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Abstract

There is evidence for a disturbed perception and processing of emotional information in pathological anxiety. Using a rat
model of trait anxiety generated by selective breeding, we previously revealed differences in challenge-induced neuronal
activation in fear/anxiety-related brain areas between high (HAB) and low (LAB) anxiety rats. To confirm whether findings
generalize to other species, we used the corresponding HAB/LAB mouse model and investigated c-Fos responses to
elevated open arm exposure. Moreover, for the first time we included normal anxiety mice (NAB) for comparison. The results
confirm that HAB mice show hyperanxious behavior compared to their LAB counterparts, with NAB mice displaying an
intermediate anxiety phenotype. Open arm challenge revealed altered c-Fos response in prefrontal-cortical, limbic and
hypothalamic areas in HAB mice as compared to LAB mice, and this was similar to the differences observed previously in the
HAB/LAB rat lines. In mice, however, additional differential c-Fos response was observed in subregions of the amygdala,
hypothalamus, nucleus accumbens, midbrain and pons. Most of these differences were also seen between HAB and NAB
mice, indicating that it is predominately the HAB line showing altered neuronal processing. Hypothalamic hypoactivation
detected in LAB versus NAB mice may be associated with their low-anxiety/high-novelty-seeking phenotype. The detection
of similarly disturbed activation patterns in a key set of anxiety-related brain areas in two independent models reflecting
psychopathological states of trait anxiety confirms the notion that the altered brain activation in HAB animals is indeed
characteristic of enhanced (pathological) anxiety, providing information for potential targets of therapeutic intervention.
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Introduction

Pathological fear and anxiety and its physiological expression

can be conceptualized as representing a continuum, ranging from

persistent anxiety not attributable to specific factors to exaggerated

responses to a perceived threat or a bias towards interpreting

ambiguous situations as threatening [1]. Dysfunctional excitability

in neurons of the anxiety/fear circuitry is speculated to be a

common abnormality in anxiety disorders [1]. While it is well

established that certain brain areas are involved in the perception

and processing of acute fear (for review, see [2–4]), much less is

known about the regional nature of changes in proposed anxiety

circuitries (for review, see [5]) predisposing individuals to be

hyperanxious. One approach toward obtaining a better under-

standing of these mechanisms is to use psychogenetically selected

rodent lines, developed from a common foundation population

that exhibit consistent and robust differences in the selection

criterion. Using this strategy, various rat lines have been generated

that differ in certain aspects of emotionality including anxiety,

such as the Maudsley Reactive and Nonreactive strain, Roman

high and low avoidance rat lines, Tsukuba strains, and high/low

anxiety-related behavior (HAB/LAB) rat lines (for review, see [6–

9]). To our knowledge, corresponding mouse models selectively

bred for extremes in anxiety are not available, with one exception

(see below).

In HAB/LAB rats, systematic immediate early gene expression

studies succeeded in mapping differences in neuronal activity

patterns underlying behavioral responses to a variety of aversive

situations [10–14]. So far, no such information is available in mice.

Recently, HAB and LAB mouse lines have been established by

selective and bidirectional breeding for high (HAB) and low (LAB)

anxiety-related behavior measured on the elevated plus-maze

(EPM)[15,16]. Compared to LAB mice, HAB mice were more

anxious and showed increased risk assessment behavior in a

number of tests, including the EPM test, open-arm exposure test,

light/dark avoidance test and ultrasound vocalization test.

Moreover, unselected CD1 ‘‘normal’’ anxiety-related behavior

(NAB; for definition, see Material and Methods) mice, as well as

HAB/LAB F1 intercrosses, displayed intermediate behavioral

scores in most of the tasks performed [16].

In the present study, we aimed for the first time to investigate in

mice whether genetically determined differences in anxiety-related

behavior as well as risk assessment would be reflected by

differential stress-induced c-Fos expression as a reliable marker

of neuronal activation in key brain areas of anxiety circuitries

previously described in rats (for review, see [14]).
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Placement of HAB, NAB and LAB mice on an open arm (OA)

of the EPM was chosen as a mild anxiety-based stressor. The

investigation of c-Fos in NAB mice provides an additional

advantage, as the intermediate phenotype of these animals may

act as a reference of changes in brain activity, suitable to

determine whether HAB or LAB mice reveal neuronal alterations.

By confirming similarly affected neuronal populations in an

additional model of a different species, the general significance of

the previous findings would be strengthened, suggesting the

difference in trait anxiety presumably being the cause. At the same

time, this cross-species replication would provide further informa-

tion as to possible effects of genetic drift, giving rise to genetic

differences that are unrelated to the selected phenotype.

Differences in c-Fos activation, in other words, could reflect both

the selection pressure and drift-related phenomena.

Materials and Methods

Animals
Ethics statement. The study described here was designed to

minimize animal suffering and number of animals used, and was

approved by the local Ethical Committees on Animal Care and Use.

All animals tested were bred in the animal facilities of the Max

Plank Institute of Psychiatry in Munich (Germany) as described

previously [16]. Briefly, .250 animals from .25 litters of outbred

Swiss CD1 mice purchased from Charles River were used as a

starting point for selective and bidirectional breeding for anxiety-

related behavior on the EPM at the age of seven weeks, with at

least six families routinely maintained within each selected line.

Males and females that spent either the least or most time on the

open arms of the EPM were mated to establish the HAB and LAB

mouse lines. This intra-line approach was chosen to make sure

that the HAB/LAB lines show a maximum divergence in the

selected trait, while maintaining a high degree of similarity in non-

selected traits. All experiments in the present study were carried

out on inbred adult male HAB (n = 14), LAB (n = 13) and NAB

(n = 13) mice (22–25g body weight; 13–14 weeks of age). The

animals were routinely tested at an age of 7 weeks in Munich with

HAB and LAB mice spending less than 10% and more than 50%

of their time, respectively, on the open arms of the EPM. This was

also the selection criterion. NAB mice are bred for ‘‘normal’’ (i.e.

intermediate) anxiety-related behavior. They were selected from a

group of CD1 mice maintained in the laboratory while HAB and

LAB lines were being selected. As .80% of CD1 mice spent

between 25% and 35% of their time on the open arms of the

EPM, this range was chosen for the selection of NAB mice without

any overlapping either with HAB or with LAB animals. While

CD1 mice in the parental generation were used as NAB controls

by Krömer et al. [16] and Kessler et al. [15], we then decided to

start inbreeding them in parallel with HAB and LAB mice to

further reduce variables that are unrelated to anxiety, such as

slight differences in body weight between outbred vs. inbred

animals. In the present study, HAB and LAB mice of generations

18–22 and NAB mice of generations 1–3 were used. Importantly,

in a wide variety of tests and parameters, the intermediate scores of

(bred) NAB, (purchased) CD1, and HAB/LAB F1 controls were

found to be similar if not identical ([16]; unpublished results). We

generated six independent families within the HAB, LAB and

NAB lines using a within-family selection design.

In Innsbruck, HAB, NAB and LAB animals were housed under

standard laboratory conditions (12:12 h light/dark cycle with

lights on at 7:00; 21uC; 50% humidity; pelleted food; and water ad

libitum) for 6 weeks in groups of 3–4 litter mates per cage. At least

24 h before the experiment, animals were taken in their home

cages to the experimental rooms for habituation. The behavioral

test was carried out during the light phase of the cycle (between

8:30 and 12:30 a.m.).

OA exposure
Mice (HAB: n = 9, LAB: n = 8, NAB: n = 8) were placed in the

middle of the OA (5065 cm) of an EPM (facing the proximal

compartment). The maze was elevated 73 cm above the floor and

illuminated by a light intensity of 100 lux. Access to the neutral zone

and the closed arms of the maze was prevented by a bar that made it

impossible for the mouse to leave the OA. The arm was thoroughly

cleaned with water before the introduction of each mouse and

divided into a distal, a middle and a proximal zone. The behavior of

the mice during the 5-min testing period was analyzed by an

automatic videotracking system (Videomot 2.0, TSE, Bad Hom-

burg, Germany). In addition, the test session was videotaped for

later analysis of the head-dip behavior by an experienced observer

using the Eventlog 1.0 (EMCO Software). The behavioral

parameters scored included the number of entries into the distal

zone of the OA, the time spent in the distal zone of the OA, total

distance traveled, number of head dips below the surface of the OA,

the time spent head dipping and the latency until the first head dip.

Immediately after behavioral testing, animals were returned to their

home cages. Animals assigned to the control (basal) group (n = 5 for

all three lines) were not exposed to the OA and were taken directly

from their home cages for further analysis.

c-Fos immunohistochemistry
The maximum level of c-Fos protein can be detected between 1

and 3 h following an acute challenge, then it gradually disappears

from the cell nucleus [17–19]. Therefore, 2 h after the onset of the

OA exposure test, animals were deeply anesthetized with an

overdose of sodium pentobarbital (200 mg/kg) and transcardially

perfused with 100 ml of 0.9% saline followed by 100 mL of 4%

paraformaldehyde in 0.1 mol/L phosphate buffered solution (PBS,

pH 7.4). Mice not exposed to the test paradigm were treated

identically immediately after removal from their cages in the

experimental room. Brains were then removed and postfixed at

4uC overnight in 4% paraformaldehyde in PBS. Coronal sections

(100 mm) were cut with a Vibratome (Ted-Pella, Inc., Redding,

CA, USA) and collected in Immunobuffer. C-Fos immunoreac-

tivity was performed in three runs for i) the rostral (from Bregma

+1.94mm to +0.14mm), ii) the middle (from Bregma 20.82mm to

21.46mm) and iii) the caudal part (from Bregma 23.88mm to

25.40mm) of the mouse brain. Within a given run, sections of all

groups were processed simultaneously in order to avoid batch

effects. The sections were processed as described previously [20].

Briefly, sections were incubated for 72 h in a polyclonal rabbit

anti-c-Fos primary antibody (sc-52, Santa Cruz Biotechnology,

Santa Cruz, CA, USA) diluted (1:20000) in immunobuffer

(pH 7.4). The sections were then rinsed and placed in a

biotinylated goat anti-rabbit secondary antibody (1:200, Vector

Laboratories, Burlingame, CA, USA) for 24 h. An avidin-biotin-

horseradish peroxidase procedure (Vectastatin ABC Kit, Vector

laboratories, Burlingame, USA) with 3,39-diaminobenzidine

(DAB, Sigma, Germany) as chromogen was used to visualize c-

Fos positive cells. The incubation time with the DAB-solution was

10 min for all sections. The chromogen reaction was initiated by

the addition of the H2O2 solution (0.004%) and terminated after

7 min (colour change to brown) by adding Tris buffer (50mM).

The staining procedure generally yielded low background staining

and differential staining intensities of c-Fos positive cells. A cell was

considered as c-Fos-labeled (c-Fos positive), if the brown-black

DAB-stained nucleus was unambiguously darker than background

Brain Activation in Mice
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staining, which included all cells from low to high intensities of

staining. The lighting of the microscope was optimized for the best

visibility of c-Fos labeled cells and kept constant for all sections.

The c-Fos quantification was performed at different levels of the

brain in 59 different structures, which (amongst others) are known

to show stress-induced increase in c-Fos expression [13,21,22] .

Many of these regions have been implicated in the anxiety

circuitry (for review, see [5,23,24]). The anatomical localization of

c-Fos-positive cells was aided by use of adjacent Nissl stained

sections and the illustrations in a stereotaxic atlas [25]. The

anterior-posterior levels of sections included for detailed analysis

and associated structures are shown in Figure 1. The number of c-

Fos-positive cells was quantified bilaterally in a tissue area of

100 mm6100 mm. This was performed for the whole experiment

by one and the same well-experienced observer, who was blind to

the experimental groups. Generally, cell counting was performed

maximally for 3 h per day in the time period from 9 to 12 a.m.

Statistical Analysis
Statistical analysis using the Kolmogorov-Smirnov test and

Shapiro-Wilk test (Software: Statistica 7.1, Statsoft Inc.,USA)

revealed parametric (normal) distribution for the behavioral data

and the c-Fos data for most brain regions. Therefore, overall

statistical analysis of behavioral data was performed using the 1-

way ANOVA followed by Fischer LSD post hoc analysis. The

number of c-Fos positive cells was analysed by using the 2-way

ANOVA followed by (if there was a significant line x stress

interaction in ANOVA) Fischer LSD post hoc analysis to detect

statistically significant differences between the groups. Correlations

between the parameter distal arm entries and the number of c-Fos

cells were performed using the Spearman’s rank correlation

coefficient test. The level of significance was set at P,0.05. All

values were expressed as mean6SEM.

Results

OA behavior
ANOVA analysis revealed significant differences between the

three mouse lines for the parameters ‘‘distal time’’ (F(2,24) = 5.759,

P = 0.010), ‘‘distal entries’’ (F(2,24) = 13.880, P,0.001), ‘‘distance

traveled’’ (F(2,24) = 48.895, P,0.001), ‘‘time spent head dipping’’

(F(2,24) = 14.810, P,0.001), ‘‘number of head dips’’

(F(2,24) = 28.715, P,0.001) and ‘‘latency until first head dip’’

(F(2,24) = 6.413, P = 0.006). During OA exposure, the Fischer exact

revealed that the time spent in the distal zone and the number of

entries into the distal zone of the OA were significantly lower in

HAB than in LAB mice (see Figure 2). NAB animals displayed

intermediate anxiety-related behavior, although the difference for

the parameter ‘‘time spent head dipping’’ failed to reach statistical

significance from HAB and LAB lines (Figure 2a). Risk assessment

behavior as indicated by head dips below the surface of the OA [26]

was higher in LAB and NAB mice compared with their HAB

counterparts. In HAB animals the number of head dips and the

duration of head dipping were significantly lower, while the latency

until the first head dip was significantly higher as compared with

NAB and LAB mice. Head-dip behavior did not differ between

NAB and LAB mice (Figure 2b).

Line Differences in OA-induced c-Fos expression
An overview of the 59 brain areas in which c-Fos expression was

quantified is given in Figure 1. Mean numbers6SEM of cells

expressing c-Fos in these brain regions are shown in Table 1.

Basal c-Fos expression. In mice of the basal groups which

were not exposed to the OA, the number of cells expressing c-Fos

was low in most areas examined. Moderate numbers of c-Fos-

positive cells were, however, detected in some cortical, thalamic,

and hypothalamic areas. No differences in basal c-Fos expression

were observed among HAB, NAB and LAB mice (Table 1).

c-Fos expression after OA exposure. OA exposure induced

c-Fos expression in a variety of brain areas, with moderate to

pronounced increases in areas involved in stress responses (see

Table 1, 2-way ANOVA analysis for the factor stress), including

different cortical areas, limbic areas such as subregions of the

amygdala, the bed nucleus of the stria terminalis, areas of the

hippocampal formation, the lateral septum, the nucleus accumbens,

as well as the thalamic and hypothalamic nuclei, parts of the

periaqueductal gray (PAG) and diverse brainstem nuclei. Only in a

few areas did OA stress fail to induce a significant increase in c-Fos

expression, including in the medial orbital and granular insular

cortices, the medial and lateral globus pallidus, the caudate

putamen, the anterodorsal thalamic nucleus, the central nucleus

of the amygdala and the medial parabrachial nucleus.

2-way ANOVA analysis revealed a significant line x stress

interaction for the number of c-Fos positive cells in 18 out of 59

brain areas investigated, including the cingulate cortex, the

nucleus accumbens (core, shell), the lateral septum (ventral,

intermediate), the paraventricular hypothalamic nucleus (PVN),

the medial preoptic area, the lateral hypothalamic area, the

dorsomedial hypothalamic nucleus, the ventromedial hypotha-

lamic nucleus, the anterior hypothalamic nucleus, the medial

nucleus of the amygdala, the lateral nucleus of the amygdala, the

anterior cortical amygdala, the dentate gyrus, the caudal

periaqueductal gray (ventrolateral, dorsolateral) and the locus

coeruleus (LC). For details of statistics (F and P values) see Table 1.

In all 18 brain areas, post hoc analysis revealed a differential OA-

induced c-Fos response between HAB and LAB mice. The c-Fos

response to OA exposure was increased in HAB as compared with

LAB mice, in 16 areas, including the shell and the core region of the

nucleus accumbens, the ventral and intermediate part of the lateral

septum, the PVN, the lateral and anterior hypothalamic area, the

dorsomedial and ventromedial hypothalamic nucleus, the medial

preoptic area, the medial, lateral and anterior cortical amygdala, the

caudal PAG (ventrolateral, dorsolateral) and the LC (Figure 3,

Figure 4, Figure 5). Conversely, a lower number of c-Fos positive

cells in HAB than in LAB animals was found in 2 areas, the cingulate

cortex and the dentate gyrus of the hippocampus (Figure 4, Figure 5).

In 15 of these 18 areas a similar difference in the neuronal

activation pattern was seen, when NAB were compared with HAB

mice. The exception was the PVN, the anterior hypothalamic area

and the caudal periaqueductal gray (ventrolateral), where the

statistically significant difference in the c-Fos response was lost

when HAB were compared with NAB animals. Thus, the neuronal

activation response of NAB and LAB mice was very similar in

most of these areas, but LAB mice displayed a lower c-Fos

response compared with NABs in the PVN, the anterior

hypothalamic area and the medial preoptic area (Figure 4). In

all other brain areas, OA-induced c-Fos expression in NAB mice

did not differ from HAB or LAB mice. Since we used a number of

comparisons (59 for each brain area), it should be noted that there

is the theoretical possibility of false positive results, although the

probability of this is very low.

Correlation analysis between distal arm entries and c-Fos

expression. Correlation analysis between OA distal arm entries

and c-Fos expression after OA exposure was performed for the 18

brain areas where HAB and LAB mice showed significant

differences in c-Fos response (see above). The Spearman test

revealed significant negative correlation for the PVN, the lateral

hypothalamic area, the dorsomedial hypothalamic nucleus, the

Brain Activation in Mice
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Figure 1. Schematic diagram showing the 59 areas in which c-Fos expression was quantified. Levels are based on the atlas of Franklin
and Paxinos (1997). Squares indicate the placement of grids for counting of c-Fos positive cells. Asterisks indicate the regions in which HAB mice
showed changes in OA-induced c-Fos expression as compared to LABs. AcB, nucleus (n.) accumbens; AcBc, n. accumbens core; AcBsh, n. accumbens
shell; ACo, anterior cortical n. of the amygdala; AD, anterodorsal thalamic n.; AH, anterior hypothalamic area; Arc, arcuate hypothalamic nucleus; BlA,
basolateral n. of the amygdala; BNST, bed n. of the stria terminalis; CA1, CA1 field of the hippocampus; CA3, CA3 field of the hippocampus; CeA,
central n. of the amygdala; Cg 1, cingulate ctx (area1); Cg 2, cingulate ctx (area2); Cl, Claustrum; CPu, caudate putamen; cPAGdl, caudal dorsolateral
periaqueductal gray; cPAGdm, caudal dorsomedial periaqueductal gray; cPAGl, caudal lateral periaqueductal gray; cPAGvl, caudal ventrolateral

Brain Activation in Mice
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ventromedial hypothalamic nucleus, the anterior hypothalamic

area, the medial preoptic area, the lateral septum (ventral), the

medial nucleus of the amygdala, the lateral nucleus of the amygdala

and the LC, indicating that higher anxiety behavior (fewer distal

entries) is correlated with enhanced c-Fos response in these areas.

Along these lines, a positive correlation was found for the dentate

gyrus. None of the other brain regions correlated significantly with

the distal arm entries during OA exposure. Details of the correlation

analysis (including R and P values) are given in Table 2.

Discussion

This study demonstrates that HAB mice display clear signs of a

hyperanxious phenotype in the OA exposure test as compared to

LAB mice, while NAB animals show intermediate anxiety-related

behavior. It furthermore confirms in large part the OA-induced

brain activity pattern previously found in the corresponding HAB/

LAB rat model (see [13]). The striking new finding of the present

HAB/LAB mouse study is that this mild anxiogenic stimulus

invoked differences in neuronal activation patterns in additional

brain areas, including subregions of the amygdala, the hypothal-

amus, the nucleus accumbens, the midbrain and the pons, and

that the OA-induced neuronal activation profile in NAB mice

resembled in large part that of LAB mice. Therefore it is suggested

that it is predominantly the HAB line that shows altered processing

of mild anxiety-provoking stimuli, thus substantiating the search

for correlates of anxiety-related phenomena particularly in this line

[7].

Line differences in OA behavior
The behavioral results of the present study confirm previous

observations demonstrating that HAB mice are more anxious [16]

Figure 2. Behavioral parameters of HAB, NAB and LAB mice measured in the 5-min exposure to the OA. (a) Time spent in distal zone,
entries into distal zone, total distance traveled. (b) Head-dip behavior. Values are expressed as mean6SEM. HAB: n = 9, NAB: n = 8, LAB: n = 8; *
p,0.05, ** p,0.01.
doi:10.1371/journal.pone.0005346.g002

periaqueductal gray; DEn, Endopiriform ctx, dorsal; DG, dentate gyrus; DMH, dorsomedial hypothalamic n.; DP, dorsal peduncular nucleus; DR, dorsal
raphe n.; GI, granular insular ctx; IL, infralimbic ctx; LA, lateral n. of the amygdala; LC, locus coeruleus; LGP, lateral globus pallidus; LH, lateral
hypothalamic area; LHb, lateral habenular n.; LPB, lateral parabrachial n.; LSD, lateral septal n. (dorsal); LSI, lateral septal n. (intermediate); LSV, lateral
septal n. (ventral); M1, primary motor ctx; M2, secondary motor ctx; MeA, medial amygdala; MGP, medial globus pallidus; MO, medial orbital cortex;
MPA, medial preoptic area; MPO, medial preoptic n.; MPB, medial parabrachial n.; PE, periventricular n; Pir, piriform ctx; PLCo, posterolateral cortical n.
of the amygdala; PrL, prelimbic ctx; PV, paraventricular thalamic n.; PVA, paraventricular thalamic n. (anterior); PVN, paraventricular hypothalamic n.;
rPAGdl, rostral dorsolateral periaqueductal gray; rPAGdm, rostral dorsomedial periaqueductal gray; rPAGl, rostral lateral periaqueductal gray; RSA,
retrosplenial agranular ctx; RSG, retrosplenial granular ctx; S1J, primary somatosensory cortex, jaw region; VMH, ventromedial hypothalamic n.
doi:10.1371/journal.pone.0005346.g001
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Table 1. Overview of c-Fos expression following open arm (OA) exposure in HAB, NAB and LAB mice.

BASAL OPEN ARM 2-way ANOVA

HAB NAB LAB HAB NAB LAB (line x stress)

Brain regions (brain level)

Cortical areas

Prelimbic cortex ## 2.460.5 2.760.5 1.860.3 14.261.2 11.461.4 11.261.1 F(2,24) = 1.300, P = 0.297

Infralimbic cortex ## 1.560.7 1.260.1 1.060.4 10.261.0 9.361.6 7.761.1 F(2,24) = 1.533, P = 0.243

Cingulate cortex 1 (+1,94) ## 1.360.4 1.760.3 1.760.9 6.860.6 9.461.3 9.160.5 F(2,24) = 5.958, P = 0.010

Cingulate cortex 1 (+0,14) ## 1.560.4 2.060.8 2.060.8 17.961.6 16.662.5 19.762.1 F(2,24) = 2.314, P = 0.128

Cingulate cortex 2 ## 1.460.8 1.660.7 1.560.2 15.961.3 14.061.6 16.661.6 F(2,24) = 0.480, P = 0.626

Piriform cortex ## 3.860.8 5.860.7 5.161.5 18.261.8 14.862.8 15.861.3 F(2,24) = 1.346, P = 0.285

Primary motor cortex ## 1.760.6 2.560.7 2.860.8 6.060.8 5.861.4 7.161.0 F(2,24) = 1.478, P = 0.255

Secondary motor cortex ## 2.160.7 3.061.2 2.760.7 10:060.7 8.661.6 10.261.1 F(2,24) = 11.278, P = 0.281

Endopiriform cortex, dorsal ## 0.560.2 0.560.2 0.760.3 1.560.3 3.461.0 2.260.6 F(2,24) = 2.219, P = 0.138

Orbital cortex, medial 4.761.0 4.660.8 5.360.8 4.160.8 6.760.8 5.962.5 F(2,24) = 0.115, P = 0.892

Peduncular nucleus, dorsal ## 1.460.4 2.060.5 1.160.3 7.960.8 7.862.1 7.661.3 F(2,24) = 3.276, P = 0.061

Primary somatosensory ctx # 1.460.8 1.060.5 1.260.5 2.860.4 1.860.4 3.861.0 F(2,24) = 0.899, P = 0.424

Granular insular cortex 1.260.6 1.260.6 2.360.4 2.560.2 1.660.4 3.861.2 F(2,24) = 0.523, P = 0.602

Retrosplenial agranular cortex ## 3.660.9 4.561.6 6.162.7 27.964.8 22.462.8 22.962.5 F(2,24) = 0.749, P = 0.162

Retrosplenial granular cortex ## 1.560.7 2.260.5 1.660.5 16.962.1 15.662.6 20.261.8 F(2,24) = 1.259, P = 0.308

Basalganglia

Caudate putamen 0.260.1 0.360.1 0.260.1 0.160.1 0.460.2 0.260.1 F(2,24) = 0.043, P = 0.958

Lateral globus pallidus 0.260.1 0.260.2 0.360.1 0.660.2 0.860.3 0.860.1 F(2,24) = 0.862, P = 0.439

Medial globus pallidus 0.260.1 0.260.1 1.360.9 0.460.1 0.760.4 0.760.1 F(2,24) = 0.321, P = 0.729

Nucleus accumbens ## 0.860.3 0.760.4 0.660.3 7.760.7 6.861.4 6.160.5 F(2,24) = 3.249, P = 0.062

Nucleus accumbens, core ## 0.960.2 0.560.2 0.860.4 8.960.8 6.261.1 6.060.8 F(2,24) = 9.120, P = 0.002

Nucleus accumbens, shell ## 0.460.1 0.660.3 0.860.2 4.360.4 2.860.5 2.960.5 F(2,24) = 7.004, P = 0.006

Claustrum ## 2.060.5 2.460.5 2.560.4 11.560.8 10.162.2 9.360.7 F(2,24) = 1.821, P = 0.190

Striatal sections

Lateral septum, intermediate ## 0.860.3 0.860.2 1.461.7 12.861.3 9.162.1 9.661.2 F(2,24) = 9.221, P = 0.002

Lateral septum, ventral ## 6.560.6 7.960.4 6.361.7 17.860.7 10.061.5 10.360.9 F(2,24) = 3.565, P = 0.049

Lateral septum, dorsal # 0.560.2 1.560.5 0.460.2 3.460.6 2.660.9 4.660.7 F(2,24) = 3.311, P = 0.060

Bed n. of stria terminalis ## 1.360.4 2.060.3 2.561.0 8.161.3 6.461.4 8.161.1 F(2,24) = 3.497, P = 0.052

Thalamus

Paraventricular thalamic n. ## 9.360.9 10.260.6 8.061.5 42.663.7 35.062.8 33.862.6 F(2,24) = 0.836, P = 0.450

Lateral habenular nucleus ## 5.562.8 6.761.7 8.360.8 26.665.4 26.265.5 30.365.4 F(2,24) = 0.183, P = 0.834

Paraventricular n., anterior ## 4.560.7 5.360.6 5.360.6 11.761.3 13.361.8 10.361.2 F(2,24) = 0.071, P = 0.932

Anterodorsal thalamic nucleus 0.760.3 0.660.5 0.360.1 0.360.1 0.260.2 0.260.1 F(2,24) = 0.390, P = 0.683

Hypothalamus

Paraventricular hypothalamic n. ## 2.361.1 1.260.5 1.360.3 12.261.3 10.561.6 3.861.0 F(2,24) = 12.115, P,0.001

Periventricular hypothalamic n. ## 2.460.2 2.460.7 3.761.2 7.660.7 6.661.9 7.660.8 F(2,24) = 0.039, P = 0.962

Medial preoptic nucleus ## 2.060.4 2.460.5 3.360.5 13.961.0 12.961.8 13.162.2 F(2,24) = 1.048, P = 0.371

Medial preoptic area ## 4.760.3 5.561.0 4.560.4 16.360.7 12.160.6 8.360.6 F(2,24) = 27.728, P,0.001

Lateral hypothalamic area ## 2.060.3 2.760.3 3.660.7 11.460.8 4.960.2 4.660.5 F(2,24) = 23.446, P,0.001

Dorsomedial hypothalamic n. ## 4.861.5 3.060.7 5.161.2 22.262.4 13.960.3 12.361.6 F(2,24) = 10.068, P = 0.001

Arcuate hypothalamic nucleus ## 2.660.5 2.460.6 1.760.3 8.661.4 7.362.0 9.761.7 F(2,24) = 2.297, P = 0.129

Ventromedial hypothalamic n. ## 1.360.3 1.960.1 2.960.8 15.561.4 5.660.6 7.361.4 F(2,24) = 12.934, P,0.001

Anterior hypothalamic nucleus 6.861.0 9.762.1 6.060.6 13.260.6 10.660.5 6.860.5 F(2,24) = 4.556, P = 0.025

Amygdala

Central n. of the amygdala 2.260.3 1.560.7 2.460.8 3.460.5 2.960.6 3.560.9 F(2,24) = 0.256, P = 0.777

Medial n. of the amygdala ## 3.260.1 2.960.6 3.361.1 14.760.6 11.861.0 11.060.9 F(2,24) = 4.284, P = 0.048
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and show higher risk assessment behavior than LAB mice in the

OA exposure test. This is consistent with the observations made in

HAB and LAB rats during OA exposure [13,27]. NAB mice

essentially displayed an intermediate anxiety-like phenotype

compared with the extreme lines, although their head dip

behavior was similar to that of the LAB line.

Interestingly, in the present study we noted reduced ‘‘total

distance traveled’’ of HAB animals compared with both LAB and

NAB mice. While the distance traveled, which is rather low due to

the small size of the OA, may be considered to reflect locomotor

activity, decreased activity is also considered to be a form of

anxiety in which a ‘‘behavioral inhibition system’’ is activated [3].

Therefore, immobility (behavioral inhibition) per se is proposed to

be an indirect sign of intense anxiety/fear states in rodents. This is

also reflected by the fact that HAB animals [16] and rodents in

general showing high levels of anxiety- and depression-like

behavior display reduced general locomotor activity [28–31] and

vice versa [32,33]. Moreover, while traveling similar distances,

NAB mice also clearly differed from LAB mice in anxiety-related

parameters, further supporting the critical role of anxiety (rather

than locomotor effects) in the behavioral divergence among HAB,

NAB and LAB animals as observed in the OA exposure test.

Differential c-Fos expression in response to OA exposure
in HAB and LAB mice

The development of anxiety-related symptoms is closely related

to stress coping [14,34–38]. Stress-induced neuronal activation is

thought to delineate neuronal stress circuitries in rats and mice

[22,39–43]. Exposure to the OA of an EPM is considered as a

mild stressor inducing higher fear/anxiety than exposure to the

closed arm [44–46]. Indeed, the present study revealed that mice

stressed by OA exposure, compared to non-stressed (basal) mice,

showed enhanced c-Fos expression in widespread brain regions

related to fear/anxiety.

While the OA-induced c-Fos response in HAB compared to

LAB rats was increased in 5 out of 8 differentially modulated brain

areas (the lateral septum [ventral part], the PVN [parvocellular

part], the medial preoptic area, the anterior hypothalamic area

and the lateral hypothalamic area), attenuated c-Fos response was

found in the cingulate cortex as well as in the dentate gyrus and

the CA3 region of the hippocampus [13]. Remarkably, in the

present study we were able to confirm these findings in the

corresponding mouse model. In all but one of these regions, HAB

and LAB mice displayed the same differences in neuronal

activation after exposure to the OA. Only in the CA3 region of

BASAL OPEN ARM 2-way ANOVA

HAB NAB LAB HAB NAB LAB (line x stress)

Brain regions (brain level)

Lateral n. of the amygdala ## 0.660.1 0.960.3 0.460.2 4.960.4 3.560.3 2.960.5 F(2,24) = 5.901, P = 0.011

Basolateral n. of the amygdala ## 1.360.7 1.560.4 1.860.4 7.060.9 6.560.9 6.960.6 F(2,24) = 1.352, P = 0.284

Posterolateral cortical amy. ## 1.460.2 1.960.7 1.260.5 8.261.3 10.060.7 7.362.3 F(2,24) = 0.413, P = 0.668

Anterior cortical amygdala ## 2.560.3 3.160.7 3.060.5 9.860.6 6.460.4 6.261.0 F(2,24) = 5.800, P = 0.011

BASAL OPEN ARM 2-way ANOVA

HAB NAB LAB HAB NAB LAB (line x stress)

Brain regions

Hippocampus

Dentate gyrus ## 33.064.5 32.464.5 35.463.9 64.566.5 110.1613.6 127.6610.8 F(2,24) = 5.552, P = 0.013

CA1 field ## 27.462.8 32.363.6 31.463.4 61.568.5 58.867.7 57.068.5 F(2,24) = 0.412, P = 0.668

CA3 field ## 18.861.9 17.462.7 23.963.6 59.766.9 63.964.2 58.264.6 F(2,24) = 1.498, P = 0.250

Midbrain/pons

PAG rostral, dorsomedial ## 7.661.8 6.260.6 5.960.5 16.761.6 12.362. 14.161.6 F(2,24) = 2.048, P = 0.158

PAG rostral, dorsolateral ## 4.060.8 3.960.2 3.060.2 12.760.5 9.360.6 8.460.6 F(2,24) = 2.797, P = 0.088

PAG rostral, lateral ## 5.060.5 5.360.8 5.361.2 24.961.4 20.262.6 24.461.3 F(2,24) = 3.518, P = 0.051

PAG caudal, dorsomedial ## 1.560.4 1.860.4 2.360.4 6.460.7 6.462.1 5.460.7

PAG caudal, ventrolateral ## 5.060.4 6.760.9 4.860.4 19.360.8 16.460.8 15.661.5 F(2,24) = 3.587, P = 0.049

PAG caudal, lateral ## 2.060.3 3.161.0 3.060.7 17.961.1 14.163.8 17.661.0 F(2,24) = 2.721, P = 0.093

PAG caudal, dorsolateral ## 2.560.7 3.760.7 2.760.7 13.261.3 6.761.5 6.961.5 F(2,24) = 11.522, P = 0.001

Dorsal raphe nucleus ## 1.060.2 1.860.3 1.560.3 7.861.4 6.361.1 6.862.2 F(2,24) = 1.014, P = 0.383

Lateral parabrachial nucleus ## 2.760.9 3.861.5 4.161.3 6.661.1 5.660.9 8.861.3 F(2,24) = 1.474, P = 0.255

Medial parabrachial nucleus 1.160.4 0.660.2 1.160.2 0.460.2 0.960.3 1.160.3 F(2,24) = 0.966, P = 0.399

Locus coeruleus ## 3.260.3 3.661.1 2.460.4 15.161.2 10.360.6 9.660.4 F(2,24) = 11.983,P,0.001

Values are numbers of c-Fos positive cells/0.01 mm2. (total number of c-Fos positive cells was quantified in the CA1 and CA3 region and the dentate gyrus of the
hippocampus). 2-way ANOVA analysis results for line x stress interaction are given in the right column (brain areas showing significant interaction are shown in bold). 2-
way ANOVA analysis results for the factor stress are indicated by # P,0.05, ## P,0.01 basal versus OA stress groups; basal groups: n = 5, OA-groups: n = 8–9;
doi:10.1371/journal.pone.0005346.t001

Table 1. cont.
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the hippocampus did the mouse lines display no differences. As

extensively discussed by Salome et al. [13], disturbances in these

brain areas and associated systems may contribute to behavioral

and neuroendocrine responses typical of high trait anxiety.

The present study in mice, however, identified a number of

additional brain areas showing increased c-Fos response in HAB

versus LAB mice not seen in the rat experiment. These included

various limbic areas (subregions of the amygdala, the dorsomedial

and ventromedial hypothalamic nucleus, the nucleus accumbens

[core and shell], the lateral septum) as well as PAG subregions and

the LC. Supporting the relationship between anxiety-like behavior

and c-Fos response in particular brain areas, we were able to

demonstrate a significant correlation between distal arm entries

and c-Fos response in specific amygdaloid and hypothalamic

regions, in the lateral septum ventral, in the LC, and in the dentate

gyrus. In the rat model, line differences in c-Fos response in these

more widespread regions were observed only when stronger

challenges were used, such as social defeat, airjet, FG-7142

injection or forced swimming (for review, see [14]). Hence, the

HAB/LAB mouse model may be particularly sensitive in reflecting

phenotype-specific neuronal activation. However, another expla-

nation could be that the additional differences not common to the

two species are not related to differences in trait anxiety. Future

studies using anxiolytic drugs and additional challenges not related

to the EPM may help to clarify this issue. While the HAB/NAB/

LAB lines are of the same CD1 background, we cannot completely

rule out the possibility of a different time course in c-Fos responses

between the lines. This may represent a potential limitation of the

present study. Nevertheless this seems unlikely given that all three

lines are of the same CD1 background.

A central finding of the present study is the evidence of a

hypersensitive amygdala and a hyposensitive prefrontal cortex

(cingulate cortex) in HAB mice. These areas are homologous with

important fear-/anxiety-related regions of the human brain [47–

49], thus resembling the situation in stressor-exposed post-

traumatic stress disorder patients with poor top-down control of

the amygdala by structures such as the medial prefrontal cortex

[50,51]. In the present study, OA exposure stress enhanced c-Fos

expression in the cingulate cortex in all three lines, but the

maximum level of activation was reduced in HAB mice compared

with LAB and NAB mice. This effect was not very pronounced.

However, since cingulate cortex hypoactivation was also found in

HAB rats after exposure to various stressors (for review, see [14]),

we believe that this response might be a general feature of HAB

rats and HAB mice mediating high anxiety levels during stress

exposure. Given that the amygdala is a central relay station

Figure 3. Representative microphotographs of c-Fos immunoreactivity in the amygdala. (a) Schematic diagram, based on the atlas of
Franklin and Paxinos (1997), showing the amygdala at the level of 21.46 (Bregma). The square indicates the placement of grids for counting of c-Fos-
positive cells in the medial nucleus of the amygdala (MeA). (b) Low magnification overview of the amygdala (21.46) of a HAB mouse under basal
conditions; Scale bar = 500 mm; (c) High magnification, bright field photomicrographs of representative sections matched for comparable
rostrocaudal levels showing the distribution of c-Fos expression within the medial nucleus of the amygdala in HAB, NAB and LAB mice under basal
conditions and after OA exposure. Scale bar = 100 mm;
doi:10.1371/journal.pone.0005346.g003
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transferring fear-/anxiety-related information to other brain areas

(such as the PAG, the brain stem, and the hypothalamus) for the

processing, expression and integration of anxiety-related emotions

(e.g. [52–54]), it is likely that hyperactivation in the amygdala is

involved in the mediation of the increased anxiety-related

behavior of HAB mice. The association of fear- and anxiety-

related phenomena has recently been highlighted [55–58].

The PAG is well known to integrate limbic and emotional

inputs with a repertoire of behavioral and autonomic responses

[59–61], and the LC is also well established as being related to

anxiety disorders [34,62]; in addition, the HPA axis and

sympatoadrenal system [62–64] produce physiological and

behavioral responses to stressful stimuli (for review, see [65]).

Thus, hyperactivation of these areas as observed in HAB mice

may be a general feature of highly anxious rodents (see also [14]).

Activation patterns in NAB compared to HAB and LAB
mice

To resemble human studies, in which differences in neuronal

activity between anxiety patients and healthy subjects are assessed,

it is of relevance to include an additional group with ‘‘normal’’

anxiety in animal studies. Thus, for the first time, we here aimed

also to map immediate early gene expression in NAB mice and to

compare the c-Fos response with that in HAB and LAB mice. In

15 out of the identified 18 key brain areas showing differences in

the neuronal activation pattern between HAB and LAB animals,

Figure 4. Quantitative analysis of c-Fos immunoreactivity in HAB, NAB and LAB mice under basal conditions and after OA
exposure. Depicted are those areas (cortical, accumbal and hypothalamic areas), for which the Fischer LSD post hoc test revealed statistically
significant differences in OA-stress-induced c-Fos response in HAB, NAB and LAB mice. Each column indicates the mean6SEM number of c-Fos
positive cells in a tissue area of 0.01mm2 (total c-Fos expression was quantified in the dentate gyrus). Basal groups: n = 5, OA-exposure: HAB: n = 9,
NAB: n = 8, LAB: n = 8; *p,0.05, **p,0.01 vs HAB OA-group; # p,0.05, ## p,0.01 vs corresponding basal group; + p,0.05, ++ p,0.01 vs LAB OA-
group;
doi:10.1371/journal.pone.0005346.g004
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similar differences were seen between HAB and NAB mice.

Hence, with a few exceptions (see below), the neuronal activation

responses of NAB and LAB animals were largely similar,

indicating that in particular the increased anxiety-related pheno-

type of HAB mice may be associated with altered neuronal

processing within specific brain areas.

LAB compared to NAB mice showed differential OA-induced c-

Fos responses in some hypothalamic sites, namely the PVN, the

anterior hypothalamic area and the medial preoptic area. This

activation pattern may be associated with the non-anxiety phenotype

of LAB vs NAB mice, and/or with enhanced novelty seeking of these

animals (see [66–69]). Since, however, not much information is

available concerning brain areas critically involved in extreme non-

anxiety, such a conclusion remains speculative at present.

In our intra-line approach, selection pressure was exerted on

anxiety-related behavior only, while a high degree of similarity was

maintained in non-selected traits. This, however, does not

necessarily mean that any difference detected between HAB and

LAB animals, including that in regional c-Fos expression, is

causally related to anxiety or anxiety-linked phenomena. Con-

founds include, for example, random genetic drift across time,

giving rise to genetic differences that are unrelated to the selected

phenotype. While drift-related risk cannot be entirely avoided, we

tried to reduce it by: (i) running independent families within HAB,

NAB and LAB lines [16]; (ii) replicating key findings of c-Fos

expression in both mice and rats, using similar inbreeding

protocols (this study and [13]); and (iii) showing that, in a

pharmacological validation approach, paroxetine treatment atten-

Figure 5. Quantitative analysis of c-Fos immunoreactivity in HAB, NAB and LAB mice under basal conditions and after OA
exposure. Depicted are those areas (septal, hippocampal, amygdalar and hind brain areas) for which the Fischer LSD post hoc test revealed
statistically significant differences in OA-stress-induced c-Fos response in HAB, NAB and LAB mice. Each column indicates the mean6SEM number of
c-Fos positive cells in a tissue area of 0.01mm2 (total c-Fos expression was quantified in the dentate gyrus). Basal groups: n = 5, OA-exposure: HAB:
n = 9, NAB: n = 8, LAB: n = 8; *p,0.05, **p,0.01 vs HAB OA-group; # p,0.05, ## p,0.01 vs corresponding basal group; + p,0.05, ++ p,0.01 vs LAB
OA-group;
doi:10.1371/journal.pone.0005346.g005
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uated both c-Fos expression and depression-like behaviour [11],

further confirming an association between neuronal excitability

and the behavioral phenotype beyond genetic drift. Future efforts

will focus on testing further how strongly c-Fos and anxiety-related

behavior are functionally related, including short-term selection

and F2 panel associations. Only convergent information from

multiple approaches will give rise to a more objective assessment of

drift-related compared to other risks.

In conclusion, the data presented here demonstrate that

differential c-Fos responses to an unpleasant emotional challenge

are found in specific limbic, cortical, hypothalamic and hindbrain

areas of HAB vs LAB mice. Remarkably, the key areas

differentially activated after OA exposure in the HAB vs. LAB

rat lines [13] could be confirmed in this corresponding mouse

model, supporting the notion that the altered brain activation

pattern in HAB animals may be a generalized feature, being

indeed characteristic of enhanced trait anxiety. Similar brain areas

were found to display altered activation processing also in anxiety

disorder patients (see references in [14]), underlining the

translational value of the present findings. The c-Fos response

pattern in NAB mice, which displayed intermediate behavioral

scores, was similar to that of LAB mice, both showing clear-cut

differences to that of HAB animals, suggesting that it is mainly the

HAB mouse line which may show altered neuronal activation at

least upon OA exposure. This activation pattern typical of the high

anxiety-related phenotype, however, may either indicate exagger-

ated activation of pathways mediating anxiety or represent

dysfunctional adaptive responses which normally serve to suppress

anxiety.
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