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Biosynthetic gene clusters (BGCs) are operonic sets of microbial genes that synthesize specialized metabolites with diverse

functions, including siderophores and antibiotics, which often require export to the extracellular environment. For this rea-

son, genes for transport across cellular membranes are essential for the production of specialized metabolites and are often

genomically colocalized with BGCs. Here, we conducted a comprehensive computational analysis of transporters associated

with characterized BGCs. In addition to known exporters, in BGCs we found many importer-specific transmembrane do-

mains that co-occur with substrate binding proteins possibly for uptake of siderophores or metabolic precursors.

Machine learning models using transporter gene frequencies were predictive of known siderophore activity, molecular

weights, and ameasure of lipophilicity (log P) for corresponding BGC-synthesizedmetabolites. Transporter genes associated

with BGCs were often equally or more predictive of metabolite features than biosynthetic genes. Given the importance of

siderophores as pathogenicity factors, we used transporters specific for siderophore BGCs to identify both known and

uncharacterized siderophore-like BGCs in genomes from metagenomes from the infant and adult gut microbiome. We

find that 23% of microbial genomes from premature infant guts have siderophore-like BGCs, but only 3% of those assem-

bled from adult gut microbiomes do. Although siderophore-like BGCs from the infant gut are predominantly associated

with Enterobacteriaceae and Staphylococcus, siderophore-like BGCs can be identified from taxa in the adult gut microbiome

that have rarely been recognized for siderophore production. Taken together, these results show that consideration of BGC-

associated transporter genes can inform predictions of specialized metabolite structure and function.

[Supplemental material is available for this article.]

Microbes produce specialized metabolites with diverse functions,
including siderophores, ionophores, antibiotics, antifungals, and
signaling molecules (Osbourn 2010). Specialized metabolites
therefore often underlie both cooperative and competitive interac-
tions between microbes and microbial interactions with the phys-
iochemical environment (Davies 2013; Sharon et al. 2014; Tyc
et al. 2017). The vastmajority of specializedmetabolites in bacteria
are produced by biosynthetic gene clusters (BGCs), which are sets
of genomically colocalized genes. Colocalization of genes into
BGCs is thought to occur because of selection for coinheritance
and coregulation (Fischbach et al. 2008). Although thousands of
microbial natural products have been characterized, genomic
BGC predictions made using programs such as antiSMASH (Blin
et al. 2019b) and ClusterFinder (Cimermancic et al. 2014) suggest
that characterized molecules represent just a small fraction of all
existing microbial natural products (Medema and Fischbach

2015; Kim et al. 2017). Many of these unknown metabolites may
be highly novel owing to enzymatic and combinatorial diversity
of genes in BGCs (Jenke-Kodama et al. 2006; Chevrette et al. 2020).

Because of the sheer number of sequenced but otherwise
uncharacterized BGCs and the time and costs required for chemi-
cal characterization, there is a pressing need for predictions of BGC
metabolite structures or functions to enable prioritization of tar-
gets for laboratory study (Tran et al. 2019). Prediction ofmetabolite
structure or function for a novel BGC from gene content alone is
challenging. Formanybiosynthetic nonribosomal peptide synthe-
tases (NRPSs) and polyketide synthases (PKSs), there is a “colinear”
assembly-line regulation in which the order of genes relates to the
order of enzymatic modifications on the metabolite during syn-
thesis (Fischbach and Walsh 2006). Using this colinearity rule
can help predict some degree of structural detail in NRPSs and
PKSs, as is done by antiSMASH and PRISM (Skinnider et al.
2017), but there are many known exceptions to this rule
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(Wenzel and Müller 2005), and the accuracies of these software
predictions have not been formally assessed using a large training
data set.

Prediction of BGC metabolite function generally relies on
contextual genes associated with BGCs. The observation that
genes conferring resistance to the produced metabolite are also
colocalized with the BGCmotivates investigation of putative resis-
tance genes (self-resistance genemining) (Mungan et al. 2020; Yan
et al. 2020) for functional prediction. For siderophore activity pre-
diction, antiSMASH assigns a functional “siderophore” label for
BGCs that contain the IucA/IucC gene family, but this gene is
only specific for siderophores with biosynthetic pathways similar
to aerobactin (Hider and Kong 2010). More recently, Hannigan
et al. (2019) trained neural networks to both identify BGCs in ge-
nomes and classify BGCs by known metabolite functions. These
networks used protein families from the Pfam database (Pfams)
(El-Gebali et al. 2019) found in each BGC as features. They predict-
ed activity labels of antibacterial, antifungal, cytotoxic, and inhib-
itor, with precisions of 36%, 47%, 61%, and 69% on each class,
respectively.

Many specialized metabolites perform their ecological roles
extracellularly and thus require transport across cellular mem-
branes. Transporter genes often colocalize in BGCs and have
been shown to be compound specific and necessary for export of
the product in many cases (Méndez and Salas 2001; Martín et al.
2005; Severi and Thomas 2019). Therefore, transporters may also
inform predictions of BGC metabolite structure and function.
The distribution of transporters associated with biosynthetic
gene clusters has so far been assessed only in characterized BGCs
with experimental validation, a small fraction of the total number
of BGCs sequenced. At least 40 BGC-associated exporters have
been characterized, mostly in the Actinomycetes, with varying de-
grees of experimental validation (Severi and Thomas 2019).

Transporters associated with BGCs are commonly either ATP-
dependent active transporters or ion-gradient-dependent transport-
ers (Martín et al. 2005). ATP-dependent transporters include the
ATP-binding cassette (ABC) superfamily of both importers and ex-
porters (Rees et al. 2009) and the MacB tripartite efflux pump
(Greene et al. 2018b). Examples of characterized structures of each
transporter class and their substrates are shown in Figure 1A. In
brief, Type I ABC importers are characterized by the BPD_transp_1
transmembrane (TM) protein family and include MalFGK and
MetNI for malate and methionine import in E. coli (ter Beek et al.
2014). Type II ABC importers are characterized by the FecCD TM
protein family, and examples include BtuCD and HmuUV (ter
Beek et al. 2014) and the FecBCDE system for Iron(III) dicitrate im-
port in Escherichia coli (Staudenmaier et al. 1989). Both types of ABC
importers often associate with substrate binding proteins (SBPs),
small membrane or periplasmic proteins for substrate uptake
(Berntsson et al. 2010; ter Beek et al. 2014). Periplasmic binding pro-
teins, Type II ABC importers, and TonB-dependent receptors are
also known to play key roles in siderophore uptake in multiple bac-
terial species (Ellermann and Arthur 2017).

Meanwhile, examples of ABC exporters include McjD for
Lasso peptide microcin J25 export (Romano et al. 2018) and the
Staphylococcus aureus multidrug exporter Sav1866 (Dawson and
Locher 2007), composed of the ABC_membrane TM protein fam-
ily, whereas the O-antigen polysaccharide exporter is composed
of the ABC2_membrane TM protein family (Bi et al. 2018).
Export of Nystatin, Doxorubicin, and Mccj25 was found to be de-
pendent on ATP-dependent transporters (Severi and Thomas
2019). The vast majority of ribosomally synthesized and post-

translationally modified peptides (RiPPs) and a number of antibi-
otics from Actinomycetes also rely on characterized ATP-dependent
ABC transporters (Méndez and Salas 2001; Gebhard 2012).

Ion-gradient-dependent transporters (also known as second-
ary active transport systems) do not require ATP and facilitate
transport of small molecules in response to chemiosmotic gradi-
ents (Quistgaard et al. 2016). Those found in BGCs are often exam-
ples of the major facilitator superfamily (MFS) and occasionally,
the resistance nodulation division (RND) family or the multidrug
and toxic compound extrusion (MATE) family. Examples of char-
acterized secondary active transporters for antibiotics include an
RND transporter for pyoluteorin, and MFS transporters specific
for mitomycin C, virginiamycin S, and landomycin (Severi and
Thomas 2019).

Thousands of BGCs with chemically characterized metabo-
lites open up the possibility for a broad genomic and computation-
al analysis of phylogenetically and functionally diverse BGCs.
Here, we used a curated version of the Minimum Information
about a Biosynthetic Gene cluster database (MIBiG 2.0) of BGCs
(Kautsar et al. 2020) and selected transporter-specific protein
domain hidden Markov models (HMMs) to perform a wide geno-
mic assessment of the distribution of transporters in BGCs. We
found clear correlations between transporter domains and corre-
sponding metabolite features, especially siderophore activity,
that indicate underlying logical structure to transporter associa-
tions and can inform functional and structural prediction of spe-
cialized metabolites from genomics alone.

Results

Genome mining of transporters associated with biosynthetic

gene clusters

Using two compiled sets of transporter-specific HMMs (Pfam and
CATH) (https://www.cathdb.info/), we cataloged all classes of
transporters across theMIBiG 2.0 database of characterized and ex-
perimentally validated biosynthetic gene clusters. We found that
56% of the bacterial BGCs in MIBiG contained at least one Pfam
transporter hit and an additional 6% contained a CATH transport-
er hit without a Pfam domain (Fig. 1C). These percentages in-
creased among BGCs that produce antibiotics (71%) and
siderophores (78%), indicating that BGCs with these activities
aremore likely to contain at least one transporter. BGCswith trans-
porters contained 2.5 transporter-associated domains across trans-
port-annotated genes on average (Fig. 1D), which is expected
because many ATP-dependent transporter systems have at least
two domain complexes.

However, some BGCs contain considerably more transporter
ORFs and domains, indicating that sometimes multiple transport
systems can be associated with one BGC, although the number of
protein domains that function as one transport system can often
vary. The number of transporters in a BGC had no association
with the number of metabolite structures reported for that BGC.
The ATP-binding ABC transporter (ABC_tran) domain and the
Major Facilitator Superfamily 1 (MFS_1) domain were the two
most common transporter domains found in BGCs (Fig. 1B). A va-
riety of proteins hadnucleotide binding domains alongwith sever-
al different transmembrane domains—ABC_membrane and
ABC2_membrane domains were most common but ABC2_mem-
brane_2, -_3, and -_4 domains were also represented.

Examining domains specific for export, the ABC_membrane
domain is often characteristic of exporters (e.g., Sav1866)
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(Velamakanni et al. 2008), but recently has been reported in the
genes for siderophore uptake (YbtPQ) in Yersinia (Wang et al.
2020) and is therefore not necessarily indicative of export or im-
port alone. The second most common transmembrane domain,
ABC2_membrane, has been observed in theO-antigenpolysaccha-
ride exporter (Bi et al. 2018). TheMacB-FtsX tripartite efflux pump

was found in 60 BGCs, whereas the RND (ACR_tran) efflux pump
was less common and found in only 10 BGCs. Other known efflux
systems, such as SMR,MatE, and theMFS families 2 through 5were
comparatively rare across BGCs.

We next calculated co-occurrence correlations between all
transporter protein families across BGCs and observed a strong

A

B C

D

Both Pfam+CATH (55%)
CATH (6%)
Pfam (1%)

Figure 1. Distributions of transporter classes in biosynthetic gene clusters. (A) Structures of characterized examples of major transporter classes often
found in BGCs, colored and labeled by Pfam domains. The extracellular/periplasmic side of the membrane is shown as a red line, and the intracellular
side is in blue. (B) The frequencies of common Pfam transporter domains across the bacterial BGCs in the MIBiG database. (C) The percentages of bacterial
BGCs in MIBiG that do and do not contain transporter domains. Each square represents 1% of BGCs. (D) The counts of transporter domains per each bac-
terial BGC that contains at least one transporter gene across MIBiG.
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negative correlation between MFS transporters and ATP-depen-
dent transporters relying on the nucleotide binding domain, and
a weaker negative correlation of MatE domains from the ATP-de-
pendent NBD (Fig. 2A). This points toward a dichotomous choice
between ATP-dependent and ATP-independent transport associat-
ed with a BGC.

Multiple lines of annotation evidence indicated that many of
the transporter genes associated with BGCs were likely to be im-
porters. Importers can be involved in the uptake or re-uptake of
molecules like siderophores and may also play roles in importing
precursor metabolites for a BGC. The membrane domains specific
to Type I importers (BPD_transp_1) and Type II importers (FecCD)
were the most often observed ATP-dependent transmembrane do-
mains besides ABC_membrane and ABC2_membrane (Fig. 1B).
CATH Protein Structure Classification database HMMs (CATHs)
that were specific for importer families in the Transporter Classifi-
cationDatabase and found in BGCs included permeases for sugars,
oligopeptides, and iron siderophores (Fig. 2C). Eleven percent of
BGCs with a transporter also contained a substrate binding pro-
tein. Among the substrate binding proteins we searched for, the
most common contained domain was Peripla_BP_2, also found
in the E. coli B12 importer complex BtuCDF, and variants of this
SBP (cluster A-II) are specific for siderophores and cobalamin
(Berntsson et al. 2010). We also observed many substrate binding
proteins with specificities predicted to include carbohydrates, oli-
gopeptides, and peptide uptake (Fig. 2B; Berntsson et al. 2010). For
example, the gene family SBP_bac_1 (SBP cluster D-I) (Berntsson
et al. 2010) is specific for uptake of sugars and was found in the
BGCs for the glycopeptide Mannopeptimycin and the aminogly-

coside spectinomycin and may play a role in sugar precursor up-
take (Supplemental Fig. S1). It was also found in the acarbose
and acarviostatin BGCs (Supplemental Fig. S1), consistent with
their putative roles as carbophors (Guo et al. 2012).

In the co-occurrence data, we observed pairing of different
substrate binding proteins with different transmembrane do-
mains. Peripla_BP_2 positively correlated strongly with FecCD
and TonB_dep_Rec, genes known to be involved in siderophore
uptake. BPD_transp_1 co-occurred with either SBP_bac_5 (SBP
cluster C) or SBP_bac_1, whereas BPD_transp_2 co-occurred with
Peripla_BP_4 (SBP cluster B-I). Taken together, these results show
a logical organization of importer-specific transporter domains
within BGCs that may be involved in either siderophore uptake,
precursor uptake, or other roles. Regardless of the substrate specif-
icity of these proteins, care must be taken when assuming that a
transporter in a BGC is definitively for export of the matured
product.

Prediction of siderophore and antibacterial activity from

biosynthetic transporters

Because transporters are required for the ecological functions of
biosynthesized specialized metabolites, we used machine learning
to test if transporter classes were predictive of BGC-synthesized
metabolite structures and functions. We noticed that metabolite
activity labels in MIBiG were strongly associated with phylogeny:
83%of antibiotic BGCswere fromGram-positive bacteria, but only
40% of siderophore BGCs were from Gram-positive bacteria in the
data set of curated MIBiG BGCs. To reduce the impact of this

A B

C

Figure 2. Presence of importer-specific domains and co-occurrence between transporters across BGCs. (A) Spearman’s correlations between commonly
occurring Pfam transporter domains across MIBiG BGCs—only correlations with P<0.001 are shown. (B) Counts of Pfam transporter substrate binding
domain families and corresponding substrate binding protein clusters described by Berntsson et al. (2010). (C) Counts of importer-specific CATH domains
across MIBiG BGCs. The CATH functional family “Iron ABC permease” is essentially synonymous with the FecCD Pfam.
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potential bias, we created separate training and testing data sets
for activity prediction for Gram-positive and Gram-negative
organisms.

Using our curated set of BGCs with transporters from the
MIBiG 2.0 database, we tested for associations between BGC trans-
port genes and metabolite function. We generated two activity
classification tasks: (1) distinguishing siderophores (including
known ionophores) (n=16 Gram-positive, n= 24 Gram-negative)
from non-siderophores (n=142 Gram-positive, n=42 Gram-nega-
tive); and (2) distinguishing antibiotics and antifungals (n=131
Gram-positive, n= 27 Gram-negative) from non-antibiotics (n=
57Gram-positive, n=37Gram-negative).We observed several stat-
istically significant (Fisher’s exact test;Q<0.05) associations in the
distribution of transporter types between both the siderophore
and other activity classes. Among Gram-positive bacteria, 60% of
siderophore BGCs contained the SBP Peripla_BP_2 and 55% con-
tained the FecCD importer, but no BGCs with other activities
had either (Fig. 3A; Supplemental Fig. S2). The situation was simi-
lar for Gram-negative siderophore BGCs. The TonB-dependent re-

ceptor (completely absent from Gram-positive bacteria) was the
strongest signal, found in almost 80% of Gram-negative sidero-
phore BGCs with a transporter and never in BGCs with other
activities.

To assess siderophore predictability from BGC gene content,
we used decision trees with only two layers applied to different fea-
ture sets of proteindomainannotations, transport-affiliatedPfams,
transport-affiliated CATH HMMs, and biosynthetic Pfams. To
avoid issues with class imbalance, we report precision and recall
on the siderophore class, because siderophore prediction requires
searching for a minority class (siderophores) within a background
of mostly non-siderophores. With the transport-only features, we
found that just with two gene decisions, it is possible to achieve
100%precision with <80% recall using either Pfam or CATH trans-
porter annotations forGram-negative siderophores, and 100%pre-
cision with <80% recall using CATH transporter annotations for
Gram-positive siderophores (Fig. 3B; Supplemental Table S5). On
the other hand, when using all biosynthetic annotations within
BGCs, we found that two-layer decision trees trained on

A

C

B

Pfam
CATH
Pfam

Pfam
CATH
Pfam

Figure 3. Transporter domains are predictive of siderophore BGCs. (A) The frequencies of common transporter Pfam domains across siderophore BGCs
and BGCs of other known activities in Gram-positive and Gram-negative bacteria. Bars in green were significantly different in frequency between the two
classes (Fisher’s exact test;Q<0.05) (B) Precision-recall curves for two-layer decision trees classifying siderophore BGCs using Pfam transporter, CATH trans-
porter, and Pfam biosynthetic gene features in Gram-negative and Gram-positive bacteria. (C ) Examples of three siderophore BGCs without activity labels
in MIBiG 2.0, which could be identified using transporter frequencies. Transporter genes are blue, core biosynthetic genes (NRPS and PKS) are dark red,
accessory biosynthetic genes are light red, and regulatory genes are green.
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biosynthetic genes performed substan-
tially worse at predicting siderophore ac-
tivity than those trained on transporter
genes (Fig. 3B; Supplemental Table S5).
We further validated our results by train-
ing LASSO linearized regression models,
which do not model interactions be-
tween features. These models obtained a
slightly improved area under the preci-
sion-recall curve (AUPRC), indicating
that very simple transporter patterns are
highly predictive of whether a BGC is
siderophore producing or not in our
data set (Fig. 3B). Transporter features
predictive of siderophores were consis-
tently selected by LASSO across stratified
cross-validation repeats, giving evidence
that these patterns are robust (Supple-
mental Fig. S3). The top predictive bio-
synthetic features of siderophores were
the IucA/IucC protein family (used by
antiSMASH to label siderophores and
which is known to be involved in aero-
bactin biosynthesis) and condensation
domains (likely to capture nonribosomal
peptide siderophores), but predictive ef-
fect sizes were smaller than those for
transporters (Supplemental Fig. S3).

Using siderophore-specific trans-
porter genes,we attempted topredict side-
rophore classes for any remaining gene
clusters that have no annotated function
inMIBiG2 (that we had not already hand
curated). We searched for gene clusters
containing the siderophore-predictive
genes FecCD and Peripla_BP_2 and found
six additional BGCswithnoannotated ac-
tivity, three of whichwere experimentally
validated by the literature to be sidero-
phores (Fig. 3C;Carranet al. 2001;Matsuo
et al. 2011; Chen et al. 2013). The remain-
ing three identified BGCs were false posi-
tives. One of them, the BGC for the antibiotic Ficellomycin, only
contained these transport genes in flanking regions not known to
be involved inbiosynthesis (Liuet al. 2017),whereas theherbimycin
A BGC contains the transporters genes in the reverse reading frame
from the BGC, separated by an unusual 16-kb intergenic region and
the genes appear to be fragmented (Rascher et al. 2005). The other
false positive was Lividomycin, an antibiotic that does seem to
be a rare non-siderophore BGC with FecCD and Peripla_BP_2
transporters in the MIBiG2.0 database.

To understand the extent of transporter specificity for partic-
ular classes of BGCs, we expanded our analysis to 95,293 BGCs in
the antiSMASH database, which is a set of predicted BGCs in mi-
crobial genomes from the RefSeq database. Frequencies of general
transporters and transporter genes that were specific for sidero-
phore biosynthesis in MIBiG (FecCD and the TonB-dependent
Receptor) were calculated across all antiSMASH BGCs by bacterial
genus (Fig. 4; Supplemental Fig. S4). The general ABC transporter
ATP-binding domain and MFS superfamily transporter genes var-
ied in their frequencies across different classes of BGCs, but there
were some consistent patterns. Thiopeptides, NRPS-independent

siderophores, and arylpolyene BGCs tended to have an MFS ex-
porter, but ribosomally synthesized products (e.g., Lasso peptides
and Lantipeptides) consistently had ATP-dependent transport
mechanisms (Fig. 4A).

Alternatively, the TonB-dependent receptor and the FecCD
Type II importer were highly restricted to specific classes of BGCs.
They only consistently appeared in NRPS-independent sidero-
phore and NRPS clusters and were nearly absent from entire other
classes of BGCs (Fig. 4B). This is consistent with the known
NRPS-independent and NRPS biosynthetic pathways for sidero-
phores. The TonB-dependent receptor was also found associated
with Lasso peptides (possibly functioning as a resistance gene)
(Mathavan et al. 2014), but FecCD was not. Twenty-one percent
of NRPS clusters contained a FecCD gene, and 28% contained a
TonB-dependent receptor, possibly indicating that at least one in
five uncharacterized NRPSs may function as siderophores. Thus,
even in an uncurated data set of thousands of BGCs, it appears as
though siderophore-specific transporters only rarely occur in bio-
synthetic gene clusters that are unlikely to have siderophore
functions.

A

B

Figure 4. Presence of general and siderophore-specific transporters by biosynthetic class and bacterial
genus across the antiSMASH database. (A) ATP-dependent and ATP-independent (MFS) transporters are
commonly associated with a variety of BGCs in the antiSMASH database across a wide range of genera.
Each point is the percentage of a BGC class with a transporter within a particular genus. Each genus is
colored by its Gram status, and genera with fewer than 20 BGCs of a particular class are excluded. (B)
Siderophore-specific transporters are associated with few BGC classes in the antiSMASH database.
Each point is the percentage of a BGC class with a transporter within a particular genus. Each genus is
colored by its Gram status, and genera with fewer than 20 BGCs of a particular class are excluded.
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Classifying antibiotics and antifungals from either trans-
porters or biosynthetic genes proved more challenging than clas-
sifying siderophores (Supplemental Table S5; Supplemental Fig.
S5). In Gram-negative bacteria, we observed positive associations
between the MacB-FtsX tripartite efflux pump with antibacterial
or antifungal activity (Fisher’s exact test; Q< 0.05). MacB and as-
sociated components (FtsX and OEP) were positively associated
with antibiotic activity by LASSO logistic regression. This result
was stable across both cross-validation folds and repeats of
cross-validation (Supplemental Fig. S5). We found that seven of
27 Gram-negative antibacterial BGCs contained a MacB, and no
BGCs in our classes of other activities contained MacB.
Although MacB is involved in export of the siderophore
Pyoverdine (for which there is not an accurate BGC in MIBiG)
in Pseudomonas (Greene et al. 2018a), in general, MacB may be
a strong indicator of antibacterial activity for a BGC. Previously,
we identified a number of MacB-FtsX exporters in BGCs from
novel Acidobacteria (Crits-Christoph et al. 2018), possibly indi-
cating a role in antibacterial activity for these BGCs. LASSO effect
sizes for individual biosynthetic genes were substantially lower
(Supplemental Fig. S5).

Association of biosynthetic transporter classes

with the molecular weights and lipophilicity

of their putative substrates

We next hypothesized that transporter classes could be predictive
of other molecular features beyond functional activity. There was
no strong correlation between themolecular size of themetabolite
produced and Gram status of the bacteria encoding each corre-
sponding BGC in theMIBiG data set. Thus, we tested for differenc-
es in transporter classes in BGCs producing metabolites that were
(1) less than and (2) greater than 1000 Da in size across all bacteria.
There was a significant difference in the frequencies of some trans-
porters betweenBGCswith differentmetabolitemolecularweights
(Fig. 5A). The strongest difference was in the distribution of MFS
transporters—found in 57% of BGCs with products <1000 Da,
but only 14% of those >1000 Da (Fisher’s exact test; Q<0.05).
The 95th percentile of metabolite molecular weights for clusters
withMFS_1 andwithout ABC_tranwas 1082Da, whichmaybe ap-
proaching a biological limit for themolecular weights of substrates
for these transporters. Conversely, the ATP-dependent ABC_tran
domain was found in 89% of BGCs producing high molecular

A

C D

B
Pfam
CATH
Pfam

Pfam
CATH
Pfam

(lo
g 
P)

Figure 5. Transporter domains associated with molecular size and partition coefficient. (A) The frequencies of common transporter Pfam domains in
BGCs that synthesize metabolites >1000 Da (left) and <1000 Da (right). Bars in green were significantly different in frequency between the two classes
(Fisher’s exact test; Q<0.05). (B) Precision-recall curves for two-layer decision trees and LASSO logistic regression models classifying BGCs producing me-
tabolites >1000 Da using Pfam transporter, CATH transporter, and Pfam biosynthetic gene features. (C ) The distribution of metabolite molecular weights
synthesized by BGCs with at least one NBD-binding ABC transporter domain, at least one MFS domain, and the ABC2_membrane_3 transmembrane
domain. (D) Predicted partition coefficients (log P) for metabolites synthesized by BGCs that contain at least one variant of two different ABC transporter
transmembrane domains.
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weight compounds but only 42% of those producing lowmolecu-
lar weight compounds (Fisher’s exact test; Q<0.05). MacB/FtsX
and the rarer transmembrane domains were also associated with
higher molecular weight compounds.

We tested for an association within the two largest chemical
classes in the data set, PKs and NRPs, and found that also within
the PKS and NRPS biosynthetic classes ATP-dependent transport-
ers were associated with larger metabolite molecular weights
than the MFS family (Fig. 5C). We also observed that the
ABC2_membrane_4 was associated almost exclusively with large
RiPPs, with almost all of the BGCs in which it is found in produc-
ing compounds >1500 Da in size. After training both LASSO logis-
tic regression and two-layer decision tree models to classify
whether produced molecules are >1000 Da, we found that trans-
porter genes were able to distinguish large from small metabolites
withmoderate precision and recall (Supplemental Table S5) and an
AUPRC of up to 42%, and biosynthetic genes performed similarly
(Fig. 5B). Top transporter features consistently had larger effect siz-
es than top biosynthetic features, indicating that transporter-
based features provided clearer signals. This result was stable across
both cross-validation folds and repeats (Supplemental Fig. S6). The
biosynthetic protein family most associated with high molecular
weight metabolites was Glycos_transf_2, likely owing to the addi-
tion of sugar groups to metabolites by these enzymes in BGCs.

It has previously been reported that transporters can be spe-
cific for compounds with similar hydrophilicity (Rempel et al.
2020). The lipophilicity of a metabolite is often considered critical
for its success in clinical development for human therapeutics
(Arnott and Planey 2012). With LASSO logistic regression, we pre-
dicted partition coefficients (log P), a measure of lipophilicity, for
all of the metabolites in MIBiG, and tested how well metabolite
partition coefficients could be predicted by gene content. We
found that the presence of five transporter classes was significantly
associated with increased lipophilicity (Fisher’s exact test; Q<
0.05). In particular, we observed an association between varying
ATP-dependent transmembrane domains and log P, with ABC2_
membrane_3 domain co-occurring with BGC-metabolites with a
high log P (median 4.4) (Fig. 5D) and ABC2_membrane_4 domain
co-occurring with BGC-metabolites with a low log P (median
−6.2). Although the ABC2_membrane_4 association is likely a re-
sult of its exclusive association with large RiPP products, the
ABC2_membrane_3 domain occurred in multiple BGC classes,
mostly polyketides, and was still associated with a decrease in log
P just within the polyketide class. LASSO logistic regression distin-
guished log P>0 from log P< 0 with 77% AUPRC (Supplemental
Table S5; Supplemental Fig. S7). On this task biosynthetic genes
were distinctly superior over transporters at prediction of log P, ob-
taining a 83% AUPRC with a LASSO logistic regression trained on
biosynthetic genes (Supplemental Table S5).

Identifying novel siderophore-like biosynthetic gene clusters

in the human microbiome

To show the predictive utility of BGC-associated transporters, we
mined BGCs with siderophore-specific transporters in metage-
nomic genomes (dereplicated per species) from (1) the gut micro-
biomes of neonatal infants in the intensive care unit (Olm et al.
2019), and (2) a cross-study collation of genomes assembled
from multiple human gut studies (Nayfach et al. 2019). Identified
“siderophore-like” BGCs putatively produce siderophores, as they
contained the transporter classes that can achieve near 100% side-
rophore specificity in the MIBiG database: (1) Peripla_BP_2 and

FecCD in Gram-positive bacteria, and (2) Peripla_BP_2, FecCD,
and TonB_dep_Rec in Gram-negative bacteria. We identified
1442 BGCs with siderophore-like transporter classes (Fig. 6A; Sup-
plemental Table S6) and then grouped them into novel gene clus-
ter families using BiG-SCAPE, resulting in 75 siderophore-like gene
cluster families (Fig. 6B).

Most siderophore-like BGCs were in large gene cluster fami-
lies with other BGCs that also contained the same set of transport-
er hits. Twenty-three percent of microbial genomes from the
neonatal infant gut microbiomes had siderophore-like BGCs, but
only 3% of those assembled from adult gut microbiomes did.
Siderophore-like BGCs were identified across a range of bacterial
genera, but the majority were from the Staphylococcus or
Enterobacteriaceae, which are known to be in high abundance
in the neonatal gut microbiome. The genera with the most sidero-
phore-like BGCs were Staphylococcus and Klebsiella, common hos-
pital-acquired pathogens of neonates. Five of the 75 identified
siderophore-like BGC families included a known representative
gene cluster in MIBiG, and four of the known representatives
were siderophores, again pointing to the specificity of these trans-
porter classes.

The rest of the siderophore-like gene cluster families that were
identified had no closely characterized representative in MIBiG,
indicating that there is likely capacity for production of multiple
novel siderophores in the human gut microbiome (Fig. 6C).
Almost all siderophore-like BGCs were either NRPS or NRPS-inde-
pendent siderophore classes, the latter of which is based on the
presence of the IuA/IuC gene family, as in aerobactin biosynthesis.
Of the NRPS siderophore-like gene clusters, the majority had
adenylation domain specificities for serine (ser) and 2,3-dihydrox-
ybenzoate (dhb), indicating similar catechol-containing nonribo-
somal biosynthetic pathways to siderophores like enterobactin
and salmochelin (Supplemental Table S7). We observed substan-
tial genetic diversity between gene cluster families containing sim-
ilar NRPS domains, which may indicate the existence of possible
unknown derivatives of these siderophores in the human micro-
biome. In adult gut microbiome samples, one large novel NRPS
siderophore-like gene cluster with unknown adenylation specific-
ity was identified inCoprococcus, members of the Lachnospiraceae,
often considered to be important commensals in the human gut
(Chen et al. 2017; Duvallet et al. 2017). Thus, although a majority
of siderophore-like BGCs in the human microbiome contained
core enzymes similar to known siderophore biosynthetic path-
ways, there was substantial genetic diversity that could indicate
further unexplored structural variation.

Discussion

We uncovered several strong associations between transporters
within characterized BGCs and features of the corresponding
BGC-synthesizedmetabolites. With regard to prediction of metab-
olite activity, we quantified the specificity of TonB-dependent
receptors, FecCD, and Periplasmic binding protein 2 for sidero-
phore-producing BGCs. This complements existing literature indi-
cating that genes in these families are specific for siderophore
import in both Gram-positive and Gram-negative bacteria (Chu
et al. 2010). We also identified a putative association between
theMacB tripartite efflux pump and antibacterial/antifungal activ-
ity. Based on these findings, a strategy of targeting novel BGCs
containing MacB for characterization may be useful for antibiotic
prospecting. In addition to activity prediction, we usedmetabolite
structural information in MIBiG to predict metabolite molecular
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weight and lipophilicity from BGC gene content. We discovered a
strong relationship between the transporters in characterized
BGCs and the molecular weight of their synthesized metabolites.
The strong dichotomy between ATP-dependent transporters (us-
ing the ABC_tran nucleotide binding domain) and MFS family
transporters points toward required ATP-dependence for trans-
porting metabolites >1000 Da. We also identified relationships
between two understudied membrane components (ABC2_mem-
brane_3 and ABC2_membrane_4) and substrate log P, possibly in-
dicating trade-off inmembrane domains for molecules of different
chemical properties. Future phylogeny-based subdivision of these
families may improve on general protein family annotations to in-
crease the predictive power of transporter substrate characteristics.

There are multiple caveats to our work. Molecular activity of
specializedmetabolites based on functions proven in the laborato-
ry may be very different from the ecological roles that metabolites
play in natural settings (Behnsen and Raffatellu 2016; van derMeij
et al. 2017; Kramer et al. 2020). Further, many BGCs may produce
multiple variants of a metabolite (Fischbach and Clardy 2007),
only some of which may be reported. There may also be refer-
ence-database biases in our gene searches—although they are sen-
sitive, it is possible that phylogenetically divergent microbes use
transporter genes that are not hit by our sequence models.
Finally, as reported, a significant proportion of BGCs contain no

transporter at all or a transporter gene genomically adjacent to a
BGC may not be functionally linked. There are both technical
and biological reasons why a BGCmight not contain a transporter
gene. First, the transporter(s) for the metabolite produced may be
encoded elsewhere in the genome. Second, the BGC’s genomic
boundaries may be misannotated, and the transporter may be
downstream from annotated genes. Third, it is possible that the
metabolite being produced performs its primary function intracel-
lularly and does not require a transporter for export. It is also pos-
sible that there are unannotated transport systems in BGCs: To
further investigate this, we identified unannotated proteins with
transmembrane domains in BGCs and found that 18% of BGCs
in MIBiG without a transporter contained one unknown mem-
brane protein. Despite these caveats, it appears as though trans-
porter genes provide simple and strong signals for inferring both
activity and chemical properties ofmetabolites produced by BGCs.

Siderophores are both considered critical pathogenicity fac-
tors for many human-associated microbes (Weakland et al. 2020)
and are also known to facilitate interactions with other microbes
and the innate immune system in the human gut microbiome
(Behnsen and Raffatellu 2016; Holden et al. 2016; Lam et al.
2018; Zhu et al. 2020). Therefore, being able to annotate genes
for the production of siderophores across diverse bacterial species
may be critical for understanding the distribution of virulence

A
B

C

Figure 6. BGCs with siderophore-like transporters from human gut microbiomes. (A) Concatenated ribosomal protein tree (collapsed to the genus level)
for high-quality genomes from the infant and adult gut microbiomes that encode siderophore-like BGCs. On the right are counts of siderophore BGCs from
infant gut genomes (blue) and adult gut genomes (red). (B) Gene Cluster Families of BGCs containing known siderophores (bright red) and humanmicro-
biome–derived BGCs with siderophore-like transporters. BGCs are connected by similarity to other BGCs in the same gene cluster family, calculated using
BiG-SCAPE. (C) Families of siderophore-like BGCs without any similarity to existing known BGCs. BGCs in the network are colored by the taxonomy of the
genome of origin and are grouped and labeled by the antiSMASH reported biosynthetic class: for NRPS gene clusters, the adenylation domain specificities
are reported.

Transporter genes in biosynthetic gene clusters

Genome Research 247
www.genome.org



factors, yet it is difficult to do using traditional annotation pipe-
lines alone. We observed a high prevalence of siderophore-like
BGCs in bacterial genomes fromNICU premature infant guts, sug-
gesting that the premature infant gut could bemore prone to inva-
sion by pathogens with siderophore virulence factors. Potentially
novel siderophore-like BGCs were most consistently found to be
encoded in the genomes of members of the Enterobacteriaceae
and Staphylococcus in the premature infant microbiome. Only in
the adult microbiome data sets did we identify siderophore-like
BGCs in the Lachnospiraceae, that are often considered important
commensals, indicating that there may also be commensal sidero-
phore production in adult gutmicrobiomes. Importantly, we iden-
tified siderophore-like BGCs in these taxa that are not homologous
to known siderophore clusters, indicating that there is still sub-
stantial unknown chemical diversity of siderophores, even within
well-studied lineages.

In general, here we showed that consideration of transporter
genes can aid holistic functional prediction of BGC products. A
transporter-guided approach could be especially useful for identi-
fication of siderophore targets for medical (Nagoba and
Vedpathak 2011) and biotechnological applications (Ahmed and
Holmström 2014). Given the large diversity of BGCs and that
chemical characterization of their products can be time and re-
source intensive, better functional prediction of BGCs for targeted
study can improve selection of targets for antimicrobial discovery
and downstream activity tests.

Methods

Curation and selection of BGCs and transporter annotations

We parsed the MIBiG 2.0 database of biosynthetic gene clusters
metadata and extracted information including host genus, com-
pound count, chemical structures of the metabolite product,
known metabolite activities, and the number of open reading
frames for each BGC. Using Entrez and NCBI, we assigned the ex-
pected Gram status for each BGC based on phylum, coded 0=
Gram-negative, 1 =Gram-positive, 2 = Fungal, 3 = other. For the
purpose of this manuscript, we only analyzed BGCs from Gram-
positive and Gram-negative bacteria. We noticed that the activity
labels in MIBiG 2.0 were often incomplete, and manually added a
set of antibacterial, siderophore, and antifungal labels derived
from the literature (Supplemental Table S1). We found that
28 BGCs (1.8%) inMIBiGwere unusually large in length, and com-
parisons to published papers on these BGCs showed that their
MIBiG counterparts were overextended in comparison to the vali-
dated BGC. For this reason, we eliminated the 28 BGCs over
60 ORFs in length. Using Python and RDKit, we calculated molec-
ular weights and partition coefficients (log P) using the algorithm
described in Wildman and Crippen (1999) for all 1042 MIBiG
BGCs with a single associated compound structure. Two hundred
thirty-eight BGCs havemore than one associatedmetabolite struc-
ture, and thesemultistructure BGCswere not used in our structural
association analyses. We annotated biosynthetic genes in MIBiG
with HMMER hmmsearch (Eddy 1998) and cath-resolve-hits (Lewis
et al. 2019) on a set of the 99 most commonly represented biosyn-
thetic Pfams in antiSMASH BGCs obtained from Cimermancic
et al. (2014) to generate a counts table of biosynthetic protein fam-
ilies for each BGC (Supplemental Table S4).

To obtain a comprehensive overview of the distribution of
transport-associated protein domains in biosynthetic gene clus-
ters, we generated two separate feature tables: (1) using CATH
(Sillitoe et al. 2019) HMMs, and (2) using Pfam (El-Gebali et al.
2019) HMMs. For the first, we downloaded all proteins in the

Transporter Classification Database (TCDB) (Saier et al. 2016)
and annotated them with hmmsearch and cath-resolve-hits, using
all CATH Functional Family HMMs. We then selected all
CATH HMMs that were represented at least five times. We then
manually curated this list down to 180 final CATH HMMs that
were transport specific. We then calculated the specificities of
each CATH HMM for TCDB families; 80 were specific for exactly
one TCDB family.

For the second set of features, we took all protein sequences
with an annotation including “Transport” in the antiSMASH data-
base v2 (Blin et al. 2019a) and annotated these proteins with the
Pfam-A set of HMMs using hmmsearch and the option‐‐cut_ga.
We then selected highly represented HMMs andmanually curated
this list to be transporter specific and representative of the major
transporter classes in TCDB. We then also selected the Pfam
Substrate Binding Protein and Periplasmic Binding Protein
HMMs that were represented more than five times in MIBiG.
When comparing both the Pfam and CATH set of HMMs, we
found substantial overlap, but the CATH set is composed of 166
domain features, whereas the Pfam set only contains 18
(Supplemental Tables S2, S3).

Machine learning to predict metabolite structural and functional

characteristics

To identify associations betweenmetabolite functional classes and
structural properties with BGC gene content, we used traditional
statistical tests and different machine learning models. Our classi-
fication tasks were (1) siderophore (n=16 Gram-positive; n=24
Gram-negative) versus other activity (n=142 Gram-positive; n=
42 Gram-negative), (2) antibiotic and antifungal (n=131 Gram-
positive; n=27 Gram-negative) versus other activity (n=57
Gram-positive; n=37 Gram-negative), (3) metabolite molecular
weight > 1000 Daltons (n=149) versus metabolite molecular
weight < 1000 Daltons (n=421), and (4) predicted partition coeffi-
cient log P<0 (n=220) versus log P≥0 (n= 350). For the functional
classification tasks, we noticed a strong class imbalance with Gram
status, so we performed functional classification separately for
BGCs from Gram-positive and Gram-negative bacteria. We first
tested for univariate differences in proportional representation of
each transporter BGC between classes for classification tests using
Fisher’s exact test in Python (Q<0.05, Benjamini–Hochberg cor-
rection) (Hochberg and Benjamini 1990).

We then assessed the predictive power of the three sets of fea-
tures for each BGC: transporter Pfam HMMs, transporter CATH
HMMs, and biosynthetic Pfam HMMs. Features were counts of
protein families, which were standardized using the Stand-
ardScaler function in the scikit-learn package. Given the nature
of our study, we used simple models to ensure reliability and inter-
pretability of our results. We fit two classes of machine learning
models: (1) LASSO-penalized logistic regression, which fits a linear
model with a sparsity penalty onweights; and (2) shallow decision
trees (of depth one or two), which can classify based on splitting at
most two features (Franklin 2005). All models were trained using
the Python package scikit-learn. Because of data size and class im-
balance, we fitmodels using repeated, stratified k-fold cross-valida-
tion (“RepeatedStratifiedKFold” in scikit-learn) with five repeats
and five folds. On each cross-validation split of our data, we com-
puted the area under the precision-recall curve (AUPRC) to evalu-
ate performance for our class-imbalanced tasks. Thus for the final
output of this procedure, we reported the mean of accuracy, preci-
sion, recall, and AUPRC each generated from five repeats of differ-
ent random fivefold partitions of the data. We further use these
repeated cross-validation splits to see which features are consis-
tently used for classification across repeats.
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Annotating metagenomic siderophore-like BGCs from the human

microbiome

To assess the distribution of siderophore-like BGCs in the human
microbiome, we downloaded two sets of genomes assembled
from metagenomes obtained from the human gut microbiome:
2425 genomes from a neonatal intensive care unit (NICU) prema-
ture infant microbiome (Olm et al. 2019) and 24,345 genomes
from a diverse set of mostly adult human cohorts (Nayfach et al.
2019).We ran antiSMASH5.0 on these genomes and then scanned
predicted BGCs for at least two of the Pfams that were found to
be specific for siderophore BGCs (FecCD, Peripla_BP_2, and
Ton_dep_Rec). We dereplicated these BGCs and compared them
to known MIBiG siderophore BGCs using the software BiG-
SCAPE (Navarro-Muñoz et al. 2020) run with default settings.
We then considered BGCswith either set of hits and reported their
genomic taxonomic distribution based on the closest BLAST hit
representatives of genomic ribosomal proteins to taxonomic gen-
era defined by GTDB (minimum percent identity of hits >80%)
(Parks et al. 2018).

Data access

All Python code used in this paper, along with the data
analyzed, antiSMASHBGCs, and additional data tables, is available
at GitHub (https://github.com/nickbhat/bgc_tran) and as Supple-
mental Code and Data.
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