon to obtain electromagnetic signals of the human body, and
accordingly, reconstruct the human body.

MRI outperforms other existing techniques due to the following advantages: (1) it causes no
ionizing radiation damage to the human body; (2) it can freely choose the required profile by adjusting
the magnetic field, therefore, providing more abundant image information to define the nature of
the lesion; (3) it can detect the dynamic changes of water contained in the tissue more sensitively as
compared to CT, rendering a several times higher resolution for soft tissue to detect the tissue lesions.
With the aforementioned advantages, MRI has been widely applied to various imaging diagnoses of
different organs of the whole body, demonstrating an increasingly important role in medical diagnosis.

Magnetic resonance imaging is increasingly being used to assess brain growth and development
in infants. Such studies are often based on quantitative analysis of anatomical segmentations of brain
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MR images. However, the large changes in brain shape and appearance associated with development
and the lower signal-to-noise ratio and partial volume effects in the neonatal brain present challenges
for automatic segmentation of neonatal MR imaging data. The segmentation algorithm that models
the intensities across the whole brain by introducing a structural hierarchy and anatomical constraints
achieves highly accurate results and is very robust across a wide range of gestational ages [1]. Currently,
the brain tumor segmentation method can automatically detect and extract whole tumors from 3D-MRI.
The algorithm is based on a hybrid approach that relies on a brain symmetry analysis method that
combines region-based and boundary-based segmentation methods. In addition, the segmentation
system has been tested and evaluated on 3D-MRIs of various subjects with different tumor types and
shapes [2].

However, drawbacks still exist: First, the gray distribution of the MRI image is not uniform.
Second, the imaging mechanism of the MRI and the complexity of the human body make it difficult to
extract the target area accurately, with its edge in the image often blurred, resulting in bias during
the clinical diagnosis and creation of the clinical treatment plan. Moreover, moving organs such as
hearts and intestines may also cause artifacts in the image. So, improving the accuracy of MRI image
segmentation has become a research hotspot [3].

2. Related Work

Image segmentation is a common image processing step in many computer vision applications
with the purpose segmenting pixels into different classes. Salim Lahmiri et al. [4] compared three
automated diagnosis systems to detect glioma in brain magnetic resonance images (MRIs). As improved
variants of particle swarm optimization (PSO) algorithms, the fractional-order Darwinian particle
swarm optimization (FODPSO) and Darwinian particle swarm optimization (DPSO) were proposed for
image segmentation. They also compared the segmentation performance of PSO, DPSO, and FODPSO
as parametric approaches to existing methods, namely the parametric fuzzy c-means (FCM) algorithm
and the non-parametric Otsu segmentation technique, by applying the different techniques to five
biomedical images. The obtained experimental results showed that particle swarm-based algorithms
outperformed both FCM and Otsu segmentation techniques [5]. However, these methods easily fall
into a local optimum due to the lack of dynamic adjustment of speed, which leads to low convergence
accuracy and difficulty in convergence. In addition, it is difficult to control the parameters, so it is
necessary to make strategies to choose the right parameters to achieve the best results.

The traditional image segmentation method takes the pixel as the basic unit. However, with
rapid development of the medical imaging technology, the current images contain far more pixels,
but also include diverse additional information, such as temporal and spatial relationships between
pixels. Consequently, the segmentation method, which only relies only on the pixel, fails to take into
account the additional information, and has been unable to meet the requirements of accurate medical
diagnoses. To solve this problem, the superpixel was proposed for the first time by Ren et al. [6] and
has become a hot research topic [7].

Beyond the pixel in the image, texture on the surface of all kinds of objects is another important
feature, and has been widely used in the study of image segmentation. For example, Yang et al. [8]
proposed a texture-based image segmentation method in 2012, which used the color and texture of
pixels as features, followed by a least squares support vector machine (LS-SVM) classifier to perform
the image segmentation. In 2014, Shen et al. [9] proposed an interaction time and texture feature-based
segmentation method, which first calculated the probability of each pixel through a lazy random walk
(LRW) algorith, and learned superpixel edge and segmentation through optimizing an energy function
defined on the interaction time and texture features.

In 2015, Min et al. [10] proposed a level set model by combining intensity and texture to segment
complex natural images. The method uses a global segmentation algorithm to capture the intensity
information of the image, and then uses an adaptive scale local variation algorithm to extract the
texture features. Finally, the extracted intensity and texture are both applied to the level set to segment
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the image. In 2017, Xiao et al. [11] proposed a superpixel segmentation algorithm based on iterative
and adaptive clustering. In the proposed algorithm, color, contour, texture, and spatial features are
all taken into account, and the weights of different features are automatically learned by content
perception to meet the needs of various image instances.

Differing from pixels and texture, the superpixel is a set of pixels sharing similar characteristics
that could better describe the underlying structure of an image by extracting its local features [6,12].
Through merging pixels, the number of superpixels in the image is largely decreased, which greatly
reduces the burden of subsequent processing and, therefore, improves the efficiency. Owing to these
advantages, the superpixel has become an important part of computer vision algorithms and has been
widely studied [13–16].

In medical image processing, an image is often first segmented into several superpixels in
preprocessing, thereby facilitating the subsequent steps. In 2015, Tian et al. [17] proposed a superpixel-
based 3D image segmentation algorithm, and applied it to the prostate MRI images. This method
uses superpixels as the basic unit to construct a 3D image, and then uses a graph cutting algorithm to
segment the prostate region via minimizing an energy function.

To summarize the above, the superpixel and its derived texture features play an important role in
medical image segmentation, and various related methods have been proposed and applied to MRI
image processing. However, the accuracy of superpixel segmentation is still not satisfactory, which
directly affects the quality of subsequent operations and the accuracy of target extraction.

In order to further improve the accuracy of superpixel segmentation, this paper, on the basis of a
simple linear iterative clustering (SLIC) algorithm and refenence [18], proposes an improved simple
SLIC superpixel segmentation algorithm for medical images based on texture features. First, we use
the 3D histogram reconstruction model to reconstruct the gray level of the input image and enhance the
target area of the reconstructed image through gamma enhancement. Next, we use the magnitude of
the local tri-directional pattern (LTriDP) algorithm to extract the texture features of the image. Finally,
we use the improved SLIC superpixel segmentation algorithm to generate the segmentation results.
The experiments showed that the proposed algorithm can achieve better results of medical image
superpixel segmentation when compared with the other existing methods.

3. The Proposed Method

In order to solve the problems of blurred edge and non-uniform gray distribution in the process of
superpixel segmentation of brain MRI images, an improved SLIC superpixel segmentation algorithm
is proposed in this paper. It outperforms the other existing state-of-the-art methods owing to the
following contributions: (1) the 3D histogram reconstruction model proposed in reference [19] is used to
reconstruct the gray level of brain MRI images; (2) the target region of the image is enhanced by gamma
transformation proposed in reference [20], and the texture features of the image can be represented
by the magnitude of LTriDP; and (3) superpixel segmentation is carried out by an improved SLIC
algorithm. In the process of iteratively updating the clustering center by SLIC, only the pixels whose
gray difference with the original clustering center is less than α are used to calculate the final image
segmentation results. The experiments on the Whole Brain Atlas (WBA) image database showed that
the proposed superpixel segmentation algorithm generated significantly more uniform superpixels
and demonstrated the performance accuracy of the superpixel segmentation in both fuzzy boundaries
and fuzzy regions, as compared to the other methods. The framework of the proposed algorithm is
shown in Figure 1.
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3.1. 3D Histogram Reconstruction

Due to the image formation and the complexity of the human body’s structure, the non-uniform
gray distribution can affect the quality of MRI images, which will mislead the doctors’ judgment of
the microstructure of images and then affect the medical diagnosis. Therefore, it is very important to
reconstruct the gray values of medical images. In this paper, a 3D histogram reconstruction model
proposed in reference [19] is used to reconstruct the source image.

The main idea of this method is to use a 3D histogram to represent the image, three coordinate
axes to represent the gray value of the pixels f (x,y), the mean value g(x,y) of the 3 × 3 neighborhood,
and the median value h(x,y) of the 3 × 3 neighborhood. For an image with uniform gray scale, the
triples (f (x,y), g(x,y), h(x,y)) should be distributed along the diagonal direction of the volume in the
3D histogram.

Because of the limitation of imaging equipment and the interference of the human body, some
pixels will be distributed outside the volume diagonal of the 3D histogram. As shown in Figure 2, the
3-D histogram reconstruction model divides the 3D histogram into eight regions (0–7) for processing.

Region 0 and Region 1: The pixels in these two regions are normally distributed pixels without correction.
Region 2 and Region 3: The gray values of pixels in these two regions are corrected by means of mean
and median values as follows:

f ∗ = (g + h)/2 (1)

Region 4 and Region 5: The mean values of pixels in these two regions are corrected by means of gray
values and median values as follows:

g∗ = ( f + h)/2 (2)

Region 6 and Region 7: The gray values and mean values of pixels in these two regions are corrected
by median values as follows:

f ∗ = g∗ = h∗ (3)

In the corrected 3D histogram, the pixels are all distributed near the volume diagonal. The gray
reconstructed medical image can be obtained as follows:

f (x, y) = ( f ∗ + g∗ + h∗)/3 (4)
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3.2. Image Enhancement

Due to the limitation of the imaging mechanism of the medical image, the target organization in
MR images is darker, especially at the edge of the target area. Because of the low contrast with the
background gray value, the target area is hard to segment, resulting in inaccurate final segmentation
results. In order to highlight the edges of the target area in medical images and facilitate subsequent
operations, the image should be enhanced before superpixel segmentation, and the γ enhancement
proposed in reference [20] is used in this paper.

The exponential equation with exponential γ is used to enhance the variables, and the range of
the variables is [0, 1]. We set γ to 0.4, 0.5, 0.6, 0.8, and 1.0 and the enhancement curves are shown in
Figure 3. The enhancement equation for the enhancement of MR images is as follows:

I′(x, y) = 255
(

I(x, y)
255

)γ
(5)

where I(x,y) is the source image, and I’(x,y) is the enhanced image. The value of γ is set to 0.5 in
this paper.Brain Sci. 2020, 10, x FOR PEER REVIEW 6 of 15 
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3.3. Magnitude of LTriDP

Owing to the peculiarity and complexity of medical images, there is no universal method for
extracting texture features. However, texture features of medical images can reflect the important
information of organs and tissues in images, which is beneficial to the improvement of the accuracy of
superpixel segmentation of medical images. Local binary pattern (LBP) codes have the advantages of
rotation invariance and gray scale invariance [21]. They are suitable for medical images, which contain
valuable irregular texture features.

LTriDP is an extension of LBP codes [18]. In addition to considering the relationship between
the center pixel and the neighborhood pixels, as LBPs do, they also consider the relationship between
neighborhood pixels. Therefore, this paper uses the magnitude of LTriDP to extract texture features. In
order to reduce the computational complexity of the texture feature extraction algorithm, the pixels in
the eight neighborhoods of the central pixel point are selected to create the magnitude of LTriDP. The
differences between the central pixel gc and its neighboring pixels gi, and the differences of gray values
between gi and its nearest neighboring pixels in the vertical or horizontal direction are calculated and
are used to calculate M1, M2 in the magnitude of LTriDP. The calculation process is as follows: M1 =

√
(g8 − gc)

2 + (gi+1 − gc)
2

M2 =

√
(g8 − gi)

2 + (gi+1 − gi)
2

i f i = 1 (6)

 M1 =

√
(gi−1 − gc)

2 + (gi+1 − gc)
2

M2 =

√
(gi−1 − gc)

2 + (gi+1 − gi)
2

i f i = 2, 3, · · · , 7 (7)

 M1 =

√
(gi−1 − gc)

2 + (g1 − gc)
2

M2 =

√
(gi−1 − gi)

2 + (g1 − gi)
2

i f i = 8 (8)

Then, a magnitude value is assigned to eight neighborhood pixels by the Equation (9) based on
the calculated M1 and M2:

Mag(i) =
{

1, M1 ≥M2

0, M1 < M2
(9)

The local texture features of central pixel gc can be calculated as follows:

LTriDPmag(gc) =
{
Mag(1), Mag(2), · · · , Mag(8)

}
(10)

LTriDP(gc) =
7∑

i=0

2i
× LTriDPmag(gc) (11)

3.4. Superpixel of Improved SLIC

Simple linear iterative clustering (SLIC) is an efficient superpixel generation algorithm that uses
k-means clustering to reduce the search range [22]. Compared with other superpixel segmentation
algorithms, SLIC algorithm is efficient in storage, fast in computing time, low in computational
complexity and fitness to edge, which improves the performance of image segmentation. It meets
the requirements of medical image segmentation for accuracy, so the SLIC superpixel segmentation
algorithm is suitable for segmentation of medical images.

SLIC clusters the pixels according to the color similarity and spatial distance of the pixels, which
is an iterative clustering process. In reference [23], it is pointed out that in the SLIC superpixel
segmentation of color images, some pixels will be misclassified after the first iteration. All the pixels
belonging to one class will be used to update the clustering center, and these misclassified pixels will
have an impact on the update process. After several iterations, the errors will be magnified, which
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will affect the final result of the superpixel segmentation. Inspired by reference [23], only the pixels
with similar gray value to the original clustering center are used to update the clustering center in this
paper. The steps of improved SLIC superpixel segmentation are as follows:

Step 1: K clustering centers are initialized with a span of S =
√

N/K, where N is the number of
pixels in the image. Initialize the label of each pixel i belonging to the class l(i) = −1, and the distance
between each pixel and the cluster center with d(i) = ∞.

Step 2: For each i-th pixel in the 2S × 2S neighborhood of each cluster center Ck, the distance
between i and Ck is calculated by the following equations:

dc =

√(
gCk − gi

)2
(12)

ds =

√(
xCk − xi

)2
+

(
yCk − yi

)2
(13)

dt =

√(
tCk − ti

)2
(14)

D =

√(
dc

Nc

)2

+

(
ds

Ns

)2

+

(
dt

Nt

)2

(15)

where dc is the distance of gray, ds is spatial distance, dt is the distance of texture features, Nc is the
maximum of gray-scale distance, Ns = S =

√
N/K is the maximum space distance within the class,

and Nt is the maximum of texture feature distance. If D < d(i), then d(i) = D,l(i) = k.
Step 3: Update the cluster center. The improved SLIC calculates the COk and Sk of new cluster

centers Ck as follows:

COk =
1

Nk

∑
i∈Ωk

COi (16)

Sk =
1

Nk

∑
i∈Ωk

Si (17)

Ωk = (|lk − li| < α)∩Gk (18)

where Gk is the cluster set of pixels denoted as the center Ck, Nk is the number of pixels in the set of Gk,
and COk and Sk represent the means of gray and distance of the pixels, respectively, which take Ck as
the center. Step 2 and Step 3 iterations are executed until a predetermined number of iterations are
reached. In general, the ideal superpixel can be obtained after 10 iterations. Here, α is the standard
deviation of image gray and li is the gray value of pixel i.

In summary, after pre-processing, we extract the LTriDP texture feature and then the improved
SLIC is used to realize the final superpixel segmentation. The 3D histogram reconstruction was used
to reconstruct the gray values of medical images, which can be treated as a pre-processing method.
Gamma correction has a larger response output for smaller input values, while for larger input values,
the response output increases by a small margin. It is suitable for enhancing medical images. This value
is usually obtained by experience. Here, the gamma value is 0.5, as in reference [20]. The descriptor of
LTriDP was used to extract texture features from 2D images. Super pixels are generated by means
of k-means clustering in SLIC, which produce the best result on image boundaries on the Berkeley
benchmark. Here, we improved the updating process of the clustering center so only the pixels that
have similar gray values to the original clustering center are used to update the clustering center.
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4. Experiment and Analysis

4.1. Database and Configuration

There are many kinds of medical image databases used for image segmentation. The Whole Brain
Atlas (WBA) image database was used as the experimental database in this paper, which is currently
the most widely used medical image segmentation database [24]. The brain medical image database is
collected by Harvard Medical School, and the URL is http://www.med.harvard.edu/aanlib/home.html.

The WBA image database contains three different types of brain images: (1) transaxial images,
(2) sagittal images, (3) coronal images. Each type of image contains five different modes of brain images:
MR-T1 images, MR-T2 images, FDG-based PET images, PET-MR-T1 fusion images, and PET-MR-T2
fusion images. There are 126 MR-T2 brain transaxial images, and the slices #022, #032, #042, #052, #062,
#072, #082, #092, #102, #112, and #122 are often used as a dataset for medical image segmentation [22],
as shown in Figure 4.
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4.2. Evaluation Criteria

Due to the complexity of medical images, the superpixel blocks in the results of superpixel
segmentation are mixed, and it is difficult to see the advantages of this algorithm intuitively. Therefore,
two quantitative evaluation indicators, undersegmentation error and boundary match, were used to
evaluate the experimental results in this paper [25].

UE (Undersegmentation Error) is used to measure the “overflow” to the outside of the ground
truth region in the superpixel that overlaps with the ground truth region. Assuming that the superpixel
segmentation algorithm divides the image into superpixels s1, s2, · · · , sn, undersegmentation error is
defined as the proportion of the part outside the target area in the superpixel to the whole target area,
which can be expressed as:

http://www.med.harvard.edu/aanlib/home.html
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UE =

[∑
{si |si∩g,φ} si

]
− g

g
(19)

The size of the target area is used to normalize the value of the “overflow” pixels, and the range
of UE is [0, 1]. The smaller the UE value, the smaller the “overflow” to the outside of the ground truth
in the segmentation result, and the more accurate is the segmentation result.

BM (Boundary Match) depends on the definition of boundary, which is used to measure the
proportion of the overlap between the boundary of the superpixel segmentation result and the boundary
of the target area in ground truth. The equation is as follows:

BM =
SP(img)∩GT(img)

SP(img)
(20)

where SP(img) is the boundary of image superpixel segmentation, and GT(img) is the boundary of the
target area marked in the ground truth of the image. The value range of BM is [0, 1], the larger the
value of BM, the more parts of the boundary the segmentation results coincide with in the boundary of
ground truth, and the more accurate is the segmentation result.

4.3. Experiment Results and Analysis

In order to verify the effectiveness of the proposed algorithm, experiments were carried out on
several MRI brain images and were compared with traditional SLIC and enforced + SLIC algorithms.
Figure 5 shows the segmentation results of traditional SLIC, enforced + SLIC, improved SLIC, and the
proposed algorithm in this paper. As shown in Figure 5, after preprocessing, the target areas that are
close to the color of the background area are segmented, the gray value consistency of the superpixel
blocks is better, and the segmentation results are more accurate.
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Compared with SLIC, improved SLIC greatly improved the accuracy of superpixel segmentation
and the consistency of superpixel blocks. As can be seen from Figure 5, after adding the local texture
features of the image, the image features are better when calculating the similarity between pixels,
and the pixels grouped into the same superpixel have more similar features. The superpixel edge
of the proposed algorithm coincides with the edge of the target area in the image. The target areas
close to the gray value of the background area and the smaller target areas that are misclassified are
also significantly reduced. The superpixel blocks are more uniform and regular, and the accuracy
of superpixel segmentation and the consistency in the superpixels are further improved in the
proposed algorithm.
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The comparison of undersegmentation error of different algorithms is shown in Table 1 and
Figure 6. As can be seen from Table 1, after preprocessing, the part of the image that is misclassified is
significantly reduced. In the improved SLIC algorithm, only the pixels whose gray difference between
the original clustering centers is less than α were used to update the clustering center. So, the gray
value of the pixels in the superpixel is more consistent, and the edge of the superpixel is closer to
the edge of the target area. When the “overflow” part of the target area is smaller, it results in the
segmentation being more accurate.

Table 1. The comparison of UE of different algorithms.

No. SLIC [22] Enforced + SLIC [19,20] Improved SLIC [26] Proposed

(a) #Slice022 0.4711 0.4077 0.3848 0.3249
(b) #Slice032 0.6098 0.4766 0.4053 0.3677
(c) #Slice042 0.6632 0.5778 0.5116 0.4197
(d) #Slice052 0.4156 0.3456 0.2919 0.2686
(e) #Slice062 0.3313 0.2599 0.1916 0.1760
(f) #Slice072 0.2841 0.2075 0.1798 0.1659
(g) #Slice082 0.3275 0.2769 0.2305 0.2023
(h) #Slice092 0.3047 0.2136 0.1881 0.1609
(i) #Slice102 0.2655 0.2311 0.2189 0.2126
(j) #Slice112 0.2876 0.2652 0.2343 0.1867
(k) #Slice122 0.4629 0.3554 0.3184 0.2856
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The comparison of the boundary match of different algorithms is shown in Table 2 and Figure 7.
The BM value of the proposed algorithm segmentation results is further improved compared with
other algorithms. The edge of the proposed algorithm segmentation results fits the ground truth and
the segmentation result is more accurate.

As can be seen from the results above, the results of superpixel segmentation was significantly
improved after adding texture features. Compared with other algorithms, BM was greatly improved
and UE was significantly reduced, which indicates that the segmentation of the partial volume effect is
more accurate. After adding texture information to the improved SLIC algorithm, the pixels clustered
in the same superpixel have more similar features. So, the probability of dividing the edge and the
target area into the same superpixel is higher, the edge of the superpixel segmentation result fits the
actual target area, and the classification results are more accurate. Therefore, the proposed algorithm in
this paper is more suitable for the actual edge of the target area in the superpixel segmentation results
of brain MRI medical images. The number of misclassified pixels is significantly reduced, and the
results are more accurate.
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Table 2. The comparison of the boundary match of different algorithms.

No. SLIC [22] Enforced + SLIC [19,20] Improved SLIC [26] Proposed

(a) #Slice022 0.6221 0.6565 0.6818 0.6965
(b) #Slice032 0.6209 0.6666 0.7021 0.7337
(c) #Slice042 0.6928 0.7040 0.7362 0.7524
(d) #Slice052 0.6707 0.7182 0.7322 0.7751
(e) #Slice062 0.6780 0.7298 0.7594 0.7745
(f) #Slice072 0.6655 0.6812 0.7255 0.7534
(g) #Slice082 0.7251 0.7502 0.7840 0.8191
(h) #Slice092 0.7334 0.7465 0.7616 0.8224
(i) #Slice102 0.7311 0.7431 0.7571 0.7962
(j) #Slice112 0.7281 0.7592 0.7871 0.8086
(k) #Slice122 0.6668 0.6729 0.7354 0.7539Brain Sci. 2020, 10, x FOR PEER REVIEW 13 of 15 
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To define undersegmentation error and boundary match, we used the difference method to find
matches between superpixels and ground truth. The difference method is a supervised evaluation
method, which evaluates the performance of the segmentation algorithm according to the difference
between the actual segmentation results and the standard segmentation results. The pixel method
mainly measures the difference between the two by calculating the proportion of the incorrectly
classified pixels and the correctly classified pixels in the total number of standard segmentation pixels.
MR-T2 images are used widely in brain image segmentation, and they make up a representative data
set in the field of image segmentation.

5. Conclusions

An improved SLIC superpixel segmentation algorithm based on texture features is proposed in
this paper. First, a 3-D histogram reconstruction model is used to reconstruct the image gray level,
eliminating the non-uniformity of gray level in the image. Then, after enhancement, the texture
feature is extracted by the magnitude of LTriDP codes. Finally, superpixel segmentation is carried
out using a SLIC algorithm that improves the iterative process of clustering centers for brain MR
images. The superpixels generated by the proposed algorithm are compact and nearly uniform,
which is suitable for the requirements of real time and accuracy in medical image segmentation.
The experimental results show that the proposed algorithm can segment the blurred edges and regions
in the image. The proposed algorithm has lower UE and higher BM. The edges of the segmentation
results are more consistent with the standard ground truth edges, and the segmentation results are
more accurate. The main innovation of the proposed method is the improvement of superpixels.
The experiment tested the efficiency of the proposed method; it still cannot meet the real time and
accuracy requirements of clinical scenarios, so that will be the main direction of our future work.
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