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Abstract. The aim of the present study was to identify novel 
microrna (mirna) or long noncoding rna (lncrna) 
signatures of laryngeal cancer recurrence and to investigate 
the regulatory mechanisms associated with this malignancy. 
datasets of recurrent and nonrecurrent laryngeal cancer 
samples were downloaded from The cancer Genome 
atlas (TcGa) and the Gene expression omnibus data-
base (GSe27020 and GSe25727) to examine differentially 
expressed mirnas (de-mirs), lncrnas (de-lncrs) and 
mrnas (deGs). mirna-mrna and lncrna-mirna 
networks were constructed by investigating the associations 
among these rnas in various databases. Subsequently, the 
interactions identified were combined into a competing endog-
enous rna (cerna) regulatory network. Feature genes in 
the miRNA‑mRNA network were identified via topological 
analysis and a recursive feature elimination algorithm. a 
support vector machine (SVM) classifier was established 
using the betweenness centrality values in the mirna-mrna 
network, consisting of 32 optimal feature-coding genes. The 
classification effect was tested using two validation datasets. 
Furthermore, coding genes in the cerna network were exam-

ined via pathway enrichment analyses. in total, 21 de-lncrs, 
507 DEGs and 55 DE‑miRs were selected. The SVM classifier 
exhibited an accuracy of 94.05% (79/84) for sample classifica-
tion prediction in the TcGa dataset, and 92.66 and 91.07% in 
the two validation datasets. The cerna regulatory network 
comprised 203 nodes, corresponding to mrnas, mirnas 
and lncrnas, and 346 lines, corresponding to the interactions 
among rnas. in particular, the interactions with the highest 
scores were Hla complex group 4 (HcG4)-mir-33b, HoX 
transcript antisense rna (HoTair)-mir-1-MaGe family 
member a2 (MaGea2), eMX2 opposite strand/antisense 
rna (eMX2oS)-mir-124-calcitonin related polypeptide α 
(calca) and eMX2oS-mir-124-γ-aminobutyric acid type 
a receptor γ2 subunit (GaBrG2). Gene enrichment analysis 
of the genes in the ceRNA network identified that 11 pathway 
terms and 16 molecular function terms were significantly 
enriched. The SVM classifier based on 32 feature coding 
genes exhibited high accuracy in the classification of laryngeal 
cancer samples. mir-1, mir-33b, mir-124, HoTair, HcG4 
and eMX2oS may be novel biomarkers of recurrent laryngeal 
cancer, and HcG4-mir-33b, HoTair-mir-1-MaGea2 and 
eMX2oS-mir-124-calca/GaBrG2 may be associated 
with the molecular mechanisms regulating recurrent laryngeal 
cancer.

Introduction

laryngeal cancer is the commonest cancer in the larynx. 
Squamous cell carcinoma is the predominant physiological 
type of laryngeal cancer, as it originates from the glottic region 
of the larynx. at present, to the best of the authors' knowledge, 
effective treatment for laryngeal squamous cell carcinoma 
(lScc) primarily relies on radiotherapy and surgery. Tobacco 
and alcohol consumption are the principal risk factors for the 
development of laryngeal cancer (1). The annual incidence of 
laryngeal cancer is ~5 per 100,000 individuals and the 5-year 
survival rate is 60.6% in the uSa (2,3). it was estimates that 
23,400 new cases of laryngeal cancer occurred in china 
in 2014 (4).

Patients with upper-airway malignancies exhibit an 
increased risk of developing locoregional cancer recurrence 
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and second primary malignancies, and the larynx and naso-
pharynx are among the most frequent sites of locoregional 
cancer recurrence (5,6). although the available therapeutic 
strategies exhibit promising results, the clinical outcomes of 
patients with lScc remain poor (4). understanding of the 
pathogenesis of the disease may contribute to the development 
of novel and more effective therapeutic strategies. numerous 
studies have aimed to investigate the molecular mechanisms 
underlying laryngeal cancer development (7-9). cell cycle 
proteins have been identified to serve important roles in the 
carcinogenesis of laryngeal cancer, and the upregulation of 
cellular tumor antigen p53 (p53), p21 and cyclin dependent 
kinase 1 in the surgical margin of early cancer is associ-
ated with local tumor recurrence (10). recurrence rates in 
patients with p27- and phosphatase and tensin homolog 
(PTEN)‑negative carcinoma were identified to be increased 
compared with patients with increased expression levels of 
these factors (11).

Multiple types of rna, including long noncoding 
rnas (lncrnas), circular rnas, micrornas (mirnas), 
pseudogenes and protein-coding mrnas may serve as 
key competing endogenous rnas (cernas) to regulate 
the expression levels of various mrnas in mammalian 
cells (12,13). mir-196a may promote tumor progression in 
numerous cancer types, and its expression level was identi-
fied to be increased in laryngeal cancer (14). miR‑221 may 
increase the cell proliferation rate by inhibiting apoptotic 
protease activating factor-1 in laryngeal cancer (15), whereas 
mirna-299-3p targets the transcript of human telomerase 
reverse transcriptase (16). nF-κB-interacting lncrna was 
identified to inhibit tumor cell viability and to promote 
apoptosis (17). a previous study analyzed an lncrna expres-
sion dataset from the Gene expression omnibus (Geo) 
database, and identified that two lncRNAs, RP11‑169K16.4 
and rP11-107e5.3, were associated with the prediction of 
recurrence of laryngeal cancer (18).

although various previous studies have investigated the 
molecular mechanisms underlying laryngeal cancer, the 
etiology of this malignancy, and in particular of its recurrence, 
remains unclear. notably, the regulatory interactions among 
noncoding and coding rnas is only partially understood. 
The present study investigated novel potential molecular 
biomarkers involved in the recurrence of laryngeal cancer 
by constructing a cerna regulatory network consisting of 
mirnas, lncrnas and mrnas.

Materials and methods

Training and validation datasets and data processing. Head 
and neck squamous cell carcinoma (HnScc) mrna samples 
were downloaded from The cancer Genome atlas (TcGa) 
database (https://gdc-portal.nci.nih.gov/) on august 8th, 2016. 
The samples of laryngeal cancer were selected according to 
the following criteria: i) laryngeal origin; ii) recurrence status 
was recorded; and iii) matched mrnas and mirnas were 
barcoded. in total, 84 primary laryngeal cancer samples, 
including 19 recurrent and 65 nonrecurrent samples, were 
selected from 501 HnScc tissues. The training dataset was 
constructed using the rna sequencing (rna-seq) data down-
loaded from the TcGa database.

The gene expression datasets GSe27020 and GSe25727 
were downloaded from the Geo database (https://www.ncbi.
nlm.nih.gov/geo/) and used as validation datasets. GSe27020 
dataset was obtained using the GPl96 platform (affymetrix 
human genome u133a array; affymetrix, inc.; Thermo 
Fisher Scientific, inc., Waltham, Ma, uSa) and included 
34 recurrent and 75 non-recurrent samples. Patients included 
in this dataset exhibited primary squamous cell laryngeal 
carcinoma and underwent surgical tumor removal (19). 
The raw data of this dataset in ciMFast event language 
format were downloaded and processed with gene expres-
sion background correction and were normalized using the 
oligo package version 1.46.0 (http://www.bioconductor.
org/packages/release/bioc/html/oligo.html) in r (version 3.1.0; 
r Foundation, Vienna, austria; https://www.r project.
org/) (20). GSe25727 dataset was generated using the GPl8432 
illumina platform (illumina, inc., San diego, ca, uSa) and 
included 17 recurrent and 39 non-recurrent samples. all the 
patients were treated locally with surgery or radiotherapy, and 
none of them received chemotherapy (21). The data from this 
dataset were downloaded as text files, and the probe identifica-
tion numbers were converted into gene symbols. in the case of 
multiple probes corresponding to one gene, the average value 
was considered as the expression value of this gene using the 
limma package 3.22.1 (22).

Analysis of differentially expressed lncRNAs, mRNAs and 
miRNAs. in the training dataset, the mrnas and lncrnas 
were annotated based on the information recorded in 
the HuGo Gene nomenclature committee (http://www.
genenames.org/) database. Subsequently, the differentially 
expressed rnas, including differentially expressed mrnas 
(deGs), differentially expressed lncrnas (de-lncrs) and 
differentially expressed mirnas (de-mirs), between recur-
rent and nonrecurrent laryngeal cancer samples were analyzed 
using the edger package version 3.8.5, which adopted an 
overdispersed Poisson model and an empirical Bayesian 
approach to improve the reliability of the prediction (23). The 
thresholds for deG and de-lncr selection were based on a 
false discovery rate (Fdr; adjusted P-value) <0.05, whereas 
for de-mirs, P<0.05 was considered to indicate a statistically 
significant difference. Hierarchical cluster analysis was used 
to analyze sample similarity.

Analysis DE‑lncRs associated with recurrence. Samples in the 
training dataset were classified into recurrent and nonrecurrent 
groups. The DE‑lncRs that were significantly differentially 
expressed between recurrent and nonrecurrent samples were 
used to perform univariate cox regression analysis, which 
was used to select the lncrnas associated with recurrence. 
Kaplan-Meier analysis was performed to examine the associa-
tion between the upregulated or downregulated lncrnas, and 
recurrence and survival status.

Prediction of miRNA‑regulated lncRNAs and mRNAs. 
The regulatory interactions among mirnas and lncrnas 
were investigated using the mircode (http://www.mircode.
org/) and starBase (http://starbase.sysu.edu.cn/) databases. 
all mirna-regulated mrnas were collected from the 
mirTarBase (http://mirtarbase.mbc.nctu.edu.tw) database. 
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associations among coding genes were examined using 
BioGrid (http://thebiogrid.org/), HPrd (http://www.hprd.
org/) and diP (http://dip.doe-mbi.ucla.edu/) databases.

The identified DE‑lncRs, DEGs and DE‑miRs between 
recurrent and nonrecurrent samples were included in these 
regulatory interactions to obtain the lncrna-mirna and 
mirna-mrna regulatory networks. These two networks 
were combined to construct the cerna regulatory network, 
containing the associations among lncrnas, mirnas and 
mrnas. The cerna regulatory network was constructed to 
investigate the regulatory mechanism underlying the associa-
tions among various rnas. The network was visualized using 
cytoscape software version 3.6.1 (24).

Analysis of feature coding genes in the miRNA‑mRNA regula‑
tory network. Topological structure analysis was conducted 
to identify the feature coding genes in the mirna-mrna 
network. The betweenness centrality (Bc) of genes, corre-
sponding to the importance of a certain node, or gene, in the 
network, was calculated using the following formula (25):

Where v, s and t represent the nodes in the network, σst is the 
number of shortest paths from s to t, and σst (v) is the number 
of shortest paths from s to t, going through node v. Bc values 
exhibited a range between 0 and 1, and the Bc value was 
correlated with the importance of that node in the network. 
Therefore, the nodes exhibiting interactions with numerous 
mrnas, mirnas or lncrnas, were more important in the 
construction of the network.

The deGs in the mirna-mrna network presenting 
the 100 highest Bc values were selected as candidate 
feature-coding genes.

Construction of a support vector machine (SVM) classifier for 
various samples. The candidate genes that were significantly 
differentially expressed between recurrent and nonrecur-
rent samples were selected, and the unsupervised clustering 
classification method was used to validate the sample clas-
sification performance of these feature‑coding genes (26). The 
100 deGs exhibiting the highest Bc values were used to iden-

tify the optimal feature-coding gene set using the recursive 
feature elimination (rFe) algorithm (27). Through the itera-
tive random feature combination, classification assessment and 
determination of the performance of various samples (28), the 
optimal feature-coding gene set was obtained. Subsequently, 
the set of optimal feature-coding genes was used to construct 
an SVM classifier, which considered the expression levels of 
the feature genes within the samples as the feature value to 
classify and distinguish the samples. The recurrence status of 
the samples was predicted using the SVM classifier.

The robustness of the classifier were validated using the 
GSE27020 and GSE25727 datasets. The classification perfor-
mance was evaluated using sensitivity (Se), specificity (Sp), 
positive predictive value (PPV), negative predictive value 
(nPV) and area under the receiver operating characteristic 
curve (auc).

Molecular function and pathway enrichment analysis. The 
candidate feature coding genes selected from the cerna 
network were analyzed using Gene ontology (Go) and Kyoto 
encyclopedia of Genes and Genomes (KeGG) (29) to investi-
gate the enriched molecular functions and signaling pathways 
in recurrent laryngeal cancer. Fisher's exact test (Fisher's 
noncentral hypergeometric distribution) was used to perform 
the enrichment analysis with the following formula (30):

Where ‘n’ is the total number of genes, ‘M’ is the number of 
genes in the enriched pathway, ‘K’ is the number of deGs, 
and ‘p’ is the probability that at least one deG belongs to the 
functional pathway. Multiple hypothesis testing correction was 
used to identify the categories of Go molecular functions and 
KeGG pathways.

Results

Screening of DE‑lncRs, DEGs and DE‑miRs. using the 
aforementioned methods for the analysis of the rna-seq data 

Figure 1. Heat map of de-lncrnas, deGs and de-mirnas in recurrent and nonrecurrent laryngeal cancer samples. Heat map corresponding to 
(a) de-lncrnas, (B) deGs and (c) de-mirnas. Yellow represents recurrent samples and blue represents nonrecurrent samples. red indicates upregulated 
genes and green indicates downregulated genes. de, differentially expressed; lncrnas, long noncoding rnas; deGs, differentially expressed coding genes; 
mirnas, micrornas.
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from the TcGa database, 853 lncrnas, 18,924 mrnas and 
1,047 human miRNAs were identified. A total of 21 DE‑lncRs 
and 507 DEGs were identified between recurrent and nonre-
current samples (Fdr<0.05). in addition, 55 de-mirs were 
identified (P<0.05). The results of the heat maps constructed 
for deGs, de-lncrs and de-mirs suggested that the differen-
tially expressed rnas clustered according to the two sample 
types (Fig. 1). Numerous DEGs (507) were identified between 
recurrent and nonrecurrent samples.

DE‑lncRs associated with recurrence. Following the selec-
tion of de-lncrs between recurrent and nonrecurrent 
samples, univariate cox regression analysis was performed 
to identify the lncrnas associated with recurrence. in 
total, five de-lncrs, including testis-specific transcript, 
Y-linked 15 (TTTY15), eMX2 opposite strand/antisense rna 
(eMX2oS), family with sequence similarity 138 member F, 
human leukocyte antigen complex group 4 (HcG4) and HoX 
transcript Antisense RNA (HOTAIR), were identified to be 
significantly associated with recurrence‑free survival time and 
survival ratio (P<0.05). Survival analysis was conducted and 
the Kaplan-Meier survival curves (Fig. 2) suggested that the 
increased expression levels of the five DE‑lncRs were associ-
ated with poor prognosis.

lncRNA‑miRNA, miRNA‑mRNA and mRNA‑mRNA regulatory 
networks. By investigating the mircode and starBase data-
bases, a total of 268 lncrna-mirna regulatory interactions 
were screened. among these 268 interactions, 14 interac-
tions were present among de-mirs and de-lncrnas. This 
lncrna-mirna regulatory network comprised four de-lncrs 
associated with recurrence and seven de-mirs (Fig. 3).

according to the information in the mirTarBase database, 
the deGs regulated by the seven de-mirs were investi-

gated. a total of 55, 59, 34, 7, 17, 69 and 0 interacting deGs 
were reported for hsa-mir-1, hsa-mir-124, hsa-mir-133a, 
hsa-mir-184, hsa-mir-208a, hsa-mir-33b and hsa-mir-499, 
respectively. Therefore, an mirna-mrna regulatory network 
was established comprising six mirnas and 193 mrnas 
(Fig. 4). additionally to the deGs, 22 coding genes exhibiting 
interactions with at least five deGs were included in the 
network, as determined using the BioGrid, HPrd and diP 
databases.

Feature coding gene identification. The 100 coding genes, 
including 86 deGs and 14 deG-associated genes, exhibiting 
the highest Bc values in the mirna-mrna network were 
examined. The 86 deGs were used to perform clustering 

Figure 2. KM survival curves for five differentially expressed lncRNAs associated with laryngeal cancer recurrence. Blue curves represent samples with 
downregulated lncrnas, and red curves represent samples with upregulated lncrnas. KM curves corresponding to (a) HcG4, (B) eMX2oS, (c) FaM138F, 
(d) HoTair and (e) TTTY15. KM, Kaplan-Meier; HcG4, Hla complex group 4; eMX2oS, eMX2 opposite strand/antisense rna; FaM138F, family with 
sequence similarity 138 member F; HOTAIR, HOX transcript antisense RNA; TTTY15, testis‑specific transcript, Y‑linked 15; lncRNA, long noncoding RNA.

Figure 3. regulatory network of differentially expressed mir-lncrna. 
diamonds represent mirs and squares represent lncrnas. Green represents 
downregulated genes and pink represents upregulated genes. HcG4, Hla 
complex group 4; HoTair, HoX transcript antisense rna; TTTY15, 
testis‑specific transcript, Y‑linked 15; lncRNA, long noncoding RNA; miR, 
microrna.
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analysis, and the results suggested that the deGs clustered 
according to the two types of samples (Fig. 5). Similar results 
were identified when all the DEGs were considered for the 
clustering analysis (Fig. 2). The present results suggested that 
the 86 deGs may be used as feature-coding genes for sample 
grouping.

SVM classifier. The RFE algorithm was used to refine the 
list of feature-coding genes, and 32 optimal feature-coding 
genes exhibiting the highest predictive accuracy (94.05%) 
for sample grouping were selected. The 32 coding genes are 
presented in Table I. The SVM classifier constructed using 
the 32 feature-coding genes presented high accuracy (94.05%, 
79/84) in separating the recurrent samples from the nonrecur-
rent samples.

By examining the two validation datasets, the SVM 
classifier was able to distinguish 101 samples (30 recur-
rent and 71 non-recurrent) and 51 samples (16 recurrent and 
35 non-recurrent) from the GSe27020 and GSe25727 datasets 
(Fig. 6) with an accuracy of 92.66 and 91.07%, respectively. 
The scatter plot of sample classifications is presented in Fig. 7. 
The five indicators (Se, Sp, PPV, NPV and AUC) presented 
high scores (Table ii). auc exhibited the highest score among 
the five indicators (Fig. 8). The present results suggested that 
the SVM classifier exhibited high accuracy and reliability in 
grouping samples from various datasets.

Molecular function and pathway enrichment analysis. The 
cerna regulatory network comprised 203 nodes and 346 lines 
and was constructed by combining the lncrna-mirna regu-
latory network and the mirna-mrna regulatory network 
(Fig. 9). in the network, a node indicated a transcript (mrna, 
mirna or lncrna), whereas a line indicated the association 
between two nodes. The coding genes in the cerna network 
were significantly enriched in 11 pathway categories, including 
‘neuroactive ligand-receptor interaction’, ‘salivary secretion’ 
and ‘tight junction’ (Table iii), and 16 molecular function cate-
gories, including ‘muscle contraction’, ‘muscle system process’ 
and ‘blood circulation’ (Table iV). The multiple hypotheses 
testing correction results for the Go molecular function and 
KEGG pathway categories were not statistically significant 
(data not shown).

ceRNA regulatory network of 32 optimal feature‑coding 
genes. The cerna regulatory network corresponding to the 
32 optimal feature coding genes was established and consisted 
of six de-mirs, four de-lncrs and 32 feature-coding genes 
(Fig. 10). in the cerna network, the interactions between 
HcG4-mir-33b, HoTair-mir-1-MaGe family member a2 
(MaGea2), eMX2oS-mir-124-calcitonin related polypep-
tide α (calca) and eMX2oS-mir-124-γ-aminobutyric 
acid type a receptor γ2 subunit (GaBrG2) exhibited the 
highest scores. The Kaplan-Meier survival curves of these 

Figure 4. mirna-mrna regulatory network corresponding to genes differentially expressed between recurrent and nonrecurrent samples. circles represent 
mrnas and diamonds represent mirnas. Green represents downregulated genes, pink represents upregulated genes, and white circles represent genes 
associated with at least five miRNA‑interacting genes.

Figure 5. Heat map of 86 feature coding genes identified by the between-
ness centrality values in the microrna-mrna network. Yellow represents 
recurrent samples and blue represents nonrecurrent samples. red indicates 
upregulated genes and green indicates downregulated genes.
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Table I. Basic information of 32 optimal feature‑coding genes, among the genes significantly differentially expressed between 
recurrent and nonrecurrent cancer samples.

Gene symbol Betweenness centrality number of interactions P-value log2 fold-change

SHiSa6 0.240 4 0.028  0.544
MaGea2 0.215 5 0.047 -0.394
Trdn 0.156 6 0.002  0.601
rGS7 0.149 4 0.001  1.331
cPne4 0.142 4 0.020  0.657
calca 0.111 3 0.004  1.214
GaBrG2 0.101 2 0.035  0.599
Tecrl 0.083 3 0.043  0.846
MYlK2 0.073 3 0.005  0.543
MYo3a 0.058 3 0.048  0.365
aSB10 0.057 3 0.001  1.261
WT1 0.039 4 0.015  0.712
calcB 0.038 2 0.006  0.986
oPcMl 0.038 2 0.011  0.693
KY 0.038 2 0.011  0.502
cYP3a43 0.038 2 0.027 -2.312
ePHa6 0.038 2 0.001 1.216
Slc6a20 0.038 2 0.001  0.583
ncaM2 0.036 2 0.026  0.451
FlrT3 0.033 2 0.022  0.312
TMc5 0.033 2 0.034 -0.334
aadacl3 0.033 2 0.011  0.983
anKrd1 0.026 6 0.005  0.520
cldn22 0.020 2 0.005 -1.662
FGF5 0.018 2 0.015  0.593
Scn5a 0.016 2 0.009  0.475
PTPrr 0.016 2 0.005  0.561
ldHc 0.015 2 0.000 -1.366
olFM3 0.012 2 0.036  1.283
HraSlS5 0.012 2 0.042 -0.560
SPinK6 0.010 2 0.011 -0.533
SPeSP1 0.008 2 0.004  0.499

Figure 6. Classification effect of the support vector machine classifier. Classification effect was investigated on the two validation datasets, (A) GSE27020 
and (B) GSe25727. Yellow represents recurrent samples and blue represents nonrecurrent samples. red indicates upregulated genes and green indicates 
downregulated genes.
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six de-mirs suggested a significant association between 
recurrence-free survival times and the expression levels of 
the mirnas examined, including hsa-mir-33b, hsa-mir-124, 
hsa-mir-133a and hsa-mir-208a (P<0.05; Fig. 11).

Discussion

By analyzing the rna-seq data downloaded from TcGa, 
the de-mirs, deGs and de-lncrs between recurrent and 
nonrecurrent laryngeal cancer samples were identified. Based 
on the associations identified in various databases, numerous 
networks (mirna-mrna, lncrna-mrna and cerna 
networks) were constructed to examine the potential interac-

tions among feature-coding genes, mirnas and lncrnas. 
The aim of the present study was to identify the regulatory 
mechanisms underlying the recurrence of laryngeal cancer. in 
the cerna network, the interactions between HcG4-mir-33b, 
HoTair-mir-1- MaGea2, eMX2oS-mir-124- calca and 
eMX2oS-mir-124-GaBrG2 exhibited the highest scores. 
according to the Bc values in the mirna-mrna network 
and the rFe algorithm, 32 optimal feature-coding genes, 
including MAGEA2, CALCA and GABRG2 were identified to 
be associated with recurrent laryngeal cancer samples. Since 
the 32 feature‑coding genes were identified by analyzing the 
mirna-mrna network, all 32 coding genes were associated 
with DE‑miRs. The SVM classifier constructed using these 

Table II. Classifying parameters of the support vector machine classifier for the three datasets analyzed.

       area under
 number    Positive negative receiver operating
Dataset of samples Accuracy Sensitivity Specificity predictive value predictive value characteristic curve

TcGa   84 0.9410 0.947 0.938 0.818 0.984 0.986
GSe27020 109 0.9266 0.882 0.947 0.882 0.947 0.946
GSe25727   56 0.9107 0.941 0.897 0.8 0.972 0.921

TcGa, The cancer Genome atlas.

Figure 7. Scatter plot of samples classification using the SVM classifier. (A) Analysis of The Cancer Genome Atlas dataset. (B) GSE27020 dataset. (C) GSE25727 
dataset. Blue represents nonrecurrent samples and red represents recurrent samples. SVM, support vector machine.

Figure 8. AUC of the support vector machine classifier on sample classification. (A) Sample grouping of The Cancer Genome Atlas dataset. (B) Sample 
grouping of the GSe27020 dataset. (c) Sample grouping of the GSe25727 dataset. auc, area under the receiver operating characteristic curve.
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feature-coding genes exhibited high accuracy in grouping 
samples from the TcGa dataset (94.05%) and from the two 
validation datasets (GSe27020: 92.66%; GSe25727: 91.07%).

mir-206 serves an important role in the inhibition of tumor 
proliferation and metastasis in numerous cancer types (31-33). 
in laryngeal cancer, mir-206 may serve as a tumor suppressor 
by targeting vascular endothelial growth factor (34). mir-1, a 
homolog of miR‑206 (35), was identified as a DE‑miR in the 
present cerna network and may serve a role in the control 
of laryngeal cancer recurrence. The present bioinformatics 
analyses identified that mir-1 may be associated with the 
lncrna HoTair in laryngeal cancer. in lScc, HoTair 

is upregulated and associated with the risk of lymphatic 
metastasis, and with poor prognosis (36,37). in addition, the 
oncogenic role of HoTair may be associated with PTen 
methylation (38). To the best of the authors' knowledge, no 
previous study has investigated the regulatory association 
between mir-1 and HoTair in laryngeal cancer. However, 
mir-1 was demonstrated to be a direct downstream target of 
HoTair in thyroid cancer cells, and mir-1 inhibition may 
promote HoTair-mediated tumor progression (39). in bladder 
cancer cells, the increased expression of mir-1 is negatively 
associated with HoTair (40). in the present cerna network, 
MAGEA2 was identified to be a potential target of miR‑1. In 

Table III. Significantly enriched pathways in the competing endogenous RNA regulatory network.

KeGG pathway id KeGG pathway name Gene count P-value differentially expressed genes

hsa04530 Tight junction 5 0.001 MYH1, cldn6, MYH4, cTnna2,
    cldn10
hsa04970 Salivary secretion 4 0.001 HTn3, aTP1B4, aTP1a2, STaTH
hsa04080 neuroactive ligand-receptor 6 0.004 GaBra2, GaBrG2, PTH2r, oPrK1,
 interaction   cHrna1, GriK2
hsa04918 Thyroid hormone synthesis 3 0.007 6528, aTP1B4, aTP1a2
hsa04964 Proximal tubule bicarbonate 2 0.008 aTP1B4, aTP1a2
 reclamation
hsa04960 aldosterone-regulated sodium 2 0.020 aTP1B4, aTP1a2
 reabsorption
hsa05033 nicotine addiction 2 0.020 GaBra2, GaBrG2
hsa04973 carbohydrate digestion and absorption 2 0.025 aTP1B4, aTP1a2
hsa04670 leukocyte transendothelial migration 3 0.026 cldn6, cTnna2, cldn10
hsa04978 Mineral absorption 2 0.032 aTP1B4, aTP1a2
hsa04514 cell adhesion molecules (caMs) 3 0.041 cldn6, ncaM2, cldn10

KeGG, Kyoto encyclopedia of Genes and Genomes.

Figure 9. competing endogenous rna regulatory network of all de-mirnas, de-lncrnas and deGs. circles represent mrnas, diamonds represent 
mirnas and squares represent lncrnas. Green represents downregulated genes, pink represents upregulated genes and white circles represent genes associ-
ated with at least five miRNA‑interacting genes. miRNA, microRNA; DE, differentially expressed; lncRNA, long noncoding RNA.
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HnScc, MaGea2 is upregulated and promotes the growth 
of normal oral keratinocytes, partly via the p53 pathway (41). 
collectively, the interaction HoTair-mir-1-MaGea2 may 
serve a regulatory role in the progression of laryngeal cancer.

mir-33b belongs to the mir-33 family and regulates choles-
terol homeostasis, and lipid and glucose metabolism (42). a 
previous study observed that mir-33b may inhibit the metas-
tasis of breast cancer (43). in gastric cancer, curcumin exerts 
its inhibitory activity by upregulating the expression level of 
miR‑33b (44). In laryngeal cancer, a previous study identified 
that mir-33a may exert antiproliferative effects by targeting 
pim-1 proto-oncogene, serine/threonine kinase (45). in the 
present cerna network, mir-33b was associated with the 
lncRNA HCG4, which was identified to be a candidate gene 
in multiple sclerosis (46); however, its role in laryngeal 
cancer remains unclear. The present results suggested that 
HcG4 was a de-lncr associated with the recurrence of 
laryngeal cancer, which interacted with mir-33b. Therefore, 
these two molecular factors may be associated with and may 

serve important functional roles during the recurrence of 
laryngeal cancer.

miR‑124 has been identified to serve a role in numerous 
cancer types (47,48). Hypermethylation of mir-124 may result 
in the development of colon, breast and lung cancer (49). 
The downregulation of mir-124 expression may suppress 
nasopharyngeal carcinoma (50). Furthermore, the expression 
level of mir-124 is associated with recurrence in patients 
with lung cancer (51). in HnScc, mir-124 serves as a tumor 
suppressor gene (52) and inhibits the epithelial-restricted 
with serine box/epidermal growth factor receptor signaling 
pathway (53). In the present study, miR‑124 was identified 
to be differentially expressed between recurrent and nonre-
current laryngeal cancer samples. Therefore, mir-124 may 
serve as a tumor suppressor gene in laryngeal cancer and 
may be associated with laryngeal cancer recurrence. The 
present cerna network results suggested that eMX2oS and 
TTTY15 were two lncrnas that may interact with mir-124. 
eMX2oS was previously identified to be associated with 

Figure 10. competing endogenous rna regulatory network of de-mirnas, de-lncrnas, and 32 optimal feature coding genes. circles represent mrnas, 
diamonds represent mirnas and squares represent lncrnas. Green represents downregulated genes, pink represents upregulated genes and white circles 
represent genes associated with at least five miRNA‑interacting genes. DE, differentially expressed; miRNA, microRNA; lncRNA, long noncoding RNA.

Figure 11. KM survival curves of the differentially expressed mirs in the competing endogenous rna regulatory network constructed using 32 optimal 
feature coding genes. Blue curves represent samples with downregulated mirs and red curves represent samples with upregulated mirs. (a) hsa-mir-1. 
(B) hsa-mir-33b. (c) hsa-mir-124. (d) hsa-mir-133a. (e) hsa-mir-184. (F) hsa-mir-208a. KM, Kaplan-Meier; mir, microrna.
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brain diseases (54). in comparison with healthy controls, 
patients with myalgic encephalomyelitis/chronic fatigue 
syndrome exhibited an increase in the expression level of 
eMX2oS (55). eMX2oS is expressed in the central nervous 
system, similarly to empty spiracles homeobox 2 (54). The 
gene fusion zinc finger DHHC‑type containing 2‑TTTY15 
was identified as one of four fusion genes in a patient with 
acute myeloid leukemia, by whole genome sequencing (56). 
The fusion gene TTTY15-ubiquitin specific peptidase 9 
Y-linked (uSP9Y) exhibited high prevalence among chinese 
patients with prostate cancer, and the TTTY15-uSP9Y 
fusion is an independent predictor of prostate cancer (57). To 
the best of the authors' knowledge, no previous studies have 
reported the association between TTTY15 or eMX2oS and 
laryngeal cancer. Therefore, these lncrnas may represent 
novel biomarkers or may exhibit gene fusion in laryngeal 
cancer. in addition, mir-184 expression is upregulated in the 
majority of HnScc tumors (58). in the present study, mir-124 
and mir-184 were associated with the lncrna eMX2oS, 
suggesting a potential role eMX2oS in the regulation of 
laryngeal cancer. among the genes interacting with mir-124, 
the present study identified that CALCA and GABRG2 were 
associated with recurrent laryngeal carcinoma. a previous 
study demonstrated that methylation of calca was identi-
fied to be detected in 70% of patients with recurrent thyroid 
cancer (59). Therefore, calca and GaBrG2 may serve 
important roles in the recurrence of laryngeal cancer, and the 
regulatory mechanism underlying laryngeal cancer recurrence 
may involve the eMX2oS-mir-124-calca/GaBrG2 axis.

The SVM classifier is an effective classification method. 
The SVM classifier has been used to classify various cancer 
samples, in cancer subtypes including melanoma (60), 
metastatic breast cancer (61) and lung cancer (62). The SVM 
classifier was constructed to identify the feature‑coding genes 
that may be able to discriminate recurrent from nonrecur-
rent laryngeal cancer samples. in the present study, the SVM 
classifier comprising 32 feature coding genes exhibited high 
accuracy in sample classification. Specifically, the SVM clas-
sifier exhibited high accuracy in the two validation datasets, 
suggesting that this method was a reliable classification 
method.

although the present bioinformatics results were tested 
using validation datasets, the present study exhibited two 
limitations. Since the samples were derived from TcGa and 
Geo databases, the sample size may be limited. Furthermore, 
the present results require validation in vitro and in vivo. 
Therefore, further experiments are required to be performed 
in the future to confirm the present study. Nevertheless, the 
present results may provide useful insights for improving the 
understanding of the pathogenesis of laryngeal cancer recur-
rence.

in conclusion, an SVM classif ier composed of 
32 feature‑coding genes classified recurrent and nonrecurrent 
laryngeal cancer samples with high accuracy. mir-1, mir-33b, 
mir-124, HoTair, HcG4 and eMX2oS may represent a 
signature of noncoding rnas in recurrent laryngeal cancer. 
The interactions HcG4-mir-33b, HoTair-mir-1-MaGea2 
and eMX2oS-mir-124-calca/GaBrG2 may be important 
in the regulation of the molecular mechanisms underlying the 
development of recurrent laryngeal cancer.
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