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Abstract: This study aimed to investigate the influence of artificial intelligence in education (AIEd) on
adolescents’ social adaptability, as well as to identify the relevant psychosocial factors that can predict
adolescents’ social adaptability. A total of 1328 participants (meanage = 13.89, SD = 2.22) completed the
survey. A machine-learning algorithm was used to find out whether AIEd may influence adolescents’
social adaptability as well as the relevant psychosocial variables, such as teacher–student relations,
peer relations, interparental relations, and loneliness that may be significantly related to social
adaptability. Results showed that it has a positive influence of AIEd on adolescents’ social adaptability.
In addition, the four most important factors in the prediction of social adaptability among AI group
students are interpersonal relationships, peer relations, academic emotion, and loneliness. A high
level of interpersonal relationships and peer relations can predict a high level of social adaptability
among the AI group students, while a high level of academic emotion and loneliness can predict a low
level of social adaptability. Overall, the findings highlight the need to focus interventions according
to the relation between these psychosocial factors and social adaptability in order to increase the
positive influence of AIEd and promote the development of social adaptability.

Keywords: artificial intelligence in education; adolescent; social adaptability; machine learning

1. Introduction

With the rapid development of information technology, the use of electronic devices
in education becomes prevalent. For example, it is easy to find the shift from paper
testing to computer-based or online testing in recent decades. In recent years, artificial
intelligence, a new technology developed on the basis of information technology, has also
been applied in education. However, artificial intelligence in education (AIEd) has its
advantages and disadvantages. Some studies consider that AIEd brings more opportunities
than threats [1,2]. Ma and her colleague [3] found that compared with traditional learning
tools, intelligent tutoring systems (ITS) are more effective tools for learning by analyzing
107 studies. Erdemir and İngeç [4] also found that intelligent learning environments created
through web-based tutoring systems have a positive influence on academic achievement
and permanence in education. What is more, one study shows that AI can help to detect
students’ emotions during class, and teachers may adjust their teaching accordingly [5].

However, the prevalent utilization of artificial intelligence in the teaching–learning
process may also bring a series of disadvantages. The ethical problems of using AI to collect
educational data and conduct relevant analytics have also been the focus of many studies [6–9].
In addition, Holstein [10] pointed out that the need of teachers and students toward AIEd
remains unclear [10,11]. Zanetti, Iseppi, and Cassese [12] also raised their apprehension that
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AIEd may be “deviate” and become potentially malicious, due to programmers’ biases or
other purposeful actions. Therefore, it is worth discussing the potential influence of AIEd.

1.1. Artificial Intelligence and Social Adaptation

AIEd may change the way of communication between teachers and students. Tradi-
tionally, teachers and students used to have face-to-face communication in a specific space
and time. The emergence of AIEd may reduce the opportunities for face-to-face communi-
cation. In addition, AIEd cannot be conducted without the Internet and electronic devices.
A previous study demonstrates that frequent usage of electronic devices has a negative
influence on adolescents’ interpersonal relationships [13] as well as social adaptability [14].
Xie [15] also found a causal relationship between network usage and adolescents’ social
adaptability. However, the issue that whether AIEd may also have a negative influence on
adolescents’ social adaptability remains unclear.

On the contrary, some studies even found that AI can promote the development of
adolescents’ abilities [16]. For example, Ali, Park, and Breazeal’s study [16] demonstrated
that children who interact with social robots express a high level of creativity. In addition,
empirical research also demonstrated that a wearable robot may enhance the expression
ability of teenagers with autism spectrum disorder [17].

Adolescents are the principal recipients of AIEd and they are in a state that is very
easily affected by the external environment [18–20]. However, previous studies only
discussed the influence of AIEd on adolescents at the theoretical level, which may lead to
some limitations. Considering the bidirectional influence of AIEd, we put forward:

Hypothesis 1. AIEd has an impact on adolescents’ social adaptability.

1.2. Artificial Intelligence in Education and Social Factors That Related to Social Adaptation

Ecological theory, as proposed by Brofenbrenner [21], demonstrates that both contextual
and individual factors have a significant influence on adolescent development. AIEd can be
regarded as contextual factors that may influence adolescents’ social adaptability while some
psychosocial factors may also play crucial roles in shaping adolescents’ social adaptability.
Therefore, the relevant psychosocial factors should also be taken into consideration.

AIEd may not only change the way of communication but also the relationship be-
tween teachers and students as well as peer relationships. Previous studies suggested that
a good teacher–student relationship can promote the school adaptability of adolescents [22].
In addition, peer relationships also play an important role in predicting adolescents’ social
adaptability. A good peer relationship can predict excellent emotional expression ability
and social adaptability [23] while poor peer relationships may have a negative impact
on adolescents’ social adaptability [24]. Thus, in the present study, we put forward the
following hypotheses:

Hypothesis 2. Interpersonal relations, including teacher–student relations and peer relationships
are potential predictors of the status of adolescents’ social adaptability.

Hypothesis 3. There are significant differences in teacher–student relations and peer relationships
between the AI group and the non-AI group.

1.3. Personality Factors and Learner-Related Factors That Related to Social Adaptation

According to ecological theory, individual factors also play important role in adoles-
cent development [21]. For students, individual factors can be divided into personality
factors and learner-related factors.

Wohn and LaRose’s [25] study shows that loneliness, a personality factor, is an ef-
fective predictor of social adaptability. Tao and his colleagues [26] also found that social
adaptability can be improved by reducing loneliness. In other words, loneliness may be
closely related to the status of social adaptability among adolescents. Moreover, previous
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studies also found that AI agents can help patients reduce loneliness by providing social
support [27]. Impulsivity, an important personality trait, is also an effective predictor of
social adaptability (Moschetta, Valente, and K., 2013). The result of Valente’s research
demonstrates that a high level of impulsivity may predict poor social adaptability among
adolescents [28]. In addition, through analyzing 40 studies, Li and his colleagues [29] found
that college students with mobile phone addiction were more likely to develop a high level
of impulsivity. Therefore, the current study put forward the following hypotheses:

Hypothesis 4. Personality traits, including loneliness and impulsivity, are potential predictors of
the status of adolescents’ social adaptability.

Hypothesis 5. There are significant differences in loneliness and impulsivity between the AI group
and the non-AI group.

What is more, AIEd changes the way of teaching and learning, which may also influ-
ence students’ academic emotions. Academic emotion, an important learner-related factor
that refers to various emotional experiences in connection with students’ academic activities
in the learning process, was founded that plays a significant role in students’ development
and is closely related to adolescents’ adaptability and problematic behavior [30]. In addi-
tion, Wang and her colleague [31] found that adolescents’ emotion regulation strategies can
effectively predict their social adaptability. Thus, we put forward the following hypotheses:

Hypothesis 6. Learner-related factors, including academic emotion and emotion regulation strate-
gies, are potential predictors of the status of adolescents’ social adaptability.

Hypothesis 7. There are significant differences in academic emotion and emotion regulation
strategies between the AI group and the non-AI group.

2. Materials and Methods
2.1. Participants

The participants in this study were recruited from 13 AI demonstration schools in
Guangdong province, southern China, using random sampling. These 13 schools have AI
classes with AI teaching experience and non-AI classes without AI teaching experience, and
the AI classes of these 13 schools have AI teaching experience for one year or more. A total
of 1338 participants participated in the study. People who meet the following criteria are
not eligible for the study: unable to understand the terms in the questionnaire and leaving
more than 30% of items uncompleted. In addition, the missing values of the included data
will be replaced with averages. Therefore, sample comprised a total of 1328 adolescents
(53.01% male), ranging in age from 8 to 19 years (meanage = 13.89, SD = 2.22), giving an
effective return rate of 99.25%. Before completing the survey, all the participants gave
written informed consent. Then, both AI group and non-AI group are required to complete
the questionnaires at one time within 40 min.

2.2. Data Collection Instruments

Artificial Intelligence Usage Questionnaire: The AI questionnaire was used to investigate
the usage of AI among adolescents, referring to the Mobile Phone Use Questionnaire
written by Wang and his teammate [31]. The AI questionnaire consists of three dimensions,
including the frequency of usage, the intention and attitude toward using AI, and the
feelings after using AI. The items of the frequency of usage include “Whether AI is used
for learning”, “How many days do you spend on learning with AI per week”, and “How many
hours do you spend on learning with AI every day”. The items of the intention and attitude
toward using AI include “Why do you use AI for learning”; “Attitude of your family towards
you learning with AI”. The items of the feeling after using include “You think it is helpful for
you to use AI for learning”, “You find yourself spending more and more time on AIEd”, “You will
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feel insecure and anxious if you study without AI”, and “How interesting do you think it is to learn
with AI”. There are 9 items in total.

Social Adaptability: This scale, which was adopted from Zheng [32] includes 20 items
that measure five dimensions of social adaptation, including peer relationships, self-
management, academic performance, obedience, and willingness to express. Then, partici-
pants should respond “agree” by choosing “1” or “uncertain” by choosing “2” or “disagree” by
choosing “3”. The questionnaire had high validity and reliability in this study (Cronbach’s
alpha = 0.80).

Interpersonal Relationship: We adopted the 28 items from Zheng [32] to measure inter-
personal relationships. One sample was that “I can’t concentrate on listening to others”. Then,
participants should respond “yes” or “no” to each item. The scale had high validity and
reliability in this study (Cronbach’s α = 0.88).

Interparental Relation: A 9-item scale was adopted to measure adolescents’ perception
of interparental relations [33]. To complete this subscale, the participants were asked to
answer 9 items that concerned their perceptions of interparental relations in their families.
Students should respond to each item from 1 (strongly disagree) to 5 (strongly agree). A
total score ranges from 9 to 45 with higher scores indicating closer relation. The scale had
high validity and reliability in this study (Cronbach’s alpha = 0.92).

Teacher–student Relation: We adopted the 7-item scale to measure teacher–student
relation [34]. One sample is “Teacher always plays favorites”. Students were required to
respond from 1 (strongly disagree) to 5 (strongly agree). A total score ranges from 7 to 35
with higher scores indicating closer relation. The reliability and validity of the scale have
been well documented (Cronbach’s alpha = 0.91).

Peer Relation: Adolescents’ peer relation was measured using the Chinese version
of the Peer Relation Questionnaire [35](Chen and Zhu, 1997). All items were assessed
using a six-point scale (1 = “strongly disagree,” 6 = “strongly agree”). For each participant,
his score for all 18 items was determined, with higher scores showing higher levels of
peer relationships. For the current study, the measure demonstrated excellent reliability
(Cronbach’s alpha = 0.83).

Loneliness: We used the UCLA Loneliness Scale [36] to assess participants’ loneliness.
Participants were required to rate on a 4-point Likert scale. The 4-point scale was ranging
from 1 (strongly disagree) to 4 (strongly agree). Internal consistency in the current sample
was adequate (α = 0.91).

Impulsivity: S-UPPS-P scale [37] is a 20-item scale that measures five dimensions of
impulsivity, including negative urgency, positive urgency, programmatic, perseverance and
sensation seeking. Each item was rated on a scale from 1 (strongly disagree) to 4 (strongly
agree). The scale had suitable validity and reliability in this study (Cronbach’s alpha = 0.65).

Academic Emotion: A 18-item Academic Emotions Questionnaire [38] was adopted to
measure two dimensions of social adaptation. All 18 items were rated using a five-point scale
(1 = “strongly disagree,” 5 = “strongly agree”). For each participant, his total score for all
18 items was determined, with higher scores indicating higher academic anxiety and academic
boredom. For the current study, the measure demonstrated good reliability (α = 0.92).

Emotion Regulation Strategies: Adolescents’ emotional regulation strategy was mea-
sured using the Chinese version of the Emotion Regulation Strategies Questionnaire [39].
A total of 10 items were assessed using a seven-point scale (1 = “strongly disagree,”
7 = “strongly agree”). For the current study, the measure demonstrated high reliability
(Cronbach’s alpha = 0.86 for cognitive reappraisal sub-scale; Cronbach’s alpha = 0.64 for
expression inhibition sub-scale).

Empathy: Basic Empathy Scale [40] was used to measure the variable of empathy in this
study. There are 20 items on the scale, including two dimensions: cognitive empathy and
emotional empathy. All items were rated using a five-point scale (1 = “strongly disagree,”
5 = “strongly agree”). For each participant, their total score for all 20 items was determined.
The higher the score, the stronger the empathy. In this study, the measure demonstrated
good reliability (α = 0.83).
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This study is exploratory, and machine learning models are more suitable for ex-
ploratory research than traditional regression models. There are three factors contributing
to our decision that utilize machine learning to give a deep analysis. First of all, utilizing
random forest (RF) to conduct a regression model can maintain the accuracy of the study
for RF is insensible to missing data. In addition, RF can also demonstrate the importance
of different potential predictors. What is more, RF can also better handle the analysis of
multiple variables. Therefore, to assess the difference in social adaptability between AI
group and non-AI group, the partial dependence plot (PDP), a machine learning method,
is employed to make a preliminary analysis. Partial dependence is a library for visualizing
input–output relationships of machine learning models, which can measure the prediction
change when changing one or more input features. However, PDP is plotted out based
on machine learning model. In this study, RF method was also adopted. The RF method
provides an ensemble learning method for classification, operates by constructing numer-
ous decision trees, and produces the best result of classification based on the combination
of individual trees. Random decision forests are able to correct the habit of decision trees
overfitting to their training set.

The following is a description of the RF method executed with the Python Sklearn
classification method.

Given a training set X ={x1, . . . , xn} with responses Y= {y1, . . . , yn}, random samples
are selected (B times), with their replacements from the training set, and are used to train
the decision trees:

For b = 1, . . . , B:
Sample, with replacement, B training examples from {X, Y}; call these {Xb, Yb}.
Train regression tree fb on {Xb, Yb}.
After training, a prediction for unseen sample x′ can be made by averaging the

predictions from all the trained individual regression trees on x:

f̂ =
1
B

B

∑
b=1

fb(x
′)

Based on RF model, we can conduct PDP by:

f̂s(xs) = Exc [f̂(xs, Xc)] =
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3. Result and Discussion
3.1. Artificial Intelligence Usage and Social Adaptability

The subjects are divided into two groups: the AI group and the non-AI group.
The AI group refers to applying AI to teaching, including learning with intelligent

devices (tablet teaching, 3D printing, and the use of intelligent equipment for learning (flat
teaching, 3D printing)), learning relevant courses, and carrying out relevant interest classes
(programming UAV course and assembling robot), intelligent classroom/smart campus
construction, etc.

The non-AI group refers to the group of students who adopting traditional
teaching method.

As is shown in Table 1, a total of 1328 effective subjects were collected in this study,
including 1016 subjects in the AI group and 312 subjects in the non-AI group.

Table 1. Details of “whether to use AI for learning”.

Group Number Proportion

AI group 1016
Male 516 38.86%

Female 500 37.65%

Non-AI group 312
Male 189 14.23%

Female 123 9.26%
Total 1328 100%



Int. J. Environ. Res. Public Health 2022, 19, 7890 6 of 12

As shown in Figure 1, we can easily find that grade, family income, age, and AIEd
both have an influence on adolescents’ social adaptability. Therefore, we control these
variables in this study. Then, we further analyzed the influence of AIEd on adolescents’
social adaptability. According to the results, the predicted score of social adaptability in the
AI group is 0.266 while the non-AI group is 0.152 (see Table 2).
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Table 2. Social adaptability differences between AI group and non-AI group.

Model Label X Y

1 AI Ranger RF 0 (Non-AI group) 0.152
2 AI Ranger RF 1 (AI group) 0.266

Group was dummy-coded such that 1 = AI group, 0 = non-AI group.

Then, we conducted an independent sample t-test and found that there were significant
differences in social adaptability between the AI group and the non-AI group (Figure 2). As
is shown in Table 3, the score of social adaptability of the AI group (M ± SD =5.42 ± 14.36)
is significantly higher than that of the non-AI group (M ± SD =2.84 ± 13.87, t(1326) = 2.799,
p < 0.01; see Table 4), indicating that AIEd, instead of having negative effect on the de-
velopment of adolescents’ social adaptability, it may even promote the development of
adolescents’ social adaptability to some degree. This finding is out of our expectations, and
also demonstrates that the influence of AIEd on adolescents’ social adaptability is quite
different from other products of information technology.

We further analyzed the relation between “the reason for students to use AI” and their
social adaptability. From the results, we found that the proportion of students who choose
AI for learning due to school assignments is the highest (43.00%), followed by students who
choose AI for learning due to their interest (28.60%). Additionally, the proportion of students
who choose AI for learning due to both their interest and school assignments is 14.10%.

The differences in social adaptability among students who use AI for different reasons
are significant (F = 2.910, p < 0.01). Among them, the score of social adaptability of students
who use AI because of their own interests as well as meet the requirements of their parents
was the highest (M = 11.63 ± 11.07) while students who use AI to meet the requirements of
their parents and school assignments is lower (M = 10.69 ± 14.74). It is worth mentioning
that students who use AI to learn in order to meet the request of their parents obtained the
lowest scores on social adaptability (M = 3.25 ± 14.59).
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Table 3. Results of differences in social adaptability between AI group and non-AI group.

Group
Social Adaptability

N M SD t p

AI group 1016 5.42 14.36
2.799 ** 0.005Non-AI group 312 2.84 13.87

** = p < 0.01.

Table 4. Social adaptability of AI group and non-AI group.

Group
Social Adaptability

N M SD t p

AI group 1016 5.42 14.36
2.799 ** 0.005Non-AI group 312 2.84 13.87

** = p < 0.01.

Then, we also further investigated the attitude of students toward AI. From the Table 5,
we easily found that most of the students think that learning with AI can bring benefits
(89.30%), and only a small number of students think that learning with AI can bring
no benefit (10.70%). The results also showed that there was a significant difference in
social adaptability between two groups of students who hold different attitudes toward AI
(t = 2.410, p < 0.05; see Table 6). The scores of social adaptability of students who consider
that AI is beneficial (M = 5.21 ± 14.29) were significantly higher than those who thought
that AI was unhelpful (M = 1.74 ± 13.14).

Table 5. Details of students’ choice on “Why use AI for learning”.

Group Frequency Proportion (%) Cumulative Proportion (%)

Personal interest 291 28.60 28.60
Parents’ Request 33 3.20 31.90
School Arrangements 437 43.00 74.90
Personal interest and Parents’ Request 43 4.20 79.10
Personal interest and School Arrangements 143 14.10 93.20
Parents’ Request and School Arrangements 14 1.40 94.60
Personal interest and Parents’ Request and School
Arrangements 55 5.40 100.00

Total 1016 100.00
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Table 6. Analysis results of social adaptability scores of students among different AI learning
cause groups.

Group Social Adaptability

N M SD F p

Personal interest 291 5.48 14.13

2.910 ** 0.008

Parents’ Request 33 3.25 14.59
School Arrangements 437 3.65 14.07
Personal interest and Parents’ Request 43 11.63 11.07
Personal interest and School Arrangements 143 4.24 15.08
Parents’ Request and School Arrangements 14 10.69 14.74
Personal interest and Parents’ Request and
School Arrangements 55 6.52 13.67

** = p < 0.01.

From the Tables 7 and 8, we can conclude that both individual factors and interpersonal
factors, as well as social factors, may play crucial roles in the development of adolescents’
social adaptability. That is, there may be several factors contributing to the results. As to
individual factors, utilizing AI to learn may improve learning efficiency so that students
can spend more time on social activities, which may also improve their social adaptability.
What is more, in the aspect of social factors, AI may provide a more effective way for people
to communicate [41]. For example, students can use AIEd to give feedback to their teacher
more freely. It may, to some degree, improve students’ communication skills.

Table 7. Details of students’ choice on the question “I think it is helpful for me to use AI to learning”.

Group Frequency Proportion (%) Cumulative Proportion (%)

Yes 907 89.30 89.30
No 109 10.70 100.00

Total 1016 100.00

Table 8. Results of the difference in scores of social adaptability between the YES group and the
NO group.

Group Social Adaptability

N M SD t p

Yes 907 5.21 14.29
2.410 * 0.016No 109 1.74 13.14

* = p < 0.05.

Therefore, in order to understand why AIEd can promote the development of adoles-
cents’ social adaptability, we conducted further research on the possible influences of the
psychosocial variables on social adaptability among AI group students.

3.2. Descriptive Analysis of Several Psychosocial Factors

From the results of the overall average, the scores of interpersonal relations, teacher–
student relations, interparental relations, peer relations, and the empathy ability of these
students are higher than the average of the scale, indicating that the AI group students
are better in all kinds of interpersonal relationships and empathy in real life (see Table 9).
The scores of cognitive reappraisal strategy and expression inhibition strategy are also
higher than the average of the scale, indicating that students often use these two strategies
in dealing with their emotions. The results of academic emotion show that the score of
students’ academic boredom is lower than the average value of the scale, and the score of
academic anxiety and academic negative emotion is slightly higher than the average value
of the scale, indicating that students have less boredom about learning, but they will be
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more anxious about learning and have more negative emotions when studying. The results
of loneliness and impulsivity show that the scores of both are lower than the average of the
scale, indicating that the overall level of loneliness and impulsivity of students is low. In
addition, the score of social adaptability of this group is also lower on the whole.

Table 9. Mean and standard deviation of variables.

Variable SA IR TSR IPR PR EMP CR EI AE AA AB LON IMP

M 4.81 0.71 4.07 3.52 4.36 3.58 4.81 4.40 2.60 3.30 2.16 2.05 2.33
SD 0.71 0.22 0.76 0.76 0.68 0.51 1.24 1.27 0.75 0.99 0.89 0.53 0.34

SA = social adaptability, IR = interpersonal relation, TSR = teacher–student relation, IPR = interparental relation,
PR = peer relation, EMP = Empathy, CR = cognitive reappraisal strategy, EI = expression inhibition strategy,
AE = academic emotion, AA = academic anxiety, AB = academic boredom, LON = Loneliness, IMP = Impulsivity.

3.3. Correlation between Psychosocial Factors and Social Adaptability

The figure shows the correlation between variables and social adaptability (see Table 10).
According to the results, the interpersonal factors (interpersonal relations, teacher–student
relations, interparental relations, peer relations) and individual factors (empathy, emotion
regulation strategies, academic emotion, loneliness, impulsivity) investigated are related
to social adaptability to varying degrees. Among them, interpersonal relations (r = 0.467,
p < 0.01), teacher–student relations (r = 0.259, p < 0.01), interparental relations (r = 0.336,
p < 0.01), peer relations (r = 0.434, p < 0.01), empathy (r = 0.112, p < 0.01), cognitive reappraisal
strategy in emotion regulation strategy (r = 0.254, p < 0.01) were positively correlated with
social adaptive ability, while the expression inhibition strategy in emotion regulation strategies
(r =−0.073, p < 0.01), academic emotion (r =−0.445, p < 0.01), academic anxiety (r =−0.333,
p < 0.01), academic boredom (r = −0.381, p < 0.01), loneliness (r = −0.446, p < 0.01) and
impulsivity (r = −0.137, p < 0.01) were negatively correlated with social adaptability.

3.4. Psychosocial Factors That Predict the Adolescents’ Social Adaptability

To further investigate the possible influences of the variables on social adaptability
among AI group students, mean square error (MSE) was adopted to measure the importance
of these psychosocial variables. The higher value of Inc MSE means that the factors are
more important. We can easily find that the four most important factors are interpersonal
relationships, peer relations, academic emotion, and loneliness, as seen in Figure 3. This
finding is consistent with our expectation that both social environmental factors and
individual factors play crucial roles in predicting adolescents’ social adaptability. To be
specific, adolescents with a high level of interpersonal relations are more likely to exhibit
a good status of social adaptability. During the epidemic period, AIEd may provide an
effective way of communication so that adolescents that can maintain good relationships
between peers or teachers. What is more, AIEd may also provide a way for adolescents to
prevent feeling anxiety and loneliness when they are finishing academic tasks, especially
collaborative tasks.

In addition, in order to conduct a test of the significance of the importance, the
permutation test was adopted. As is shown in Figure 3, all the variables can significantly
predict the status of social adaptability except for gender, expression inhibition strategy,
and impulsivity.
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Table 10. Correlation results among variables.

1 2 3 4 5 6 7 8 9 10 11 12 13

SA 1
IR 0.467 ** 1

TSR 0.259 ** 0.238 ** 1
IPR 0.336 ** 0314 ** 0.312 ** 1
PR 0.434 ** 0.381 ** 0.313 ** 0.282 ** 1

EMP 0.112 ** 0.049 0.251 ** 0.173 ** 0.346 ** 1
CR 0.254 ** 0.142 ** 0.223 ** 0.234 ** 0.276 ** 0.202 ** 1

EI −0.073
**

−0.121
** 0.059 * 0.038 0.000 −0.032 0.441 ** 1

AE −0.445
**

−0.393
**

−0.221
**

−0.283
**

−0.228
** −0.025 −0.153

** 0.020 1

AA −0.333
**

−0.356
**

−0.065
*

−0.163
** −0.80 ** 0.154 ** −0.051 0.074 ** 0.724 ** 1

AB −0.381
**

−0.292
**

−0.260
*

−0.277
**

−0.260
**

−0.144
**

−0.175
** −0.025 0.873 ** 0.295 ** 1

LON −0.446
**

−0.452
**

−0.288
**

−0.380
**

−0.450
**

−0.222
**

−0.180
** 0.057 * 0.458 ** 0.273 ** 0.441 ** 1

IMP −0.137
**

−0144
**

−0.105
**

−0.100
** −0.052 −0.048 −0.044 −0.049 0.348 ** 0.181 ** 0.354 ** 0.292 ** 1

* = p < 0.05, ** = p < 0.01, SA = social adaptability, IR = interpersonal relation, TSR = teacher–student re-
lation, IPR= interparental relation, PR = peer relation, EMP = Empathy, CR = cognitive reappraisal strategy,
EI= expression inhibition strategy, AE = academic emotion, AA = academic anxiety, AB = academic boredom,
LON = Loneliness, IMP = Impulsivity.
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4. Conclusions

The current study examined whether AIEd may influence adolescents’ social adapt-
ability and whether these psychosocial factors exactly predict the status of adolescents’
social adaptability among AI group students. The machine learning method was also uti-
lized in the present study. Additionally, we find a positive influence of AIEd on adolescents’
social adaptability.
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The negative social relationship had a significant influence on adolescents’ social
adaptability. Specifically, poor interpersonal relationships and peer relations may cause a
lack of social attachment that may influence the development of social adaptability among
AI group students. In addition, loneliness and academic emotion also play important role
in predicting adolescents’ social adaptability. These findings emphasize the significant
impact of social environment factors, interpersonal factors, and learner-related factors on
adolescents’ social adaptability.

However, this study featured a cross-sectional design, meaning it was unable to make
causal inferences. Future studies can adopt longitudinal studies to further investigate the
relation between AIEd and adolescents’ social adaptability. In addition, a clear definition
of AIEd, as well as a full discussion about man–machine relationships (Li, 2020), should be
investigated in the future study.
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