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Background: Infections are the major cause of morbidity and mortality in patients with
primary immunodeficiency disease (PID). Timely and accurate microbiological diagnosis is
particularly important in these patients. Metagenomic next-generation sequencing
(mNGS) has been used for pathogen detection recently. However, few reports describe
the use of mNGS for pathogen identification in patients with PID.

Objective: To evaluate the utility of mNGS for detecting pathogens in patients with PID,
and to compare it with conventional microbiological tests (CMT).

Methods: This single center retrospective study investigated the diagnostic performance
of mNGS for pathogens detection in PID patients and compared it with CMT. Sixteen PID
patients with suspected infection were enrolled, and medical records were analyzed to
extract detailed clinical characteristics such as gene variation, immune status, microbial
distribution, time-consuming of mNGS and CMT, treatment, and outcomes.

Results:mNGS identified pathogenic microbe in 93.75% samples, compared to 31.25%
for culture and 68.75% for conventional methods, and detected an extra 18 pathogenic
microorganisms including rare opportunistic pathogens andMycobacterium tuberculosis.
Pathogen identification by mNGS required 48 hours, compared with bacterial culture for
3-7 days and even longer for fungus and Mycobacterium tuberculosis culture.

Conclusions:mNGS has marked advantages over conventional methods for pathogenic
diagnosis, particularly opportunistic pathogens and mixed infections, in patients with PID.
This method might enable clinicians to make more timely and targeted therapeutic
decisions, thereby improving the prognosis of these patients.

Keywords: metagenomic next-generation sequencing, infection, diagnosis, primary immunodeficiency disease,
conventional microbiological tests
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INTRODUCTION

Primary immunodeficiency disease (PID) or inborn errors of
immunity are caused by monogenic mutations, resulting in loss-
or gain-of-function of the encoded protein. They manifest as
increased susceptibility to infectious diseases, as well as a
growing diversity of autoimmune, autoinflammatory, allergic,
lymphoproliferative, and/or malignant phenotypes. They
comprise 404 distinct disorders, with 430 different gene defects
(1, 2). Infection is a major cause of repeated hospitalization and
eventual death in children with PID. A report from France shows
that 85% of non-transplant PID patients were admitted to
hospital related to acute infections (3). Timely and effective
anti-infection therapy is of great importance for reducing
infection mortality and improving transplant success rates in
PID patients.

Metagenomic next-generation sequencing (mNGS) has been
used in many fields in recent years; this technology allows
simultaneous and independent sequencing of thousands to
billions of DNA fragments, thereby facilitating an unbiased
approach to broad identification of both known and
unexpected pathogens (or even the discovery of new
organisms). Compared with culture-based methods, mNGS
offers advantages such as short turn-around times and
unbiased quantitative or semi-quantitative analysis. In
addition, multiple agents across the full microbial spectrum
can be detected simultaneously by mNGS, along with
identification of non-culturable microbes (4). The cost of
mNGS has fallen by several orders of magnitude since its
advent in 2004; it has emerged as an enabling technological
platform for detection of microorganisms in clinical samples.
Recent studies used mNGS to identify pathogens in the
respiratory and central nervous systems, and pathogens that
cause focal and bloodstream infections, and pathogens in
immunosuppressed patients (5–14). However, only a few
studies report the use of mNGS to detect infectious agents in
patients with PID (15–17). Due to the unique characteristics and
overall severity of infections in these patients, rapid and accurate
diagnostic methods are needed urgently. This study aimed to
determine whether mNGS technology can meet this need by
assessing its ability to detect pathogens in patients with PID, and
by comparing its efficacy with that of conventional
microbiological tests (CMT).
MATERIALS AND METHODS

Study Design and Participants
This study comprised a retrospective analysis of data from 16
PID patients with suspected infections admitted to Children’s
Hospital of Chongqing Medical University in Chongqing, China
from October 2018 to December 2020. Samples from these
patients were subjected to both CMT and mNGS. Extensive
phenotype information, including clinical and laboratory data,
were available for all patients to facilitate interpretation of
results. Infections were suspected in patients presenting with
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symptoms such as fever, cough, weakness, headache, hemiplegia,
abdominal pain, and ostealgia. The study was approved by the
Medical Ethics Committee of the Children’s Hospital of
Chongqing Medical University and was conducted in
accordance with The Code of Ethics of the World Medical
Association (Declaration of Helsinki). All patients provided
written informed consent prior to sample collection.

Specimen Collection and Processing
During enrollment, samples from all subjects underwent CMT
ordered by their treating clinicians. Different clinical specimens
were collected for testing based on the type of suspected infection
(i.e., cerebrospinal fluid (CSF), bronchoalveolar lavage fluid
(BALF), peripheral blood, sputum, liver biopsy tissue, pus, and
bone biopsy tissue). The CMT included blood/sputum/BALF/
CSF cultures, serological tests, molecular diagnostic tests, and
antigen detection. CMT were conducted in accordance with a
clinical assessment of necessity. At the same time, additional
samples were collected and transported overnight to Kindstar
Global Laboratories (Wuhan, China) for mNGS.

Sample Processing and
Library Construction
Before nucleic acid extraction, samples were processed as follows:
tissue samples were ground into a homogenate, and sputum was
liquefied. DNA was extracted with TIANamp Micro DNA Kit
(TIANGEN BIOTECH, Beijing, China) from collected samples
according to the manufacturer’s instructions. Next, libraries were
constructed for NGS, as described previously (13). When
patients underwent mNGS, due to sample volume, test price
and other factors, no relevant information about RNA viruses
was collected from all patients included in this study.

Next Generation Sequencing
Samples were transported to Kindstar Global Wuhan for
PMseqTM library construction and Illumina MiniSeq platform
or Illumina NextSeq 550 platform for high-throughput
metagenomic sequencing. The minimum limit of microbe
detection of this technique is 100 copies/mL (viruses = 1000
copies/mL). The specificity and repeatability of microbial
detection were both > 99% when the copy number was above
the minimum limit of detection.

Analysis of Sequencing Data
As described previously, adapter contamination, low quality and
low-complexity reads were quality filtered using an in-house
program (13). Next, Burrows-Wheeler Alignment (Version:
0.7.10) was used to map the filtered sequences to a human
reference database that includes hg38 and the Yanhuang genome
sequence. The Remaining data were classified into four Microbial
Genome Databases: viruses, bacteria, fungi, and parasites.
Classification reference databases were downloaded from NCBI
(ftp://ncbi.nlm.nih.gov/genomes/). The depth and coverage of
each species were calculated by Soap Coverage software from the
SOAP website (http://soap.genomics.org.cn/). Next, the
parameter values were normalized according to data size and
detected species listed in the suspected background database
August 2021 | Volume 12 | Article 696403
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were filtered, as previously reported (13, 18). Based on the
relative abundance of microbes detected by NGS in healthy
control samples, we set up the threshold for each microbe to
allow further validation. Pathogens with the highest absolute
abundance within their genus, and pathogens ranked in the top
10 fungi, viruses, and parasites, and ranked in the top 50 bacteria
(in terms of relative abundance after the previous two screening
steps), were selected. With respect to intracellular bacteria (i.e.,
Mycobacterium tuberculosis and brucella) and some fungi (i.e.,
cryptococcus), as long as the test data are compared with the
above reference genomes, it is necessary to consider whether they
are infectious pathogens in combination with clinical practice. If
detected pathogens were common infectious pathogens, they
were considered to be causative agents. In the case of uncommon
pathogens, the mNGS results were interpreted in the context of
the patient’s clinical features; otherwise, the detected reads were
classified as “non-pathogenic” microbe sequences. Strictly map
reads number (SMRN) and genomic coverage were analyzed.
SMRN represents the number of sequences that are strictly
aligned with the microorganism (genus/species), which can
reflect the pathogenicity of detected pathogens to some extent.
SMRN are affected by content of pathogen in the sample, the size
of pathogen genome, the amount of nucleic acid extracted from
the sample, and other factors. High SRMN in an detected
pathogen does not completely mean it is pathogenic and vice
versa. Genomic coverage refers to the percentage of the nucleic
acid sequence length of the microorganism detected to the
genome sequence length of the microorganism. Generally
speaking, the higher the genomic coverage, the higher the
credibility of the pathogen detected. But it also influenced by
the type of pathogen.

Statistical Analysis
Due to the small number of patients enrolled, differences among
groups were analyzed using a two-tailed independent-samples t
test. A P value <0.05 was considered significant. Data analysis
was performed using GraphPad Prism software (GraphPad
Software, San Diego, CA).
Frontiers in Immunology | www.frontiersin.org 3
RESULTS

Basic Clinical Information
Sixteen patients with PID (age range, 4 months to 16 years) were
enrolled. Specific primary diseases were as follows: X-linked-
hyper IgM syndrome (XHIM) caused by a CD40LG mutation
(n=4, P1 to P4); Wiskott-Aldrich syndrome (WAS) caused by a
WASP mutation (n=2, P5 and P6); CTLA4 deficiency(P7);
PSTPIP1-associated myeloid-related proteinemia inflammatory
syndrome (PAMI) caused by a PSTPIP1mutation (P8); X-linked
lymphoproliferative disease (XLP) caused by a SH2D1A
mutation (P9); NEMO deficiency caused by a IKBKG mutation
(P10); chronic granulomatous disease (CGD) caused by a CYBB
mutation (n=2, P11 and P12); Artemis deficiency caused by a
DCLRE1C mutation (P13); Mendelian susceptibility to
mycobacterial disease (MSMD) caused by a STAT1 AD loss-of-
function mutation (P14); X-linked agammaglobulinemia (XLA)
caused by a BTKmutation (P15); and activated phosphoinositide
3-kinase-d syndrome (APDS) caused by a PIK3CD AD GOF
mutation (P16). The basic information, including age, gender,
infection data, immunological characteristics, and gene variation
are shown in Supplementary Table 1.

The clinical presentations of patients at the time of sample
collection were as follows: patient P1 had claudication of the left
lower extremity, weakness of the left hand, and intermittent
fever; P2 presented mainly with intentional tremor of the right
upper limb, unsteady gait, and occasional fever; P3 suffered
dizziness, headache, vomiting, drowsiness, slurred speech,
unsteady gait, and fever; P15 presented mainly with unstable
gait, choking, and intermittent fever; and P16 presented mainly
with fever and headache. The above five patients were suspected
to have central nervous system (CNS) infections; therefore,
cerebrospinal fluid (CSF) was collected and cranial images
taken (Figure 1). Seven patients (P4, P7 to P11, and P13) all
had cough and fever and so were suspected to have pneumonia;
therefore, bronchoalveolar lavage fluid (BALF) or sputum was
collected. P5 presented with fever and rash; we suspected sepsis
and so obtained peripheral venous blood samples. P6 had
FIGURE 1 | Cranial magnetic resonance imaging of patients. (A) Patient P1: Multiple abnormal bilateral signals in the brain. Both old and new lesions coexist.
Demyelinating lesions may be present. (B) Patient P2: Sparse abnormal bilateral signals in the brain parenchyma, suggestive of inflammatory lesions. (C) Patient P3:
Abnormal signals in the brain and cerebellum, particularly in the bilateral basal ganglia and the left frontal lobe, suggestive of infective lesions. (D) Patient P15:
Abnormal, bilateral symmetrical signals in the white matter, brain atrophy, and similar signals in the thalamus.
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abdominal pain and liver space-occupying lesions; liver biopsy
tissues were collected and checked for specific pathogen infection
or tumors. In patient P12, abdominal pain and fever were the
main symptoms; abdominal ultrasound indicated that the main
lesion was in the parenchymal components of the right lobe of
the liver. The patient’s underlying disease was CGD. Therefore,
liver abscess was considered and he received imipenem cilastatin
and linezolid. After abdominal ultrasound showed fluid lesions,
the liver abscess was punctured, drainage was performed, and the
pus was collected. In patient P14, the main manifestations were
abnormal gait, which progressed gradually to ostealgia in the
head, chest, waist, and lower limbs, accompanied by intermittent
fever. CT revealed multiple areas of bone destruction throughout
the body, including the left humerus, left ulnar radius, right
femur, right tibia, left fibula, frontal bone, parietal bone, occipital
bone, and vertebral bodies C1–2, L1–3, and S1. Considering his
primary disease, we suspected infection with pathogens such as
Mycobacterium. A bone biopsy was performed and bone biopsy
tissue was collected. The suspected infections and samples
collected are shown in Figure 2.

Diagnostic Performance of mNGS
The mNGS sequencing results for 15/16 (93.75%) patients were
positive for microbial pathogens (Table 1). A comparison of the
diagnostic results from mNGS with CMT is shown in Table 2.
CMT and mNGS results were concordant for 11 of 15 patients
(73.3%). However, agreement between the culture method and
mNGS was only 33.3%. Positive agreement between mNGS and
clinical diagnosis was significantly higher than that of culture
and CMT (93.75% vs. 31.25% and 68.75%, respectively). In
addit ion, mNGS detected 18 more pathogens than
conventional methods in these patients.

Distribution of Identified Pathogens
In the present study, the diagnosis of 15 patients was confirmed
by both clinical and microbiological criteria. According to the
results, bacteria (73.33%) were the most common pathogens
identified, followed by virus (60%), fungi (26.67%), and parasites
Frontiers in Immunology | www.frontiersin.org 4
(13.33%). It is noteworthy that among the 15 patients with
identified pathogens, 11 were diagnosed with polymicrobial
infections (73.33%). In particular, Cytomegalovirus (CMV) and
Epstein-Barr virus (4/15) were the most common pathogens,
followed by Stenomonas maltophilia (3/15) (Figure 3).

The following pathogens were identified in different types of
PID patients. Among the four patients with XHIM, two patients
had JC polyomavirus infection, one patient had toxoplasmosis
infection, and one had a mixed infection by Stenotrophomonas
maltophilia, Pneumocystis jirovecii, and CMV. Both patients with
WAS were infected with human herpesviruses, one with EBV
and another with CMV. Mixed bacterial infections (including
opportunistic pathogens such as Sphingomonas paucimobilis and
Stenomonas maltophilia) were identified in both patients with
CGD. Others includedMycobacterium (in a patient with APDS),
and Nocardia farcinica and Mycobacterium avium mixed
infection (in a patient with MSMD) (Table 1).

Comparison of mNGS With CMT
In CSF, BALF, and blood samples, mNGS showed higher
sensitivity for microbes detection than CMT; however, there
was no difference with respect to sputum, tissue, and pus
(Figure 4). In samples from 11 patients with polymicrobial
infections, multiple microbiological tests were performed to
obtain a final pathogenic diagnosis; these were more time-
consuming and costly than tests used for monomicrobial
infections. However, mNGS yielded consistent results from
only one test in 11 of the 15 subjects. We analyzed the time
taken to determine the pathogenic diagnosis. For monomicrobial
infections, the time for mNGS and CMT was not statistically
different; however, for polymicrobial infections, mNGS required
significantly less time to identify the pathogens than CMT (P <
0.05). In terms of testing time, CMT for the 11 patients took 3–7
days, while the sequencing time was only 48 hours. In terms of
detection efficiency, five of the 16 patients were negative by CMT,
whereas mNGS detected pathogens in 15 patients; some of these
had a mixed infection, suggesting that mNGS has better
detection efficiency.
A B

FIGURE 2 | Composition of patients and samples types. (A) Type of suspected infection in the PID patients included in this study. (B) Types of sample collected in
this study. CNS, central nervous system; CSF, cerebrospinal fluid; BALF, bronchoalveolar lavage fluid.
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Treatment and Follow-Up
Of the 16 patients, P3 improved significantly after treatment
with sulfamethoxazole. P4 improved after treatment
with sulfamethoxazole and ganciclovir; P5 and P7–P11 were
treated successfully with anti-infection therapy, including
antibiotics and antifungal agents. P12 was treated successfully
with sulfamethoxazole, imipenem cilastatin, and linezolid.
P14 improved after treatment with isoniazid, rifampicin,
pyraz inamide , e thambuto l , and su l famethoxazo le .
TABLE 1 | Results of CMT and mNGS of various samples for patients with PID.

Patients Specimen for
mNGS

Culture results Other microbiogical testing
results

mNGS results
(pathogenic)

SMRN Genomic
coverage

(%)

P1 CSF Negative (CSF and blood) Negative JC polyomavirus 1526 97.563
BK Virus 20 30.063
Acidovorax temperans 3301 11.166
Comamonas testosteroni 591 1.453
Malassezia globosa 119 0.168
Acanthamoeba
triangularis

890 0.241

P2 CSF Negative (CSF and blood) Negative JC polyomavirus 5 14.6
Acidovorax temperans 30 0.119
Ralstonia mannitolilytica 18 0.053

P3 CSF Negative (CSF and blood) Negative Toxoplasma gondii 151 0.01
P4 sputum Negative (sputum and blood) CMV-DNA (+) Acinetobacter junii 567 1.44

Stenotrophomonas
maltophilia

118 0.21

Pneumocystis jirovecii 2 0.0018
Cytomegalovirus 2 0.064

P5 blood Negative (blood) CMV-DNA (+) Cytomegalovirus 18 1.139
P6 Liver tissue Negative (blood) EBV-DNA(+) Epstein-barr virus 18 0.757
P7 BALF Klebsiella pneumoniae (BALF) Negative Klebsiella pneumoniae 18957 3.0
P8 BALF Negative (BALF and blood) Mycoplasma pneumoniae (+) Epstein-barr virus 45 2.781

Mycoplasman pneumonia 154 2.479
P9 BALF Streptococcus pneumoniae Negative Streptococcus

pneumonia
67 0.434

Pseudomonas aeruginosa Pseudomonas
aeruginosa

6 0.014

(BALF) Haemophilus influenza 3 0.024
Epstein-barr virus 2 0.159

P10 BALF Klebsiella aerogenes Negative Stenotrophomonas
maltophilia

364 1.221

Candida albicans Klebsiella aerogenes 156 0.444
(BALF) Candida albicans 3380 Copies/ml

Cytomegalovirus 61 3.761
P11 BALF Negative (BALF and blood) Negative Haemophilus

parainfluenzae
6 0.100

Sphingomonas
paucimobilis

2 0.007

Escherichia coli 2 0.005
P12 Pus Staphylococcus aureus (Pus) Negative Stenomonas maltophilia 19 0.03

Staphylococcus aureus 5 0.02
P13 sputum Multiple drug resistant pseudomonas aeruginosa

(Sputum)
Negative Pseudomonas

aeruginosa
1599 3.572

Torque teno virus 56 13.687
Epstein-barr virus 376 10.228
Cytomegalovirus 23 1.378

P14 Bone biopsy tissue Negative PPD (+) Nocardia farcinica 752 0.73
(Blood) T-SPOT (+) Mycobacterium avium 2 0.01

P15 CSF Negative (CSF and blood) Negative Negative / /
P16 CSF Negative Sputum X-pert (+) Mycobacterium 2 0.01

(CSF and blood) Rasamsonia emersonii 1 0.01
August 2021 | Volum
e 12 | A
CMV, Cytomegalovirus; EBV, Epstein-barr virus; SMRN, strictly map reads number.
TABLE 2 | Comparison of positive results and agreement among mNGS, CMT
and culture method in patients.

Group mNGS-positive mNGS-negative Total number

CMT-positive 11 0 11
CMT-negative 4 1 5
Culture-positive 5 0 5
Culture-negative 10 1 11
Total number 15 1 16
rticle 696403
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P16 improved after treatment with isoniazid, rifampicin,
pyrazinamide, ethambutol, and linezolid. P1 and P2 died
within 1 year of JC virus infection. Pathological analysis of the
liver lesions in patient P6 were diagnosed as EBV-associated
leiomyosarcoma; the patient is still alive and awaiting HSCT. P13
died from severe infection caused by multi-drug resistant
Pseudomonas aeruginosa. Some patients (P1-P6, P10-P13, P16)
routinely received oral sulfamethoxazole to prevent pneumocystis
Frontiers in Immunology | www.frontiersin.org 6
carinii pneumonia or bacterial infection. In P11 and P12,
itraconazole was taken orally to prevent fungal infection.
DISCUSSION

There are several causes why it is difficult to identify pathogens in
PID. First, some patients have received antibiotics empirically
before pathogen identification, thereby reducing the chances of a
positive culture. Second, multiple concurrent infections and
atypical pathogens are common in patients with PID;
therefore, it can be difficult to identify the target pathogen
using traditional cultures, PCR, immunofluorescence analysis,
serological tests, and other CMT. Furthermore, because a
considerable number of patients with PID are deficient in
antibody production, antibody-dependent detection methods
are ineffective. Also, infection-related clinical and imaging
manifestations may appear atypical in patients with PID. These
characteristics pose a severe challenge to pediatricians, or even
PID experts, with respect to establishing specific etiology and
choosing appropriate tests. Therefore, rapid and effective
laboratory tests are necessary.

Reports on the use of mNGS to identify infections in
patients with PID are scarce, although many previous studies
recommend the use of mNGS for pathogen detection in patients
with secondary immunodeficiency disease and in intensive care
patients with life-threatening infections (5, 12–14). In November
A B

C

FIGURE 3 | Pathogens identified in PID patients using CMT and NGS. (A) The figure shows the number of subjects in whom each microbe was detected. Blue bars
indicate microbes detected by CMT and predicted to be pathogens by NGS (CMT+NGS+). Red bars indicate microbes detected by NGS only (CMT−NGS+).
(B) Distribution of pathogens in patients with PID. (C) Polymicrobial infection accounted for 73.33% of cases; different kinds of polymicrobial infection are shown.
FIGURE 4 | Overall sensitivity of mNGS and CMT in the different sample types.
August 2021 | Volume 12 | Article 696403
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2020, Chinese experts published an expert consensus on the
clinical application of China’s mNGS technology for detecting
infectious pathogens. They pointed out that for new, rare, and
treatment-refractory infectious diseases, and for patients with
immunocompromising disease, mNGS can improve the
pathogen detection rate significantly and can be used as the
first-line method of detection (19).

Several studies report low positivity rates by conventional
methods such as culture (20, 21). This study highlight the
capacity of mNGS to detect pathogens that are unidentifiable
by CMT. For example, P1–P3 had a suspected CNS infection,
although no pathogens were detected by CMT. However, mNGS
identified JC virus and toxoplasmosis. Moreover, most patients
with no pathogenic evidence of infection had received empirical
antibiotics. This led to side effects such as intestinal
dysbacteriosis, liver and kidney damage. The high incidence
of Stenotrophomonas maltophilia (3/15) in this study
maybe evidence for carbapenem abuse, in addition to
immunodeficiency itself. Therefore, mNGS may be used to
exclude fever as a sign of infection. Implementation of mNGS
as a rule-out strategy may reduce the abuse of antibiotics, as well
as the duration of antibiotic therapy, in these patients.

Previous studies demonstrate the utility of mNGS for
detecting pathogens that cause (or may cause) encephalitis,
bloodstream infections, lower respiratory tract infections, and
focal infections, in different sample types (5–14). Multiple case
reports describe the use of mNGS to identify viruses, bacteria,
fungi, and parasites in CSF and brain tissue (8, 10). A previous
study shows that compared with CMT, mNGS has a sensitivity of
73%, a specificity of 99%, a positive predictive value of 81%, and a
negative predictive value of 99%, for pathogen detection in CSF
(22). Another multicenter study found that mNGS of CSF
samples represents a potential step forward in the diagnosis of
meningoencephalitis, thereby guiding earlier and more targeted
treatments for neuroinvasive infections, and identifying
emerging infections and disease phenotypes (9). In terms of
the effectiveness and sensitivity of mNGS in different samples, we
found that the sensitivity of mNGS for detecting pathogens in
CSF, BALF, and blood samples was higher than that of CMT.
Also, a recent study showed that mNGS is more sensitive than
CMT for detecting pathogens in BALF, tissue, blood, and sputum
samples (23).

Several studies report that polymicrobial infections are one of
the most important features of immunocompromised hosts (24–
26). Several studies highlight the potential of mNGS to
supplement routine diagnostic methods in cases of co-infection
with multiple pathogens (5, 12, 13). Consistent with previously
studies, we found that 11 patients had polymicrobial infections;
in our hands, mNGS showed clear advantages over other
methods with respect to high detection efficiency and speed
(results obtained in 48 h).

Patients with PID are susceptible to infection by opportunistic
pathogens or rare pathogens (1, 2). We found that mNGS was
superior to CMT for identification of opportunistic pathogenic
microorganisms such as JC polyomavirus, Pneumocystis jirovecii,
and Stenotrophomonas maltophilia, and for detection of causative
agents that either had a relatively low culture rate or took a long
Frontiers in Immunology | www.frontiersin.org 7
time to culture (e.g., Mycobacterium). Stenotrophomonas
maltophilia is a common nosocomial opportunistic pathogen in
immunocompromised patients and in patients with Job’s
syndrome (27, 28). In the present study, P12 developed a liver
abscess caused by co-infection by Stenotrophomonas maltophilia
and Staphylococcus aureus; and was relieved by treatment with
linezolid and compound Sulfamethoxazole. Toxoplasmic
encephalitis (TE) is one of the most important neurological
opportunistic infections in T cell-deficient patients. Toxoplasma
gondii is difficult to culture and microscopic examination of CSF
is insensitive. TE can be identified by cranial imaging, PCR, and
antibody detection methods, whereas it highly depends on the
doctor’s experience. In addition, the serum anti-toxoplasma
antibody is always absent in PID patients (8). In patient P3, we
diagnosed TE by mNGS; this patient recovered after targeted
sulfamethoxazole treatment. The number of standard unique
reads for Mycobacterium and Pneumocystis jirovecii was lower
than that for other pathogens. It is difficult to obtain circulating
genomic DNA from intracellular bacteria (29); thus, low reads
can also provide clues for diagnosis. A previous study
demonstrates that for patients suspected of having TB, the
diagnostic ability of mNGS was similar to that of Xpert; and
mNGSmay be more suitable for scarce samples such as CSF (30).

However, mNGS still has some limitations. The host genetic
background and the background caused by bacterial
contamination creates “noise”, there are no uniform standards
for detailed experimental procedures, it is difficult to distinguish
infection from colonization, there is a lack of standardization
with bioinformatics analysis processes regarding cut-off values,
and data interpretation is tricky (22). It is extremely challenging
to confirm the true pathogenicity of multiple pathogen
infections, or opportunistic pathogen infections, detected by
mNGS in patients with PID. In fact, the CMT also facing this
problem. The microbe results must be interpreted in the context
of the clinical situation, including immune defect itself, clinical
manifestations and therapeutic effects.

This study has certain limitations. First, the sample size was
relatively small, and we did not categorize specific types of PID as
such a rare disease. Further studies should recruit a larger cohort
and categorize patients with specific types of PID to better
explore and describe the pathogen spectrum and its
relationship to deficiency subtype. Second, some of the patients
in our study received antibiotics therapy, which will affect the
diagnostic performance of both mNGS and CMT. Additionally,
RNA was not sequenced in all specimens for economic factors
and CMT include common RNA virus testing; therefore, rare
causes of infection (such as RNA viruses) may have been
partially missed. Finally, this was a single center retrospective
study so there is potential for bias. Besides, it is often unclear
whether microbes detected using mGNS are contaminant,
colonizer or pathogen, which need more study especially in PID.

In conclusion, our data suggest that mNGS results showed
higher agreement with the clinical diagnosis and took shorter
time. mNGS is a strong candidate for pathogenic diagnosis in
PID patients with suspected severe, mixed, complicated, or
treatment-refractory infections. The mNGS technology has
marked diagnostic potential for complementing routine
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diagnostic methods, particularly in the context of opportunistic
pathogens and mixed infections, or in cases with negative CMT
results. However, the identification of pollutants, colonizers or
pathogens still needs more study, which is also a problem faced
by CMT.
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