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Abstract: In this article, an unobtrusive and affordable sensor-based multimodal approach for real
time recognition of engagement in serious games (SGs) for health is presented. This approach
aims to achieve individualization in SGs that promote self-health management. The feasibility of
the proposed approach was investigated by designing and implementing an experimental process
focusing on real time recognition of engagement. Twenty-six participants were recruited and engaged
in sessions with a SG that promotes food and nutrition literacy. Data were collected during play from
a heart rate sensor, a smart chair, and in-game metrics. Perceived engagement, as an approximation to
the ground truth, was annotated continuously by participants. An additional group of six participants
were recruited for smart chair calibration purposes. The analysis was conducted in two directions,
firstly investigating associations between identified sitting postures and perceived engagement,
and secondly evaluating the predictive capacity of features extracted from the multitude of sources
towards the ground truth. The results demonstrate significant associations and predictive capacity
from all investigated sources, with a multimodal feature combination displaying superiority over
unimodal features. These results advocate for the feasibility of real time recognition of engagement
in adaptive serious games for health by using the presented approach.

Keywords: serious games; health; adaptive; procedural content generation; sensors; real time
recognition; engagement

1. Introduction

Serious games (SG) for health have been a topic of growing attention in recent years.
According to one of the most widely accepted definitions, SGs are games designed for a
primary purpose other than pure entertainment [1]. SGs can provide effective means for
addressing several health-related challenges such as the training of health professionals,
raising awareness, rehabilitation, disease monitoring and diagnosis, the promotion of
behavioral lifestyle changes, and the management of mental health [2,3]. However, despite
recent advances in the field, limited research has been conducted on tailoring persuasive
game design to specific players’ needs [4]. The reported results demonstrate differences in
receptivity of persuasive strategies in SGs for health, among multiple user types, indicating
that intuitive, one-size-fits-all design approaches are not always effective. In addition,
ambiguous results have been reported regarding the learning effectiveness of SGs, thus,
further motivating research into enhancing game adaptivity [5]. A recent review study [6]
highlights the importance of delivering personalized content in SGs and employs the term
“individualization” for this purpose. Individualization in SGs can not only enhance the
game experience, but also address specific user needs linked to the game’s serious purpose,
like task performance or knowledge acquisition.
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Lately, novel technologies are increasingly being employed to develop individualized
SGs [7]. SGs can greatly benefit from procedural content generation (PCG) techniques,
a term used to describe methodologies that generate game content either automatically
or with minimal guidance [8]. Advancements in the fields of data analysis and artificial
intelligence, along with the development of low-cost, portable, and unobtrusive sensors,
enable real-time individualization of PCG based on data collected from a multitude of
sources [9]. PCG methods can be augmented through real-time recognition and employ-
ment of engagement in a constant feedback loop that adapts game content based on the
player state [7,10]. Engagement has been argued to be an essential element of the game
experience [11], related to positive and negative affects through game activities and the
accomplishment of objectives. Different perspectives have been identified regarding the
construct and measurement of engagement according to a recent review study [12]; the
study adopts a three-part framework for engagement that includes the dimensions of
behaviour, cognition, and affect. Recognition of the affective aspect of engagement and
its employment in an “emotion-sensitive adaptive game approach” [5] can lead to height-
ened task persistence and an improved learning process. There are various sources from
which to collect informative data regarding players’ affective states during game play, such
as self-reporting (e.g., game experience questionnaires), in-game metrics, wearable sen-
sors (e.g., electrocardiogram (ECG), electroencephalogram (EEG) electromyogram (EMG),
electro-dermal activity sensors), and posture recognition sensors [12,13]. More specifically,
pressure sensors, for posture and mobility monitoring, have been employed for this reason
in learning environments [14], or during intense cognitive activity [15]. Features extracted
from heart rate sensors have been identified as potential detectors of affective states, stress,
and learning [16,17]. Data collected from sensors can be augmented by in-game metrics
and analytics that exhibit promising associations with the learner’s engagement [18,19].
Labelling engagement during high cognitive function, such as learning, is considered a
difficult task and various approaches and methods have been proposed to address it [20].
One of the main limitations reported in recent literature is the assessment of the dynamic
nature of engagement, as the most prominent annotation tools, like self-reporting engage-
ment scales, produce as little as one label for entire interaction sessions [21,22]. This is
particularly hindering for the training of ML techniques for the recognition of engagement
in real time, as transient changes in engagement are not captured.

Focusing on the health sector, the rapid advancements in sensing technologies make
feasible the implementation of patient-tailored interventions supported by properly de-
signed SGs. More specifically, sensor-based adaptive SGs, including player profiling, in
terms of health status and lifestyle habits, along with recognition of engagement in real
time, have the capacity to address important challenges in chronic disease management
such as the presence of inter- and intra-patient variability while offering low-cost services
at the point of care. Research on the recognition and employment of engagement and other
affective states to achieve individualization in SGs for health is still limited. A handful of
relevant publications have been identified, with the most common case being biofeedback
SGs for stress management. Features extracted from breathing signal and heart rate variabil-
ity (HRV) analysis have been used to predict affective states, such as stress and engagement
during game play, in a biofeedback context for stress management therapy [23,24]. The use
of ECG signal transmitted in real time to a therapist has also been reported in the context of
a virtual reality SG for emotional regulation in adolescents [25]. Moreover, a methodology
for multimodal affect recognition for SGs targeting the treatment of behavioural and mental
disorders and chronic pain rehabilitation has been presented [26]. A SG for automated
personalised exposure therapy that includes experience-driven PCG has also been pro-
posed, employing machine learning (ML) techniques to predict stress from physiological
signals [27]. Additionally, emotion recognition has been applied on speech components to
support SGs aimed towards cognitive-based treatment for mental disorders, with results
indicating the successful recognition of interest, boredom, and anger [28]. However, the
identified approaches are related to SG interventions targeting mainly mental health and
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disorders. Additionally, limited progress has been reported towards transferring recent
advancements in sensing and PCG techniques to further enhance SGs as healthcare inter-
ventions and tackle modern problems with implications in the self-health management of
chronic conditions, such as increased sedentary time [29].

Novel technologies, from the fields of ML and deep learning, utilizing data from
various sources, have been applied to enhance PCG in entertainment games [30]. For in-
stance, a recently proposed PCG framework employs intrinsically motivated reinforcement
learning that builds knowledge about the player’s preferences by searching for unexplored
information and being rewarded for discoveries [31]. Intrinsically motivated reinforcement
learning, thus, makes feasible the development of experience-driven PCG that considers
the impact of the generated content on the player’s affective state. Such frameworks can
be combined with novel techniques that procedurally generate individualized content
specific to self-health management needs and preferences [32]. The procedural generation
of SG content, built to accommodate educational and behavioural objectives regarding the
targeted condition, is thus controlled by an engagement feedback loop. These objectives
include, amongst others, knowledge about the management of the condition and daily
self-health management goals [33]. Maximizing player engagement not only promotes
the SG’s effectiveness towards these objectives, but also increases adherence to the inter-
vention, leading to sustainable improvement in self-health management. Additionally,
sensors employed for the recognition of engagement can produce clinically relevant data
or lifestyle parameters [34,35]. The integration of such data in the SG feedback loop, along
with in-game metrics, can ultimately lead to PCG that individualizes SG content according
to condition and player specific needs while promoting adherence through engagement.

The purpose of the current study is to investigate the feasibility of such frameworks
through the conduct of a carefully designed experimental process involving the interaction
of volunteers with a custom SG for the promotion of nutrition and food literacy. The
employed SG has been selected for two reasons, firstly due to its capability to serve as an
intervention in self-health management for chronic conditions, and secondly, due to its
potential to incorporate the procedural generation of SG content related to the targeted
condition. During the experiment, heterogenous data from a multitude of affordable and
unobtrusive sensors and in-game metrics have been collected to provide insight regarding
a multimodal approach in recognition of engagement. The predictive power of features
extracted from the collected data in terms of real time recognition of engagement has been
assessed through a detailed analysis. An approximation of the ground truth has been
produced through the self-annotation of perceived engagement in a continuous manner
by leveraging a state-of-the-art tool designed for affective recognition in video games.
By generating annotation traces of perceived engagement during actual gameplay, the
present study introduces an effective combination amongst the investigated data sources
towards real-time recognition of engagement. Through the employment of a suitable SG
as a case study, the proposed approach investigates the potential of PCG in adaptive SG
interventions for chronic health conditions.

2. Materials and Methods

The setup of the experimental process is presented in Figure 1. It includes three
interconnected spaces enabling the necessary data acquisition and analysis. In-game
metrics are gathered through the player’s interaction with the SG while annotation traces,
to be considered as the ground-truth level of engagement as perceived by the player
during game play, are generated through an annotation tool. Sensing data are collected
by means of: (i) pressure sensors placed on a chair for identifying postures and mobility,
and (ii) a heart rate sensor providing the heart rate (beats per minute) and inter-beat
intervals. Two microcontrollers are employed for the acquisition of sensor data. The
collected heterogeneous data feed the data analysis space in order for the latter to apply
thorough statistical analysis, investigating the potential of sensor and in-game metrics
data towards real-time engagement recognition. A summary of the investigated features
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is presented in Figure 1, while the data flow and the adopted approach is described in
Figure 2. Each space is explained in detail in the following sections.

Figure 1. Setup of the experimental process and summary of extracted features.

Figure 2. Flowchart for data analysis. (Features and ground truth explained in Figure 1).

2.1. User Interaction Space
2.1.1. Serious Game

“Express Cooking Train” (ECT) [36] is a SG which has been developed with GameMaker
Studio 1 [37] for Microsoft Windows and has been employed as a case study for the
experimental process. ECT employs ontology modelling to create a gamified virtual
kitchen environment and provides a safe trial and error simulation environment to support
its educational goals towards healthier cooking practices and eating habits. Ontology
modelling facilitates the incorporation of PCG techniques that control SG content. The SG
is built on a theoretical conceptual framework that incorporates various game mechanics
and reward systems [36], with the goal of empowering and supporting sustainable healthy
lifestyle changes.

Preliminary studies have proved ECT to be equally effective as a traditional educa-
tional intervention, while achieving high levels of user acceptance [38]. The game is played
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in missions, with the player taking control of a train trying to reach the next destination.
ECT is set in a post-apocalyptic setting and during these short trips, huge monsters chase
the train. The player must cook healthy meals in the kitchen wagon and launch them with
a catapult towards the monsters to satisfy their appetite and reach the next train station
safely. Adding to the game difficulty, the train inventory contains mostly junk food recipes,
forcing the player to explore ways of including healthier ingredients and applying better
meal preparation techniques, as the monsters grow angry if junk food is thrown their way.

During the experimental process, a version of ECT that contains three game missions
is deployed. Mission-1 includes a tutorial phase (Figure 3a), a gameplay phase (Figure 3b),
and a review phase (Figure 3c). During the tutorial phase, players are given instructions
about the game interface and mechanics, as they are introduced to the game world and
objectives. Interaction during the tutorial is quite minimal as players are presented with
explanatory text boxes and experiment with game functionalities under guidance. As the
tutorial ends, a hungry monster appears and chases the train, signifying the beginning
of the gameplay phase. During this phase, players apply knowledge acquired in the
tutorial to prepare healthy meals for the chasing monster and avoid it until the train
reaches its destination. Finally, the review phase launches with a small cinematic of the
train escaping the monster in the case of a successful mission, or the monster catching
up with the train in the case of defeat. Following the cinematic, a review screen appears,
containing game statistics, nutritional facts for the recipes used, new discoveries, and
unlocked achievements. After Mission-1 is complete, players can continue playing for a
maximum of two additional missions. The additional missions feature small train trips and
thus include shorter gameplay and review phases.

Figure 3. Screenshots from the three phases of Mission-1: (a) Tutorial; (b) Gameplay; (c) Review.

During playthroughs, the SG monitors in-game metrics, including the number of
mouse clicks, mouse click duration, and mouse idleness. Additionally, game score, mission
progress and in-game decisions, cooking simulation parameters, and game events are
collected. Preliminary analysis of mouse-related user interaction data has been presented
in [38], with findings indicating that participants with high and low interaction, as in-
dicated by average clicks per second, have scored significantly higher in positive game
experience scales of the game experience questionnaire, in comparison to participants
with intermediate levels of interaction. In the present study, two features based on mouse
interaction have been extracted, namely average clicks per second (µMc) and average
mouse movement (µMm), as they have been reported to provide measures of cognitive
function and engagement [13]. Mouse movement measures the cursor distance travelled
per second, in pixels.

2.1.2. Annotation of Engagement

To capture dynamic changes in engagement in real time during play, an annotation tool
was employed for the approximation of the ground truth regarding player engagement. The
tool (Figure 4a), created with GameMaker Studio, is based on the design of RankTrace [39]
that allows for continuous and unbounded annotation of affect while the player is being
presented with screen recordings of playthroughs. Through this approach, players generate
a continuous annotation trace of perceived engagement immediately after their playthrough.
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Annotation values were produced through the mouse wheel, with one annotation sample
being collected per second. Sampling frequency was selected to facilitate the harmonization
of the heterogeneous data sources, since annotation traces were used as a reference along
with playthrough recordings. An example of an annotated trace is shown in Figure 4b.
Annotation data were normalized in the range [0, 1] using the minimum and maximum
values of each individual annotation trace. From each observation frame generated, four
statistical features [39] were extracted: the mean annotation value (µA); the area of the
annotation trace (

∫
A), calculated by the composite trapezoidal integral and normalized by

duration; the amplitude
(

Â
)
, calculated by the difference between maximum and minimum

value; and the average gradient of the annotation trace (∆A).

Figure 4. (a) The interface of the annotation tool along with the playthrough recording as shown in
an annotation session; (b) Example of an annotation trace of perceived engagement.

2.2. Sensing Space

Sensor measurements were acquired through two Arduino Mega 2560 R3 [40] mi-
crocontrollers, one for the pressure sensors (Figure 5b) and one for the heart rate sensor,
following the setup used in [41]. The microcontrollers transferred data to a desktop com-
puter through a USB interface. PC port control was provided by the Python 3.6.5. The
user interface to control the sensors was also developed in Python. A case was crafted and
affixed to the back of the smart chair to hold the microcontrollers and breadboards in place
and facilitate cable management.
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2.2.1. Smart Chair

In the current study, a smart chair was employed to identify sitting postures and mon-
itor their variations. A set of pressure sensors, FSR101 Shuntmode from Sensitronics [42],
were placed on the seat and back of an office chair to measure pressure exerted by body
weight during playthroughs of the SG on a desktop computer. The sensors were strapped
on the chair, along with the cables linked to them. Afterwards, two cloth covers were
fastened on the chair, one on the seat and one on the back, to secure sensor placement
while reducing the risk of bias by making sure that sensors’ location is not visible to the
participants. Measurements were recorded from all sensors, with no load on the chair, to
ensure that pressure from the tape or cloth cover did not affect sensor output. Eight sensors
were placed to monitor pressure distribution on the seat of the chair (four under each thigh),
while four sensors were placed on the back of the chair (two sensors on each side) to detect
sitting back postures. Sensor arrangement along with the employed smart office chair are
shown in Figure 5a.

Data collected from the smart chair were used to identify sitting postures during
playthroughs based on a sensor activation methodology [15]. Postures were identified
by detecting different sensor activation patterns and matching them to predefined sitting
positions. A sensor placed on the smart chair was considered active when its output value
exceeded a certain threshold. A set of six sitting postures (Table 1) were identified during
the experimental process. Participants were observed to assume mainly upright postures,
always activating most of the four front seat sensors due to the placement of monitor,
mouse, and keyboard on the office desk. Additionally, no postures including leg crossing
were observed during playthroughs. The data collected supported these observations, with
sensors situated in the middle of the seat always being active. Based on these observations
and preliminary analysis, data acquired from sensors 1, 2, 5, and 6 (Figure 5a, Table 1) were
excluded from posture identification and the activation patterns shown in Table 1 were
selected. Postures P1 and P4–P6 included activated sensors on the back of the chair, whereas
postures P2 and P3 did not. Two features were extracted from the observation frames.
First, the total number of posture transitions (µT), normalized by duration was extracted to
acquire a macroscopic measure of participant mobility [15]. Secondly, a feature of relative
change (∆T), calculated as the average gradient in sensor output, was extracted from the
sensors included in posture detection, to provide insight regarding mobility observed in
pressure distribution [14].

Table 1. Set of sitting postures and their activation patterns.

Posture Description Activated Sensors Sensor Location on Chair

P1 Upright position with backrest (3 or 7) and (4 or 8) and (a or d) and
(b or c)
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The sensor activation threshold constitutes a vital component for the reliable identifi-
cation of sitting postures. In this study, a separate small-scale experiment was conducted
to estimate a general activation threshold. A group of six individuals within the healthy
BMI range (BMI: 18.5–25) were recruited, yet these participants were excluded from the
main experimental process to reduce the risk of bias. After an initial visual presentation of
postures P1–P6, participants were told to test them, while sitting on the smart chair, with no
time limit. Consequently, these postures were displayed through an application developed
in GameMaker Studio, for 10 s each in random order, until all possible posture transitions
had been presented. Participants were instructed to assume postures as they appeared on
the screen.

To determine the appropriate threshold, a wide range of sensor output values
(1–300 mV) were considered to identify sitting postures. The obtained average accuracy
across all participants for all activation thresholds is depicted in Figure 6. The maximum
average accuracy (0.96) was achieved for activation threshold values ranging from 86 mV
to 93 mV. Multiple ANOVA single factor tests were applied on batches of 50 consequent
activation threshold values, to investigate statistically significant differences in mean accu-
racy values across participants with respect to different threshold values. No significant
differences were observed for activation threshold values higher than 30 mV (p > 0.05).
Consequently, the general activation threshold selected for sitting posture identification
was 90 mV.

Figure 6. Accuracy results towards the determination of sensor activation threshold for posture
identification.

2.2.2. Heart Rate Sensor

The heart rate sensor employed within the frame of this study is the PulseSensor from
World Famous Electronics LLC (New York, NY, USA) [43]. PulseSensor is an affordable
and non-obtrusive sensor that can be placed around the finger, or on the ear lobe. For this
study, the sensor was placed on the ear lobe to avoid obstruction during game play. The
sensor detects pulses through a light-emitting diode generating a photoplethysmography
(PPG). Inter beat intervals (ms) along with beats per minute were obtained in real time from
PPG. Data from the PulseSensor were collected at a rate of approximately 25 Hz. Inter-beat
intervals were isolated and ranked in time order. The intervals were then preprocessed
for the removal of ectopic beats and outliers in Python 3.6.5. From the resulting values,
two features were extracted: the amplitude of heart beats per minute (Ĥ), measured as the
difference between maximum and minimum heart rate value, and the standard deviation
(σH) of inter-beat intervals [44].

2.3. Participants and Experimental Protocol

A total of 26 participants, 19 male and 7 female, aged 26.2± 4.6, mostly undergraduate
and postgraduate students at the National Technical University of Athens (NTUA), were
recruited. No participant had any apparent mobility or visual impairment and most
participants had normal BMI scores (BMI score: 18.5–25), except for two slightly overweight
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(BMI score: 25–27), and two slightly obese (BMI score: 30–35). As ECT is in English, all
participants reported a good understanding of the English language.

Upon arrival, participants were given a brief description of the experimental process,
the aim of the study and the potential outcomes, while being encouraged to engage in
conversation about possible concerns. Subsequently, they were provided with consent
forms that included a detailed description of the experimental process. All participants
provided written informed consent and the study was approved by the Ethics Committee
of NTUA. Upon providing their consent, the participants sat on the smart chair in front of a
desktop computer and were asked to assume a comfortable position. The heart rate sensor
was then placed on the ear lobe of their choice, and they were asked to perform exploratory
movements while seated, to confirm that the sensor is not hampering them in any way.
After setup was completed and participants felt comfortable, they were instructed to fill out
some digital questionnaires including information about demographics and their exposure
to gaming and cooking habits [38]. Participants were then instructed to start Mission-1 at
their leisure while being given the option to play the two additional game missions. Once
the playthrough session was completed, the participants were given instructions on how
to use the annotation tool. After a short time in which to familiarize themselves with the
mouse wheel control, participants annotated their perceived engagement on the video
playback of their game session and concluded their participation.

Mission-1 was played by all participants, while Mission-2 and Mission-3 were played
by 14 and 3 participants, respectively.

2.4. Data Analysis Space
2.4.1. Data Preparation

Data harmonization was conducted to ensure the synchronization of heterogeneous
data collected from different sources during the experimental procedure. The considered
data sampling rate for in-game metrics and pressure sensing data was 1 Hz. Annotation
traces and recordings of playthroughs were employed as synchronization reference. A
moving average filter with a cutoff frequency of 1 Hz was applied on the signals obtained
from the pressure sensors for noise removal and synchronization. Data from the heart
sensor were preprocessed and synchronized as described in Section 2.2.2.

Different types of observation frames (continuous and reactive) were considered [39]
to link the ground truth, investigated features, and identified postures with different types
of gameplay and specific game mechanics, as depicted in Figure 7. Initially, continuous,
and non-overlapping observation frames, representing different game phases (Tutorial,
Gameplay, Review, Mission-2, Mission-3) were generated. The average duration of all
game phases for all participants is presented in Figure 7. Due to the limited number of
participants advancing to the Mission-3, the frames corresponding to this mission were
omitted from the analysis. Game phases correspond to the different types of gameplay,
with engagement levels expected to vary according to user preferences. The Tutorial
phase is a linear and educational phase, with rich text content and minimal interaction
(Figure 3a). The Gameplay phase requires a higher degree of game interaction and provides
an exploration experience, with the player being free to experiment with ingredients
and cooking tools while switching between train wagons (Figure 3b). Furthermore, the
Gameplay phase includes the danger imposed by the chasing monster and the possibility
of defeat. The Review phase contains a lot of information yet allows the player to survey
it freely (Figure 3c). Additionally, the Review phase features the element of reward in
the form of score points, discoveries, and achievements unlocked. The Mission-2 phase
provides a similar gameplay experience to the one provided by the Gameplay phase.



Sensors 2022, 22, 2472 10 of 19

Figure 7. Continuous and reactive frames.

Reactive observation frames were specified as those triggered by in-game events tied
to specific game mechanics. These events include a visual alarm indicating danger and
triggered by close monster proximity to the train, and monster-related player interaction
such as launching a meal to the monster with the catapult or clicking on the monster.
These events were selected to point towards game moments that favor changes in player
engagement. The nature of these events is memorable, aiming to produce more accurate
annotation traces of perceived engagement around them. Furthermore, the manifestation
of these events is not scripted and is based on the player’s actions and performance; hence
players cannot expect or plan them, thus reducing the risk of bias. Each event generates
two reactive observation frames, prior to and after the event. A total of 89 in-game events
were produced during the participants’ playthroughs. Reactive frames of different duration,
10 s and 30 s, were investigated in accordance with current practice for ultra-short analysis
of heart rate variability [45,46].

2.4.2. Statistical Data Analysis

Features were extracted from all data sources and sitting postures were identified
for all observation frames across participants. The feasibility of real time recognition of
engagement during play was investigated in two parts. The first part relied on statistical
analysis of sitting postures and features of perceived engagement as extracted from annota-
tion trace. Contingency tables were generated for each observation frame, continuous and
reactive, to perform transition analysis [15]. The element (Px, Py) of the contingency table
represents the number of times a transition was identified from posture Px to posture Py.
Distributions of identified postures were extracted from the contingency tables for each
observation frame. Wilcoxon signed-rank tests were employed to search for statistically
significant differences between observation frames in terms of identified postures and
perceived engagement. Additionally, whisker boxplots were created from the annotation
features to accurately present trends in perceived engagement.

The second part of the analysis evaluates the predictive capability of features extracted
from sensors and in-game metrics, based on relative changes observed between adjacent
observation frames, towards perceived engagement. To this end, an analysis based on cor-
relation coefficients [39,47] was conducted for continuous observation frames and reactive
observation frames, separately. More specifically, a correlation coefficient,

ci−j(z) = ∑N
k=1

{
zk,i,j/N

}
, with i ∈

[
µA,

∫
A, Â, ∆A], j ∈[µMc, µMm, µT, ∆T, Ĥ, σH

]
(1)

was calculated for every possible combination of pairs between annotation features (i), and
sensor and in-game metrics features (j). For each participant, the observation frames were
ranked in order of time, with N representing the total number of adjacent frames across all
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participants. By measuring agreement in relative change in features i and j between the
k-th pair of adjacent frames, zi,j

k was calculated as,

zi,j
k = +1, i f relative change of i and j match

zi,j
k = −1, i f relative change of i and j does not match

(2)

If clear relative change in any of the examined features was not present, the corre-
sponding zi,j

k was not included in the calculation of ci−j(z). The average number of pairwise
comparisons (N) of all investigated feature pairs for all participants, per type of observation
frame, after the exclusion of pairs that did not display clear relative change, is shown in
Table 2. Relative change in the average number of posture transitions (µT) was clear in very
few comparisons (25.2 ± 13.6) and no statistically significant resulting values of ci−µT(z)
were observed. As such, ci−µT(z) values were excluded from the corresponding analysis.
The p-values of c(z) were calculated through the binomial distribution, with correlation
being highly significant for p < 1%, and significant for 1% < p < 5%.

Table 2. Number of pairwise comparisons included in different types of observation frames.

Reactive Frames (10 s) Reactive Frames (30 s) Continuous Frames

Primary features 76 ± 5.6 83.7 ± 3.7 56.4 ± 0.6

Multimodal feature 76.5 ± 1.1 82.7 ± 0.4 55.7 ± 0.4

Motivated by the superior performance that can be achieved through combining
different modalities [48], a majority voting scheme was investigated towards the generation
of a new multimodal feature (V). The choice of this particular combination scheme was
based on its approved robustness in binary cases [49]. The majority voting scheme assumes
the dominant relative change observed in all primary (sensors and in-game metrics) features.
Voting includes only clear relative changes, and in case majority voting does not produce a
clear result, the pair is excluded from the calculation (Table 2). Consequently, ci−V(z) is
calculated for all features (i) of perceived engagement.

3. Results

Results from both parts of the data analysis are presented for the investigated continu-
ous and reactive observation frames. Data collected from two participants were excluded
from both parts of the analysis for reactive observation frames, as in-game events were not
recorded properly by the SG. Additionally, data collected from two more participants were
excluded from the second part of the analysis due to movement of the heart rate sensor
during play.

The distribution of identified postures (P1–P6) for continuous observation frames,
Tutorial, Gameplay, Review, and Mission-2 is depicted in Figure 8. A statistically significant
decrease in the percentage of postures including the back of the chair was observed from
Tutorial to Gameplay (one-sided Wilcoxon: p = 0.03). Posture P3 (front sitting) was identi-
fied in very few occasions (≤0.1%) across all collected data. No other statistically significant
changes in identified postures were identified between continuous observation frames.

Contingency tables showing the percentages of postures for continuous observation
frames are presented in Figure 9a–d. The percentage of transitions is presented in Figure 9e,
with participants demonstrating the highest mobility in Gameplay. However, no statistically
significant changes were present between any pairs of observation frames.
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Figure 8. Distribution of postures identified for Tutorial, Gameplay, Review, and Mission-2.
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Figure 9. Contingency tables for continuous frames: (a) Tutorial; (b) Gameplay; (c) Review;
(d) Mission-2; and (e) Percentage of posture transitions identified in each frame.

Whisker boxplots for features extracted from the annotation traces of perceived en-
gagement are presented in Figure 10. The two-side Wilcoxon test revealed a statistically
significant (p-value < 0.01) increase of 82.75% and 79.31% from Tutorial to Gameplay in
mean value (µA) (Figure 10a) and area of the annotation trace (

∫
A) (Figure 10b), respec-

tively. A statistically significant increase, of 34.09% and 37.20%, was also present from
Review to Mission-2 for these two features, respectively. The decrease depicted for µA
and

∫
A from Gameplay to Review was not significant. Changes observed in amplitude

(Â) (Figure 10c) were not statistically important. A decrease of 76.47% and 428.79% in the
average gradient of the annotation trace (∆A) (Figure 10d), from Tutorial to Gameplay and
from Gameplay to Review, respectively, were found to be statistically significant (two-side
Wilcoxon, p < 0.01).
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The above presented analysis was also applied for reactive observation frames. The
distribution of identified postures (P1–P6), for reactive frames of 10 and 30 s, is depicted in
Figure 11. A statistically significant decrease in postures including the back of the chair
was present in 30 s frames (two-side Wilcoxon: p = 0.03). No other statistically significant
change in postures between reactive observation frames was observed.

Figure 11. Distribution of postures identified during reactive frames.

Contingency tables including the percentages of postures for reactive observation
frames are presented in Figure 12a–d. The percentage of transitions is presented in
Figure 12e, with participants demonstrating higher seated mobility in frames after in-
game events for both investigated frame durations. However, no statistically significant
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changes were identified in both cases. Whisker boxplots for features extracted from the
annotation traces of perceived engagement for reactive frames are presented in Figure 13.
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Figure 12. Contingency tables for reactive frames: (a) Frame prior to event (10 s); (b) Frame after
event (10 s); (c) Frame prior to event (30 s); (d) Frame after event (30 s); and (e) Percentage of posture
transitions identified in each frame.

A statistically significant increase of +5.6% and +5.5% was observed in µA (Figure 13a)
and

∫
A (Figure 13b), respectively (two-sided Wilcoxon: p < 0.01), for 10 s observation

reactive frames. The corresponding increases for 30 s frames were up to +10.4% and +9.5%,
respectively (two-sided Wilcoxon: p < 0.01). A significant increase in Â (Figure 13c) was
also present in 30 s observation reactive frames (two-sided Wilcoxon: p < 0.01). Changes
observed in average gradient (Figure 13d) were not found to be statistically significant.

For the second part of the analysis, the predictive capability of sensor and in-game
features (Figure 1), along with the multimodal feature V, towards features of perceived en-
gagement are presented in Table 3. The amplitude

(
Â
)

of the annotation trace presents the
most cases of statistically significant correlation with sensor and in-game metrics features,
thus highlighting its capacity to represent the hypothesized ground truth independently
of type and duration of the observation frame. In particular, a negative correlation was
observed with average mouse clicks (µMc) and variability of inter-beat intervals (∆H) for
10 s reactive frames. Additionally, significant, and highly significant positive correlations
were observed with the amplitude of heart beats per minute (Ĥ), and voting (V) for both
30 s reactive and continuous frames. Finally, a highly significant positive correlation with
mouse movement (µMm) and a significant correlation with the average gradient of pressure
sensors (∆T) were evident in 30 s reactive frames. The mean value (µA) and the area (

∫
A)

of the annotation trace were correlated significantly with V, in 10 s and 30 s reactive frames,
with both in-game metrics features in 30 s reactive frames, and ∆T in 10 s reactive frames.
The average gradient of the annotation trace (∆A) did not display significant correlations
with any sensor or in-game metrics feature.
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Table 3. Correlation of annotation features and features extracted from posture sensors, heart rate
sensor, and in-game metrics. Significant values (p < 0.05) are depicted in bold. Highly significant
values (p < 0.01) are denoted by (*).

Annotation
Features

Reactive Frames (10 s Duration) Reactive Frames (30 s Duration) Continuous Frames

µMc µMm ∆T Ĥ ∆H V µMc µMm ∆T Ĥ σH V µMc µMm. ∆T Ĥ σH V

µA 0.00 0.20 0.34 * 0.00 0.12 0.26 0.28 0.51 * 0.01 0.01 −0.12 0.25 - - −0.05 −0.11 −0.05 −0.25∫
A −0.01 0.19 0.33 * 0.01 0.14 0.27 0.30 * 0.49 * 0.03 0.04 −0.10 0.28 - - −0.05 −0.11 −0.05 −0.25

Â −0.29 0.13 0.00 0.06 −0.33 * −0.13 −0.05 0.31* 0.26 0.24 0.08 0.33* - - 0.25 0.42 * 0.18 0.42 *

∆A −0.07 0.04 0.01 0.16 −0.11 0.15 0.06 0.18 0.11 0.13 −0.21 0.07 - - −0.12 0.14 −0.26 −0.07

4. Discussion

Results from the first part of the data analysis are in accordance with those reported in
the literature [15], indicating that the assumed sitting postures, along with the transitions
between them and the overall seated mobility are associated with engagement as perceived
by the player. Associations pointing in that direction were identified in both investigated
types of observation frames. In continuous frames, the significant increase observed in the
mean value (µA) and area (

∫
A) of the annotation trace from Tutorial to Gameplay was

accompanied by a significant shift in assumed positions. The percentage of postures that
include laying on the back of the chair was significantly lower in Gameplay than in the
Tutorial, with many participants leaning forward as engagement increased and game inter-
action intensified. This shift was also present on overall mobility (µT) during continuous
observation frames, but no statistical significance was observed. From Gameplay to Review,
sitting postures activating the back of the chair appeared to increase in frequency, accom-
panied by a decrease in perceived engagement (µA and

∫
A). However, these changes in

assumed postures were not found to be statistically important. In contrast, a significant
increase in perceived engagement from Review to Mission-2 was not accompanied by a
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significant change in identified postures. This may be in part because the Review has rather
short duration, in comparison to the Tutorial and Gameplay. Additionally, the observed
increase in perceived engagement between Review and Mission-2 was smaller than the one
from Tutorial to Gameplay. These findings were consistently present in reactive observation
frames. The investigated in-game events, for both 10 s and 30 s frame duration, resulted in
a significant increase in three extracted features (µA,

∫
A and Â) of the annotation trace of

perceived engagement. Furthermore, the frequency of postures activating the back of the
chair was lower in reactive frames following in-game events, being of statistical significance
only for the case of 30 s reactive frames. Finally, an increase in overall player mobility (µT)
was also evident after in-game events, but no statistical significance was observed.

These findings indicate that an increase in perceived engagement is accompanied
by the tendency to leave the back of the chair and an increased overall seated mobility
(µT). The significance of these observations appears to be affected by the duration of the
observation frames, with increased time yielding more significant results in both continuous
and reactive frames. These observations are in agreement with findings of other studies
that have employed different types of interaction tools [15,50]. The presented results can be
a stepping-stone for the development of systems for real time recognition of engagement
during SG play in office and home settings. In this direction, the identification of a general
sensor activation threshold for posture monitoring, as proposed in the present study, is
important. To this end, further investigation is necessary regarding the robustness of the
threshold activation threshold across the BMI spectrum. Additionally, postures observed
and identified during the intervention were not particularly relaxed. Even though the
participants were instructed to get comfortable, this appears to have been hindered by their
presence in a research setting. This is expected to affect the type and number of postures
assumed in other settings. A single and quite standard office chair was employed during
the present study. Desks in home settings tend to include chairs that vary greatly in size
and comfort. The importance of data collection from home settings is, thus, highlighted
and expected to provide more reliable results.

The second part of the analysis has identified significant predictive capacity of both
sensor-based sources and in-game metrics towards player perceived engagement, as re-
flected by their significant correlation with features from the annotation trace (amplitude
(Â), mean value (µA), and area (

∫
A)). No significant correlation with the average gradient

(∆A) of the annotation trace has been found, despite its reported efficiency and robust-
ness [39]. This may be attributed to the different data sources employed in this study and
the larger duration of the examined observation frames. Reactive frames appear to produce
the majority of features with significant predictive value, with 30 s frames revealing the
most significant correlations. Features from sensors and in-game metrics present a range of
significant and highly significant correlations (absolute values in the range 0.26–0.51) with
perceived engagement, across all types of observation frames. However, an overly superior,
in terms of robustness and effectiveness, unimodal feature could not be identified. On the
contrary, the generated multimodal feature (V) was consistently found to be significantly
correlated with features of the annotation trace.

In summary, data collected from affordable and unobtrusive sensors, assisted by in-
game metrics features, appear to hold predictive value towards the hypothesized ground
truth. Nevertheless, the presented analysis has investigated these features’ predictive capa-
bility in a linear fashion. Supervised ML techniques can be employed to assess the features’
potential to accurately recognize engagement in a non-linear fashion. Such methods can
be incorporated in PCG, as part of a constant feedback loop that enhances adherence to
SG-based health interventions by maximizing player engagement through generated game
content. The suitability of the multimodal feature V needs to be further validated through
advanced feature fusion techniques via ML. Deep learning methodologies, along with
larger datasets, can be employed in this investigation, given their increasing popularity
in the field of multimodal affective recognition. Issues related to inclusivity and gender
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representation in participants should also be investigated for the purpose of identifying the
potential impact of dataset imbalances on our core findings.

5. Conclusions

The present study investigates the feasibility of sensor-based real-time recognition
of engagement during play in SGs for health. Multimodal data collected from pressure
and heart rate sensors, as well as through participants’ interaction with the SG (in-game
metrics) have been analyzed with the aim of identifying important correlations with the
perceived engagement. The ground truth has been approximated by continuous annotation
of perceived engagement by the participants. Sufficiently short observation frames based on
player-generated in-game events and the type of game interaction provided the basis for a
detailed data analysis which revealed (i) significant associations between identified postures
and perceived engagement, and (ii) significant correlations of sensor and in-game metrics
features with the hypothesized ground truth, both in unimodal and multimodal fashion,
thus, highlighting their predictive capability in real-time. The robustness and efficiency
of a generated multimodal feature (V) points towards the advantages of multimodal
approaches in the recognition of engagement. These findings support future development
of PCG techniques incorporating real-time engagement feedback loops that can significantly
enhance SG health interventions, by maximizing engagement and increasing adherence.
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