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Abstract

Tagging studies have been widely conducted to investigate the movement pattern of wild

fish populations. In this study, we present a set of length-based, age-structured Bayesian

hierarchical models to explore variabilities and uncertainties in modeling tag-recovery data.

These models fully incorporate uncertainties in age classifications of tagged fish based on

length and uncertainties in estimated population structure. Results of a tagging experiment

conducted by the Ontario Ministry of Natural Resources and Forestry (OMNRF) on yellow

perch in Lake Erie was analyzed as a case study. A total of 13,694 yellow perch were tagged

with PIT tags from 2009 to 2015; 322 of these were recaptured in the Ontario commercial

gillnet fishery and recorded by OMNRF personnel. Different movement configurations

modeling the tag-recovery data were compared, and all configurations revealed that yellow

perch individuals in the western basin (MU1) exhibited relatively strong site fidelity, and indi-

viduals from the central basin (MU2 and MU3) moved within this basin, but their movements

to the western basin (MU1) appeared small. Model with random effects of year and age on

movement had the best performance, indicating variations in movement of yellow perch

across the lake among years and age classes. This kind of model is applicable to other tag-

ging studies to explore temporal and age-class variations while incorporating uncertainties

in age classification.

Introduction

Individual movement can have profound consequences for populations by influencing their

distribution and abundance, dynamics and persistence, and ecological community structure

[1–3]. A full understanding of individual movement behavior helps assess interactions among

animals in different locations and is crucial for defining stock structure and developing effec-

tive population management strategies [4–6]. Numerous studies have revealed the risks of

reduced stock biomass and high probability of overexploitation owing to ignoring individual
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movements across local populations in fisheries management [e.g. 7–9]. Although many spe-

cies exhibit a variety of movement patterns, and stock identification techniques reveal complex

spatial stock structure [e.g. 10,11], few studies incorporate spatial structure into stock assess-

ment frameworks initially due to limited data to accurately estimate movement patterns [12].

The other impediment is computing power [12]. Fitting individual movement data into stock

assessment would complicate model structure and increase the difficulty in model conver-

gence, probably resulting in worse model performance. Over the past few decades, computa-

tional advancements make incorporation of movement data into assessment possible [12,13].

For large mammals, direct observations of individual movement are possible, but for other

species like fishes, it is generally difficult to obtain information on individual movement from

direct observation, and therefore tagging has been widely used in fishery research and move-

ment study [14]. Tags generally contain specific identification information and can be attached

to individuals externally or internally [14]. External tags, such as transbody, dart-style and

internal-anchor tags, are inexpensive, easily visible and widle used, but are usually restricted to

large fishes and with high tag loss [15]. Internal tags, such as coded wire, passive integrated

transponder and visible implant tags, are inserted or injected into the fish and carried inter-

nally [15]. Internal tags generally show good retention rates, and are much smaller than exter-

nal tags, so can be used on small fishes [15]. These external and internal tags have been widely

used in tag-recovery and capture-recapture studies [16,17]. Tag-recovery studies are those in

which individuals are tagged, released, and subsequently harvested as in a commercial fishery;

while capture-recapture studies are those in which individuals are tagged, released, and recap-

tured on multiple sampling occasions [18]. Tag-recovery and capture-recapture data provide

information on when and where individuals were tagged, characteristics of those individuals

at the time of tagging, and when and where they were recovered [16]. Telemetry-based

approaches, such as acoustic telemetry and archival tags, provide a continuous location track

as opposed to discrete start/stop endpoints but are high-cost; therefore, combining telemetry

tags with conventional tags is often the optimal approach [19].

Analysis of tagging data to estimate individual movement has received considerable atten-

tion in fisheries research [e.g. 16,20,21]. A spatial extension of the traditional Brownie model

[22] have been widely used to derive movement probability from tagging data [20,21]. The spa-

tial Brownie models separate parameters for survival and movement rates, and parameterize

survival and recovery rates in terms of instantaneous natural morality and fishing mortality

rates [20,21,23]. Interactions between individual movement and age class, time, and region

make the movement process complex and difficult to understand [24]. These parameters can

be included in the process model as random factors, so individual movement can be age-,

year-, and region-dependent and modeled by formulating hierarchical structures [20,21].

To incorporate age-dependent variation in movement requires that the ages of tagged indi-

viduals be known. Intrusive ageing procedures, e.g., ageing by collecting and reading bony

parts of the fish, should be avoided because these procedures would decrease survival of col-

lected individuals and complicate subsequent analyses. Alternatively, nonlethal ageing such as

fin-ray analysis is recommended [25]. In addition, total length of tagged individuals can be

recorded non-intrusively, and age probabilities are then derived from concurrent age-length

frequency data [26], which is a fast ageing approach. Most existing published tagging models

assume that ages at tagging determined from length or from direct ageing of hard parts are

known without error [e.g. 20,21]. When ages are determined from scales, biases are not

expected; however, when ages are determined from length, biases can exist [20]. The sample

size used to derive age-length frequency has an influence on the accuracy of the age-length

relationship [27,28]; the uncertainty in age structure owing to age-length data needs to be

considered.
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In the present study, we developed a set of length-based, age-structured hierarchical models

from tag-recovery data to quantify the movement patterns of yellow perch (Perca flavescens) in

Lake Erie. Yellow perch support one of the most important fisheries in Lake Erie and contrib-

ute substantially to local economy and society [29,30]. The yellow perch fishery is managed by

an interagency quota system. The Yellow Perch Task Group (YPTG), which is composed of

provincial and state biologists, uses scientific approaches to establish a recommended allow-

able harvest annually. The Lake Erie Committee uses the recommended allowable harvest to

determine a total allowable catch within each of four management units (MUs, Fig 1) in order

to sustain the yellow perch population at a level that supports a consistent harvest [31]. Bound-

aries of the MUs were drawn based on a socioeconomic basis, such as political boundaries and

at least one major port within each MU. Recent genetic [32] and spatial heterogeneity in fish

distribution [33] studies suggested intermixing of yellow perch among MUs in Lake Erie. Only

very limited studies have been done to understand inherent spatial structure and movement

patterns of yellow perch in Lake Erie, and movement rates between stocks are unknown and

have not been incorporated into stock assessment models. Simulation of movement patterns

of yellow perch across MUs based on tag-recovery data could be used to improve the current

management regime. Variations in movements across time and age classes and uncertainties

in age classification were incorporated into these models. Bayesian approaches were used to

construct these hierarchical models and provide straightforward estimates of parameters [34].

Methods

Case study: Yellow perch tagging experiment in Lake Erie

In 2009, the Ontario Ministry of Natural Resources and Forestry (OMNRF) began a yellow

perch tagging experiment to understand the spatial exploitation pattern of local populations of

Fig 1. Spatial units of Lake Erie. Tag release locations in MU1 are marked by dark green dots, tag release locations in MU2 are marked by dark red dots, recapture

locations where recovered fish were tagged and released from MU1 are marked by green triangles, and recapture locations where recovered fish were tagged and released

from MU2 are marked by red diamonds. Note that tag release locations are exact location accurate to the nearest 0.01˚, while recapture location is only accurate to the

nearest 1 min grid.

https://doi.org/10.1371/journal.pone.0243423.g001
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tagged fish and to provide independent population estimates with the YPTG stock assessment

report. Every year in March and April, spawning or post-spawn yellow perch caught in bottom

trawls were collected for the tagging experiment. Passive integrated transponder (PIT) tags

were injected into muscle tissue ventrally, anterior to the pelvic fins. A total of 13,694 yellow

perch were tagged and released by OMNRF from 2009 to 2015, of which 76% were released

from MU1 and 24% were released from MU2 (Table 1). Biological information, such as total

length, were recorded for each tagged fish.

Yellow perch caught by the Ontario commercial fishery were scanned for PIT-tagged fish at

ports and in the laboratory by OMNRF and at fish processing plants using racket antennae

and readers by the Ontario Commercial Fisheries’ Association (OCFA). Only a sample of the

commercial catch was scanned; the proprtions of scanned yellow perch within the total com-

mercial catch (by weight) organized by year and MU is presented in Table 2. Tagged yellow

perch were recovered in a four- to five-year period following the tag release. Yellow perch

tagged in 2009 and 2010 were not seen after 2013, yellow perch tagged in 2011 were not seen

after 2014, and yellow perch tagged after 2011 were recovered until 2015.

Ohio started scanning from 2013 to 2015, and recovered 10 yellow perch that were tagged

in Ontario. Due to the limited space and time coverage and scarcity of tags recovered from U.

Table 1. Numbers of yellow perch PIT-tagged, recovered and not-recovered in each MU from 2009 to 2015.

Tag year Tag region Recovery region Recovery year Not recovered

2009 2010 2011 2012 2013 2014 2015

2009 MU1 3,557 MU1 40 7 8 2 1 0 0 3,483

MU2 3 4 5 1 0 0 0

MU3 1 1 0 1 0 0 0

2010 MU1 3,782 MU1 - 9 14 10 2 0 0 3,734

MU2 - 5 3 3 0 0 0

MU3 - 1 0 1 0 0 0

2011 MU2 1,875 MU1 - - 0 2 1 2 0 1,829

MU2 - - 5 11 2 0 0

MU3 - - 5 14 3 1 0

2012 MU1 2,837 MU1 - - - 28 23 14 3 2,745

MU2 - - - 16 4 2 0

MU3 - - - 1 1 0 0

MU2 124 MU1 - - - 0 0 1 0 118

MU2 - - - 2 3 0 0

MU3 - - - 0 0 0 0

2013 MU1 219 MU1 - - - - 5 3 0 210

MU2 - - - - 0 1 0

MU3 - - - - 0 0 0

MU2 294 MU1 - - - - 0 0 0 275

MU2 - - - - 4 0 4

MU3 - - - - 6 3 2

2014 MU2 787 MU1 - - - - - 1 0 764

MU2 - - - - - 5 4

MU3 - - - - - 7 6

2015 MU2 219 MU1 - - - - - - 0 214

MU2 - - - - - - 2

MU3 - - - - - - 3

Total 13,694 322 13,372

https://doi.org/10.1371/journal.pone.0243423.t001
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S. waters, the present study only considered yellow perch movement across MUs in Canadian

waters, where PIT tag releases were conducted only in MUs 1 and 2, and tagged yellow perch

were recovered only from MUs 1, 2 and 3. Although the zero recovery in MU4 was potentially

resulted from the low scanning rates in this region (Table 2), benthic ridges (i.e., Long Point–

Erie Ridge, Clear Creek Ridge, and Pennsylvania Ridge) between MUs 3 and 4 tend to isolate

MU4, as demonstrated by results of spatial heterogeneity analyses of yellow perch distribution

[33]. Therefore, in this study, only MUs 1, 2 and 3 were considered.

Age-structured movement model

An age-structured spatial tag-return model was used to describe the dynamics of the tagged

fish population among the respective MUs. This type of model has been applied to various

fisheries [e.g. 20,21,35]. Symbols used in model equations include variables, estimated parame-

ters and fixed quantities are listed in S1 Table. The probability of an age-a fish tagged in year ty
in region k, and harvested and reported in year fy from one of the regions was:

Pa;ty;k;fy ¼

πa;ty;k � ua;fy � λfy; fy ¼ ty

πa;ty;k � Sa;ty � . . .� πaþfy� ty� 1;fy� 1 � Saþfy� ty� 1;fy� 1

�πaþfy� ty;fy � uaþfy� ty;fy � λfy; fy > ty

8
>><

>>:

ð1Þ

where bold symbols represent vectors and matrices, and regular symbols represent scalars,

operator × denotes matrix product, operator � denotes Hadamard product or element-wise

product, matrix πa,y is composed of row vectors πa,y,k denoting movement probability of age-a
fish from region k to all regions including region k in year y, exploitation vector ua,fy is com-

posed of exploitation rates ua,fy,k of age-a fish in year fy from region k, survival vector Sa,y is

composed of survival rates Sa,y,k of age-a fish in year y in region k, and reporting rate vector λfy
is composed of reporting rates λfy,k in year fy from region k. We assumed 100% tag retention

rate in terms of the high rention rate of PIT tag [36]. Tag reporting rates were assumed to be

equal to the proportions of yellow perch scanned within the commercial catch (Table 2), and

treated as fixed quantities in the models.

The exploitation rate of age-a fish in year fy from region k was:

ua;fy;k ¼
saFk;fy

saFk;fy þM
1 � Sa;fy;k
� �

ð2Þ

where sa denotes selectivity of commercial gillnet fishery on age-a fish, Fk,fy denotes commer-

cial gillnet fishing mortality in region k in year fy, M denotes instantaneous natural mortality

and Sa,fy,k denotes age-specific survival rate in region k in year fy. The age-specific survival rate

was modeled as:

Sa;fy;k ¼ expð� saFk;fy � MÞs0aÞ ð3Þ

Fishing mortality varied for each year and each region, and each fishing mortality had a

Table 2. Proportions of yellow perch scanned within the commercial catch (by weight) in MUs 1 to 4 from the Ontario commercial fishery from 2009 to 2015.

MU 2009 2010 2011 2012 2013 2014 2015

1 0.29 0.20 0.41 0.50 0.51 0.49 0.52

2 0.19 0.21 0.38 0.43 0.46 0.44 0.44

3 0.09 0.14 0.25 0.29 0.32 0.34 0.33

4 0.01 0.03 0.01 0.00 0.02 0.00 0.00

https://doi.org/10.1371/journal.pone.0243423.t002
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uniform prior over the interval (0, 1). The selectivity was modeled as a double logistic curve

that can produce a dome-shaped relationship between selectivity and age, which is appropriate

for gears such as gillnets and trap nets. The double logistic curve equation was:

sa0 ¼
1

1þ expð� Z2ða � Z1ÞÞ

� �

1 �
1

1þ expð� Z4ða � Z3ÞÞ

� �

ð4Þ

where η1 and η3 are inflection points for the first (increasing) logistic curve and the second

(decreasing) logistic curve, and η2 and η4 are the slopes of the two curves. The inflection points

η1 and η3 were given uniform priors over (1, 6), and slopes η2 and η4 were given uniform priors

over (0, 10). Commercial gillnet selectivity was standardized to ensure that at least one age

class was fully selected as:

sa ¼ s0a=maxðs0aÞ ð5Þ

The instantaneous natural mortality was assumed to be 0.4 per year in the stock assessment

done by YPTG [37]. Because the present study area is an open system—for example, the fish-

ery take of tagged fish from the U.S. side of the lake would be accounted by the natural mortal-

ity component in the model—the annual natural mortality rate was expected to be greater than

0.4, but can be much larger due to fisheries other than than the commercial gillnet fishery. The

natural mortality was modeled with a uniform prior over the interval (0.2, 2).

Movement configurations

Movement probabilities per region, including the probability staying in the natal region, were

estimated through a Dirichlet prior distribution with elemental gamma hyperprior random

variables that constrained movement probabilities to be between 0 and 1 and to sum to 1 [38]:

pk;k’ ¼
gk;k’P

k’¼1;2;3
gk;k’

ð6Þ

gk;k’ � gammað1; 1Þ ð7Þ

where γ is movement parameter. In this way, the Dirichlet priors were weakly informative that

had little influence on posterior distributions, so results were mostly derived from data. Prior

density was a post-model pre-data distribution associated with movement probabilities based

on the Dirichlet priors on the movement parameters, and priors on year or age effects if

included. A relatively large movement parameter indicated a preference to move into or stay

in a particular region, and a relatively small movement parameter indicated a preference to

stay away from that region.

Both temporal and age-specific variations in the movement of yellow perch across MUs

were modeled through random effects and fixed effects. The setting of random effects reduced

the effective number of parameters while still allowing movement to vary by year and age. An

initial-year correction was considered to reduce the bias caused by partial dispersal in the ini-

tial year after release.

Constant movement. A model with constant movement scenario (termed Model C) was

developed first, against which different scenarios of temporal and age-specific variations were

compared. For the constant movement scenario, the probability of a tagged fish moving from

region k to region k’ was modeled as Eqs 6 and 7.

Fixed effects by year. The pattern of yellow perch movement across MUs might differ

across years. In the second scenario (termed Model YF), a separate set of movement parame-

ters was estimated for each year. Effectively, movement parameters were estimated as fixed
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effects across years. The probability of moving from region k to region k’ in year y was:

pk;k’;y ¼
gk;k’;y

P
k’¼1;2;3

gk;k’;y
ð8Þ

gk;k’;y � gammað1; 1Þ ð9Þ

Random effects by year. In the third scenario (termed Model YR), instead of independent

uniform priors, the logarithms of movement parameters were modeled as normally distributed

with a common variance parameter τ. The movement parameter for a tagged fish moving

from region k to k’ in year y was:

logðgk;k’;yÞ � Nðlogðck;k’Þ; tÞ ð10Þ

ck;k’ � gammað1; 1Þ ð11Þ

where ψk,k’ was the parameter to estimate. The parameter τ had a uniform prior over the inter-

val (0, 1). Movement probability was computed as shown in Eq 8.

Fixed effects by age. The movement pattern also might exhibit age-class differences. In

the fourth scenario (termed Model AF), a separate set of movement parameters was estimated

for each age. The probability of a tagged age-a yellow perch moving from region k to k’ was:

pk;k’;a ¼
gk;k’;aP

k’¼1;2;3
gk;k’;a

ð12Þ

gk;k’;a � gammað1; 1Þ ð13Þ

Random effects by age. In the fifth scenario (termed Model AR), age-class variations in

movement were modeled as normal variates with a common variance parameter ω, and the

movement parameter for a tagged age-a fish moving from region k to k’ was:

logðgk;k’;aÞ � Nðlogð�k;k’Þ;oÞ ð14Þ

�k;k’ � gammað1; 1Þ ð15Þ

where ϕk,k’ was the parameter to estimate, and ω had a uniform prior over the interval (0, 1).

Movement probability was computed as shown in Eq 12.

Random effects by age and year. In the sixth scenario (termed Model AY), both temporal

and age-class variations were incorporated into the movement model. In this case, the move-

ment pattern of yellow perch was allowed to change both for time and age-class. This model

was the most general case among all seven movement models considered. In this model, the

probability of a tagged age-a fish moving from region k to k’ in year y was:

pk;k’;a;y ¼
gk;k’;a;y

P
k’¼1;2;3

gk;k’;a;y
ð16Þ

The movement parameter γk,k’,a,y was indexed by both age and year. Age-class variations in

movement were modeled as normally distributed with a common variance parameter νa, and

year-variations in movement were nested in age classes and were modeled as normally
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distributed with a common variance parameter νy:

logðdk;k’;aÞ � Nðlogðφk;k’Þ; naÞ ð17Þ

logðgk;k’;a;yÞ � Nðlogðdk;k’;aÞ; nyÞ ð18Þ

φk;k’ � gammað1; 1Þ ð19Þ

where νy and νa had a uniform prior over the interval (0, 1).

Random effects by age and year with initial year correction. During the entire study

period, newly tagged yellow perch were released into Lake Erie only in April and May by

OMNRF personnel, and the scanning process was continuous from March to December. In

the models specified above, there was the assumption that immediately after release, tagged

fish fully dispersed according to the movement matrix. This assumption might not hold,

because the first year post-release was a partial year compared to subsequent years, and tagged

fish might not fully disperse to other regions as in the subsequent years. This would introduce

a systematic bias into the model, as we expected to recover more tagged fish in the region of

release and fewer tagged fish from other regions during the initial year than predicted. In this

scenario (termed Model AYc), we introduced an adjustment factor to the movement matrix to

test the assumption of full dispersal during the initial year. The probability of a tagged fish stay-

ing in the region of release, for example, in region 1, during the initial year was:

pinit
1;1
¼ p1;1 þ ð1 � ratioÞðp1;2 þ p1;3Þ ð20Þ

with the probability of moving to region 2 and region 3 to be a fraction of the original percent-

age:

pinit
1;2
¼ ratio� p1;2 ð21Þ

pinit
1;3
¼ ratio� p1;3 ð22Þ

where ratio was the adjustment factor to be estimated. To keep the new movement probabili-

ties positive, the adjustment factor ratio was given a uniform prior over the interval (0, 1),

where 0 denotes completely small movement during the initial year and 1 denotes full move-

ment during the initial year. Specifically, a 58% (i.e, 7/12) movement during the initial year

was hypothesized if movement events are evenly distributed through the remaining seven

months of the initial year.

Age classifications

To determine age compositions, age-length relationships were constructed from partnership

gillnet surveys conducted by OMNRF in the fall each year. A total of 131,469 yellow perch

were aged by otolith readings from 1989 to 2015. Sample sizes varied across length classes and,

to include the uncertainty that sample size variation introduced, the age composition of each

length-class was modeled as multinomially distributed:

nl � Multinomialðκl;NlÞ ð23Þ

where vector nl denotes the observed age-specific abundance of length-class l, κl denotes the

state variable of the age composition of length-class l, and Nl denotes sample size for length-

class l.
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Likelihood

Both recovered and unrecovered tags contributed to the likelihoods of the models. The proba-

bility of an individual, originally tagged and released from region tk in year ty from length

class l, and recovered from region fk in year fy was:

Prrecapty;tk;fy;fk;l ¼
X6þ

a¼1

kl;a � Pa;ty;tk;fy;fk ð24Þ

where κl,a denotes the state variable of the proportion of age-a individuals in the tagged sample in

length-class l, the summation is over all the age classes and Pa,ty,tk,fy,fk denotes the age-specific proba-

bility of recovering a fish in year fy and region fk, originally tagged at age-a in region tk and year ty.

The probability of a tagged fish being not-yet-recovered was the probability of not observ-

ing it in the years subsequent to the tag release. Thus, the probability of a yellow perch, origi-

nally tagged and released from region tk and year ty from length-class l not being recovered

through 2015 was:

Prat largety;tk;l ¼
X6þ

a¼1

kl;að1 �
X2015

fy¼ty

X3

fk¼1

Pa;ty;tk;fy;fkÞ ð25Þ

where the first summation is over all the age classes, the second summation is over all years

after the tag release, and the third summation is over all spatial regions.

Tags recovered in year fy from region fk, originally tagged and released in year ty from

region tk belonging to length class l and those unrecovered tags were assumed to be multino-

mially distributed with negative log likelihood:

NLL ¼ �
X

ty

X

tk

X

l

X

fy

X

fk

drecap
ty;tk;fy;fk;l logðPr

recap
ty;tk;fy;fk;lÞ þ dat large

ty;tk;l logðPr
at large
ty;tk;l Þ

� �
ð26Þ

where NLL is negative log-likelihood, drecap
ty;tk;fy;fk;l is number of fish tagged and released in year ty

from region tk belonging to length class l and recovered in year fy from region fk, dat large
ty;tk;l is num-

ber of unrecovered fish tagged and released in year ty from region tk belonging to length class l.

Model fitting and comparison

Bayesian methods were used because of their convenience for specifying hierarchical models.

To simulate Markov Chain Monte Carlo (MCMC) samples from the posterior, we used JAGS

4.0 [39] with R packages rjags [40] and runjags [41] in statistical program R [42]. For each

model, five chains with different initial conditions were simulated, and the convergence of dif-

ferent chains was checked by Gelman-Rubin convergence diagnostics [43].

Model performance was compared based on deviance information criterion (DIC) [44],

Watanabe-Akaike information criterion (WAIC) [45], and leave-one-out cross-validation

(LOO) [46]. The DIC is defined as:

DIC ¼ �D þ pD

where �D is the posterior mean of the deviance, and pD is an estimate of the number of parame-

ters in the model.

The WAIC is defined as:

WAIC ¼ � 2 � ðLPPD � pDÞ

where LPPD is the log posterior predictive density.

PLOS ONE Detect movement patterns from tag-recovery data

PLOS ONE | https://doi.org/10.1371/journal.pone.0243423 December 7, 2020 9 / 21

https://doi.org/10.1371/journal.pone.0243423


The LOO is defined as:

LOO ¼
Xn

i¼1

logpðyijy� iÞ

where y−i denotes the observations y with the ith component removed. It expresses the poste-

rior probability of observing the value of yi when the model is fitted to all data except yi.
The LOO was computed using Pareto smoothed importance sampling, which provides a

more accurate and reliable estimate by applying a smoothing procedure to the importance

weights [46,47]. The WAIC and LOO were computed with R package loo [48]. The DIC is

known to have some problems, like producing a negative estimate of pD, but the WAIC is

more stable because it is fully Bayesian and therefore uses the entire posterior distribution

[46]. The LOO is more robust than WAIC in the finite case with weak prior or influential

observations [46]. A smaller value of DIC, WAIC or LOO indicates a better model perfor-

mance. If all of the three criterions showed the same preference for a model, we had more evi-

dence that the preference was correct.

Results

Model comparison

The DIC, WAIC and LOO results for seven models with different yellow perch movement

configurations are presented in Table 3. The Gelman-Rubin statistic for all the posterior sam-

ples were found to be smaller than 1.1, and thus the convergence of the posterior was validated.

Four movement models with random variations in age and/or year (Models AY, AR, YR and

AYc) achieved better performance than the model with constant movement (Model C) in

terms of having smaller DIC, WAIC and LOO values (Table 3). The model incorporated both

temporal and age-class hierarchical variations for the movement parameters (Model AY) per-

formed best with the smallest DIC, WAIC and LOO values. Models with either fixed effects by

year or by age on movement matrix (Model YF and AF) produced relatively poor fit to the

data, with larger DIC, WAIC and LOO values than other models.

In terms of DIC, WAIC and LOO values, we recommended Model AY. To further validate

Model AY, we compared results on movement probabilities from Models AY, AR and C. The

estimates of movement probabilities or the tagging model itself would be integrated into the

long-term stock assessement and aid in fishery management. With only 7-year tagging data in

hand, contant or age-varied movement scenario (Model C or AR) might be more meaningful

for management purposes.An initial-year adjustment factor was added to the movement

Table 3. Deviance information criterion (DIC), Watanabe-Akaike information criterion (WAIC) and leave-one-out cross-validation (LOO) of yellow perch models

with different movement configurations.

Model Description DIC ΔDIC WAIC ΔWAIC LOO ΔLOO

AY Random effects by age and year 4049.06 0 4071.30 0 4071.70 0

AR Random effects by age 4054.46 5.40 4072.40 1.10 4072.80 1.10

AYc Random effects by year and age with initial year correction 4049.38 0.32 4072.60 1.30 4072.90 1.20

YR Random effects by year 4053.32 4.26 4074.40 3.10 4074.80 3.10

C Constant 4057.78 8.72 4075.20 3.90 4075.60 3.90

AF Fix effects by age 4065.00 15.94 4086.70 15.40 4087.00 15.30

YF Fixed effects by year 4063.74 14.68 4086.50 15.20 4087.20 15.50

Models are ordered according to their ΔLOO values.

https://doi.org/10.1371/journal.pone.0243423.t003
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matrix of model AY to adjust for the possibility of less movement during the initial, partial

year, but the adjusted model (Model AYc) did not produce a fit to data superior to the unad-

justed model (Table 3). The posterior estimate of the adjustment factor also indicated that the

movements during the initial year were largely complete compared to those in subsequent

years (S1 Fig). The posterior was concentrated at the higher end of the graph, which indicated

complete dispersal. The upper 95% of the posterior density lay above 72%, which was larger

than the hypothesized 58% level. These results suggested that yellow perch movement occurs

mostly after March and April within a calendar year.

Movement patterns of yellow perch

Age- and year-specific yellow perch movement patterns from the best-supported model

(Model AY) are shown in Fig 2. Generally, most yellow perch in MU1 stayed in MU1 (Fig 2A).

Yellow perch in MU2 were more likely to move to MU3 or stay in MU2 (Fig 2B). Yellow perch

in MU3 were more likely to stay in MU3 or move to MU2 (Fig 2C). Uncertainties on move-

ment probabilities π2,2, π2,3, π3,1, π3,2 and π3,3 were larger owing to less fish tagged and released

from MU2 and no fish tagged and released from MU3 (Table 1), as well as lower tag reporting

rate in MU3 (Table 2). The posterior densities for π3,1 were little changed compared with the

prior density (Fig 2C), due to limited information as stated above.

Individuals in MU1 showed stronger site fidelity in 2013 (Fig 3A), individuals in MU2

showed a larger tendency to move to MU3 in 2011 (Fig 3B), and individuals in MU3 showed

stronger site fidelity in 2012 and 2014 (Fig 3C). Age-4 individuals were more likely to move

outwards–from MU1 to MU2 (Fig 4A), from MU2 to MU3 (Fig 4B), from MU3 to MU2 (Fig

4C), and age-6+ in MUs 2 and 3 were more likely to stay in the natal region (Fig 4B and 4C).

Age-specific movement patterns from Model AR are shown in S2 Fig. Age-4 fish were more

likely to move outwards, such as moving from MU1 to MU2, from MU2 to MU3, from MU3

to MU2, which was consistent with results from Model AY. Constant movement patterns

from Model C are shown in S3 Fig. Models AY, AR and C all revealed that yellow perch

Fig 2. Movement probability of a tagged yellow perch from each age class in each year derived from Model AY. In each panel, solid lines denote posterior densities,

dotted line denotes prior density, and shaded areas indicate 95% credible intervals.

https://doi.org/10.1371/journal.pone.0243423.g002
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individuals in MU1 exhibited relatively strong site fidelity, and individuals from MUs 2 and 3

were likely to move between these units, but movement from MUs 2 and 3 to MU1 appeared

limited. Although year and age-variations in movement probabilities derived from Model AY

(Figs 3 and 4) were not substantial, there were obvious differences on posterior medians in

some years and age classes, for example, posterior median of movement probability π1,1 in

2013 was 0.90 that was 3–5% greater than π1,1 in other years; posterior median of movement

probability π2,3 in 2011 was 0.70 that was 3–5% greater than π2,3 in other years; posterior medi-

ans of movement probability π3,3 in 2012 and 2014 were 0.65 and 0.63 respectively that were

3–9% greater than π3,3 in other years; posterior median of movement probability π1,2 at age-4

was 0.13 that was 30–184% greater than π1,2 at the rest age classes; posterior median of move-

ment probability π2,3 at age-4 was 0.72 that was 2–10% greater than π2,3 at the rest age classes;

posterior median of movement probability π3,2 at age-4 was 0.33 that was 29–58% greater than

π3,2 at the rest age classes. Furthermore, Model AY performed best with the smallest DIC,

WAIC and LOO values (Table 3), so it was recommended to better understand year-variations

Fig 4. Age-varied year-average movement probability of a tagged yellow perch. In each vertical line, solid diamond represents posterior median, solid interval

represents interquartile range of posterior, and dash line represents 95% credible interval.

https://doi.org/10.1371/journal.pone.0243423.g004

Fig 3. Year-varied age-average movement probability of a tagged yellow perch. In each vertical line, solid diamond represents posterior median, solid interval

represents interquartile range of posterior, and dash line represents 95% credible interval.

https://doi.org/10.1371/journal.pone.0243423.g003
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in fish movement probabilities, which might be linked to environmental changes. Model AR

was recommended when integrating short-term tagging data with long-term fisheries data.

Additional biological and fishery-related parameter estimates

Additional biological and fishery-related parameters were estimated from Model AY. The esti-

mated natural mortality was greater than 0.4 with a posterior median of 1.36 and a 95% credi-

ble interval of (1.19, 1.53), as expected, because of the uncounted fishing mortality from the U.

S. side of Lake Erie (Fig 5A). The selectivity of the commercial gillnet fishery was greater for

age-4, 5 and 6 (Fig 5B). Estimates of fishing mortality in the commercial gillnet fishery varied

among MUs and came with large uncertainties (Fig 5C). The fishing mortality in MU1

between 2009 and 2013 was estimated with relatively high precision due to the large number of

tagged fish released in MU1. Similar results were derived from Model AR and C (S4 and S5

Figs). Point fishing morality estimates from stock assessment [49] was within the 95% credible

intervals derived from Model AY for MU1 from 2010 to 2015, for MU2 in 2014 and 2015, and

for MU3 in 2014 and 2015, which had more fish tagged and released. Larger sample size would

be required for tagging study to derive more accurate results. The current stock assessment

ignored fish movement across MUs [49], which also potentially led to differences in fishing

mortality estimates.

Discussion

Although tagging models have been widely used to estimate population parameters such as

mortality and movement, the spatially structured tagging model framework is relatively new

[20,21,35]. In this study, spatial-structured tag-return models were developed and adapted to

the Lake Erie yellow perch population that is managed within discrete MUs, and age and year-

dependent variations were addressed. There have been only a few studies of spatially struc-

tured tagging models or integrated models applied to real-world data to directly estimate

movement rates [e.g. 20,21,50–52]. Our framework using Bayesian analysis provides a robust

approach to simultaneously estimate movement, survival and exploitation rates, and to evalu-

ate the uncertainties of parameter estimates.

Model assumptions

The models developed in this study require a series of assumptions that may be not satisfied in

practice. Our models assume that fish move between regions at the beginning of each year,

and that once they move, the fish immediately takes on the demographic rates of the new

stock, which may not be true in the real world. Movements occur seasonally, over a short

time-period, or as functions of environmental factors or population density for many popula-

tions [53,54]. It is possible to develop models with end-of-year movements or continuous

movements throughout each year, if these behaviors are considered more appropriate [e.g.

20,23]. However, complex movement assumptions need more parameters that maybe more

than that could be reliably estimated with the current data. Models with end-of-year move-

ments have been found to cause potential biases in movement estimates [55].

Our models assume no tag shedding or tag-induced mortality. Further, our models assume

a constant natural mortality for all age classes. The natural mortality rate is estimated with a

posterior median of 1.36 and a 95% credible interval of (1.19, 1.53), which is much larger than

the 0.4 used by the YPTG. This could have been caused by many factors, including fishing

activities other than the Ontario commercial gillnet fishery, bycatch, migration outside of the

study area, tag shedding and tag-induced mortality. Point estimates of commercial trap net

and angler fishing mortality rates in the U.S. waters estimated from the YPTG stock
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assessment model [49] are plotted in S6 Fig. The sum of these two fishing mortality rates is

large in MU2 in 2014 and 2015 (> 0.4). If a large proportion of the estimated natural mortality

is actually fishing mortality from U.S. waters, our models is overestimating the natural

Fig 5. Estimations of additional biological and fishery-related parameters from Model AY. (a) Posterior density of natural mortality. Blue dotted line indicates

posterior median. Ribbon indicates 95% credible interval. (b) Posterior estimates of age-specific selectivity. Solid lines and points indicate posterior median values.

Ribbons indicate 95% credible intervals. (c) Posterior estimates of year-specific commercial fishing mortality within each MU. Solid lines and points indicate posterior

median values. Ribbons indicate 95% credible intervals. Point estimates from the YPTG stock assessment model for each region were denoted by asterisks.

https://doi.org/10.1371/journal.pone.0243423.g005
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mortality of young (pre-selected) fish. Additional information could be collected to account

for other factors; for example, double-tagging experiments have been widely used to quantify

tag-shedding [54,56–58].

In addition to the above assumptions, our models make the usual assumptions for tag-

recovery models: the tagged fish mix with untagged populations completely; the tagged fish are

a representative sample of the fish in a particular region; the fate of each fish is independent of

that of other fish; fish in a given age-class, region and year have the same survival, movement

and capture probabilities [22,59].

Although yellow perch, both in Lake Erie and in most reported freshwater systems, usually

show sex-specific growth, maturity and likely also migration [60], our models assume no dif-

ference in movement across MUs between sexes because of the high differences in sample size

between males and females and the large proportion of individuals of unknown sex. The cur-

rent sample size for females is much lower than that of males both in tagging and capture

across MUs (5,873 tagged males, 268 tagged females), and more than 50% of the tagged fishes

(7,547) have unknown sex. Because of the imbalance in fish of known sex and the number of

sex-undocumented individuals at more than 50%, any sex-specific difference in movement

that is detected in these data may not reflect the underlying reality.

Unlike most published tagging models that assume that ages at tagging are known without

error [e.g. 20,21,54], our models consider the uncertainties in age classification. This approach

can reduce biases on parameter estimations, especially when the release ages are determined

from length and a given age-length relationship in studies like our case study.

Movement patterns of yellow perch in Lake Erie and management

implications

The movement patterns of yellow perch in Lake Erie showed age- and year-dependent varia-

tions. There were substantial fish movements between MUs 2 and 3 in all tagging years. Winter

(i.e. December–February) mean North Atlantic Oscillation (NAO) index [61], annual average

water level, annual maximum ice cover and annual average surface temperature in the lake

[62] (Fig 6) are considered to affect year-dependent variations in movement patterns.

The high annual average surface temperature and low ice cover associated with high winter

NAO index in 2012 indicate a reatively short, warm winter (Fig 6). In 2012, fish in MU1

tended to move to MU2, and fish in MUs 2 and 3 tended to stay in their original regions (Fig

3). Previous research reveals that shorter and warmer winters resulting from higher water tem-

perature might cause lower annual recruitment of yellow perch and increased food scarcity for

surviving juveniles [63], and cooler temperatures probably contribute to a favorable habitat in

the deeper central basin of Lake Erie.

Movements of yellow perch tend to follow the water circulation pattern of the lake on a

large scale [64–66]. High water level might accelerate water movement, helping fish to move

across a large scale. Regression analyses revealed that water level displayed a significant posi-

tive impact on posterior medians of year-varied age-average movement probability π2,3 (p-

value < 0.05). The relatively high water levels in 2011 and 2015 (Fig 6) may have contributed

to the larger tendency of fish moving between MUs 2 and 3 (Fig 3).

The most common movements of MU2 fish are to MU3, and the most common move-

ments of MU3 fish are to MU2. Of the age classes, age-4 fish show the greatest tendency to

make these movements. The mechanisms behind the age-dependent variations may be related

to age-specific patterns of maturation, reproduction, and predation, etc.

The movement estimates provide useful implications regarding yellow perch in Lake Erie.

Stock assessments might be improved by considering the movement between MUs 2 and 3.
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Stocks with greater outward movement rates and consequent reduction in numbers will gener-

ally be more vulnerable to overharvest.

Overall, the age-structured spatial tag-return models developed in the present study provide

an opportunity to explore movement, survival and exploitation processes. The Bayesian meth-

ods used here allowed extra flexibility for incorporating random effects (e.g., age, year), which

can greatly improve the prediction by better explaining sources of variation. We believe our

work established a framework that can facilitate additional studies of animal movement based

on tagging-recovery data.

Supporting information

S1 Fig. (a) Age compositions for each length class. TL = total length (mm). Solid lines and

points indicate posterior median values. Ribbons and dotted lines indicate 95% credible inter-

vals. (b) Posterior density (black solid line) and prior density (black dotted line) of the initial

year correction factor from the Model AYc. Ribbon indicates the upper 95% percentile of the

Fig 6. Potential environmental factors. Winter NAO indices, annual average water level (m), annual maximum ice cover (%) and annual average surface temperature

(˚C) in Lake Erie from 2009 to 2015.

https://doi.org/10.1371/journal.pone.0243423.g006

PLOS ONE Detect movement patterns from tag-recovery data

PLOS ONE | https://doi.org/10.1371/journal.pone.0243423 December 7, 2020 16 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0243423.s001
https://doi.org/10.1371/journal.pone.0243423.g006
https://doi.org/10.1371/journal.pone.0243423


posterior distribution. Blue dotted line indicates posterior median value.

(DOCX)

S2 Fig. Movement probability of a tagged yellow perch from each age class derived from

Model AR. In each panel, solid lines denote posterior densities, dotted line denotes prior den-

sity, and shaded areas indicate 95% credible intervals.

(DOCX)

S3 Fig. Movement probability of a tagged yellow perch from Model C. In each panel, solid

lines denote posterior densities, dotted line denotes prior density, and shaded areas indicate

95% credible intervals.

(DOCX)

S4 Fig. Estimations of additional biological and fishery-related parameters from Model AR.

(a) Posterior density of natural mortality. The blue dotted line indicates posterior median. The

ribbon indicates 95% credible interval. (b) Posterior estimates of age-specific selectivity. The solid

lines and points indicate posterior median values. The ribbons indicate 95% credible intervals. (c)

Posterior estimates of year-specific commercial fishing mortality within each MU. The solid lines

and points indicate posterior median values. The ribbons indicate 95% credible intervals. Point

estimates from the YPTG stock assessment model for each region were denoted by asterisks.

(DOCX)

S5 Fig. Estimations of additional biological and fishery-related parameters from Model C.

(a) Posterior density of natural mortality. The blue dotted line indicates posterior median. The

ribbon indicates 95% credible interval. (b) Posterior estimates of age-specific selectivity. The

solid lines and points indicate posterior median values. The ribbons indicate 95% credible

intervals. (c) Posterior estimates of year-specific commercial fishing mortality within each

MU. The solid lines and points indicate posterior median values. The ribbons indicate 95%

credible intervals. Point estimates from the YPTG stock assessment model for each region

were denoted by asterisks.

(DOCX)

S6 Fig. Point estimates of commercial trap net and angler fishing mortality rates in the U.

S. waters estimated from the YPTG stock assessment model.

(DOCX)

S1 Table. Symbols used in the model equations. Bold symbols represent vectors and matri-

ces, and regular symbols represent scalars.

(DOCX)
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