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Abstract

The Campi Flegrei volcanic field (Italy) poses very high risk to the highly urbanized Neapoli-

tan area. Eruptive history was dominated by explosive activity producing pyroclastic cur-

rents (hereon PCs; acronym for Pyroclastic Currents) ranging in scale from localized base

surges to regional flows. Here we apply probabilistic numerical simulation approaches to

produce PC hazard maps, based on a comprehensive spectrum of flow properties and vent

locations. These maps are incorporated in a Geographic Information System (GIS) and pro-

vide all probable Volcanic Explosivity Index (VEI) scenarios from different source vents in

the caldera, relevant for risk management planning. For each VEI scenario, we report the

conditional probability for PCs (i.e., the probability for a given area to be affected by the pas-

sage of PCs in case of a PC-forming explosive event) and related dynamic pressure. Model

results indicate that PCs from VEI<4 events would be confined within the Campi Flegrei cal-

dera, PC propagation being impeded by the northern and eastern caldera walls. Conversely,

PCs from VEI 4–5 events could invade a wide area beyond the northern caldera rim, as well

as part of the Naples metropolitan area to the east. A major controlling factor of PC dispersal

is represented by the location of the vent area. PCs from the potentially largest eruption sce-

narios (analogous to the ~15 ka, VEI 6 Neapolitan Yellow Tuff or even the ~39 ka, VEI 7

Campanian Ignimbrite extreme event) would affect a large part of the Campanian Plain to

the north and the city of Naples to the east. Thus, in case of renewal of eruptive activity at

Campi Flegrei, up to 3 million people will be potentially exposed to volcanic hazard, pointing

out the urgency of an emergency plan. Considering the present level of uncertainty in fore-

casting the future eruption type, size and location (essentially based on statistical analysis

of previous activity), we suggest that appropriate planning measures should face at least the

VEI 5 reference scenario (at least 2 occurrences documented in the last 10 ka).

PLOS ONE | https://doi.org/10.1371/journal.pone.0185756 October 11, 2017 1 / 28

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Mastrolorenzo G, Palladino DM,

Pappalardo L, Rossano S (2017) Probabilistic-

numerical assessment of pyroclastic current

hazard at Campi Flegrei and Naples city: Multi-VEI

scenarios as a tool for “full-scale” risk

management. PLoS ONE 12(10): e0185756.

https://doi.org/10.1371/journal.pone.0185756

Editor: Nicolas Houlie, Eidgenossische Technische

Hochschule Zurich, SWITZERLAND

Received: March 22, 2016

Accepted: September 19, 2017

Published: October 11, 2017

Copyright: © 2017 Mastrolorenzo et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: the authors received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0185756
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0185756&domain=pdf&date_stamp=2017-10-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0185756&domain=pdf&date_stamp=2017-10-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0185756&domain=pdf&date_stamp=2017-10-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0185756&domain=pdf&date_stamp=2017-10-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0185756&domain=pdf&date_stamp=2017-10-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0185756&domain=pdf&date_stamp=2017-10-11
https://doi.org/10.1371/journal.pone.0185756
http://creativecommons.org/licenses/by/4.0/


Introduction

Active calderas are among the most hazardous volcanic areas in the world [1]. Caldera volca-

nism is characterized by rare, large-scale (VEI�5) explosive eruptions and even super-erup-

tions [2,3] and punctuated by more frequent intermediate- (VEI 3–4) or small-scale (VEI 1–2)

events. More than one hundred Quaternary calderas worldwide, including the caldera com-

plexes of Rabaul (Papua New Guinea), Yellowstone (USA), Long Valley (USA), Kilauea (USA)

and Campi Flegrei (Italy), underwent periods of unrest during the second half of the 20th cen-

tury [4]. The related hazard assessment is complicated by the interactions between the mag-

matic systems and their volcano-tectonic and hydrogeological/geothermal settings. In

particular, the possible role of the stress field related to the caldera structure and the hydrother-

mal system on the occurrence, location and style of eruptions is still matter of debate [5,6,7,8].

The Campi Flegrei caldera (Fig 1) poses a volcanic risk ranking among the highest in the

world, together with the neighboring Vesuvius volcano [9,10,11,12,13,14,15,16,17,18,19,20,

21,22,23,24,25]. A recent study [23], based on a Bayesian Event Tree approach, estimated a

monthly probability of eruption at Campi Flegrei of 1.6 x10-3. The extreme risk is due to the

possible high explosivity of a future eruption and the very high degree of urbanization of the

area, also including the city of Naples (Napoli): nearly two million people live within 15 km

from the center of the Campi Flegrei caldera (12 km across). The volcanic history of the

Campi Flegrei in the last ~50 ka has been dominated by explosive activity featured by interme-

diate- to large-scale PCs, monogenetic tuff cone- and tuff ring-forming hydromagmatic events

and subordinate Strombolian and Plinian fall events [26,27,28,29]. Occasional effusive activity

also occurred. The area potentially affected by a future eruption depends primarily on the

eruption style, magnitude and source location. The volcanological record shows a full range of

Fig 1. A) Sketch shadow relief map of the Campi Flegrei volcanic field. Vent locations adopted for numerical

simulations of PCs at Campi Flegrei are reported: fourteen possible eruptive vents are considered, i.e.: six

located within the source area of the most recent eruptions, the other ones in the area with the highest

horizontal (four vents) and vertical (four vents) deformation during recent bradyseismic events (see text for

further explanation). B) Example of the motion of a material point along a digitalized 3D surface considered in

the present model (see "Computational model" section for explanation). The Campi Flegrei Digital Elevation

Model is courtesy of Laboratory of Geomatica e Cartografia, INGV-OV Naples. C) Sketch of the flow front

moving on the digitalized 3D surface subdivided in triangles that are equilateral of side 250 m in plain view.

https://doi.org/10.1371/journal.pone.0185756.g001
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possible eruptive magnitudes, mechanisms and vent locations to be considered for probabilis-

tic evaluation.

Hazard scenarios for fallout events have been reported by Mastrolorenzo et al. [28,29]and

Costa et al. [30]. Here, we address hazard assessment from PCs related to the full range of

eruptive scenarios at Campi Flegrei. Previous approaches [9,10,16,31] were based on the repro-

duction of the distribution patterns of past PCs on the present topography, which is somewhat

misleading; in fact, geomorphic changes over the lifetime of the volcanic field imply that a

future event will produce a different PC distribution with respect to its analogues that occurred

in the past. Todesco et al. [32]and Mele et al. [33], by PC numerical simulations, obtained

important information on flow propagation, but did not provide hazard maps (e.g. informa-

tion on the probability in the unit of time) associated with the simulated event. Neri et al. [34]

provided probabilistic PC invasion maps for a whole-range scenario, based on the last 15 ka

eruptive activity. However, PC hazard maps including specific hazard variables (e.g. dynamic

pressure) with the related levels of damage for each VEI class are still lacking.

Moreover, inferences on the future eruption type and vent position, based on the extrapola-

tion from the most recent eruptive behavior (i.e.,<5 ka; [10,24]), are highly uncertain. Since at

present robust constraints on the future behavior of the Campi Flegrei caldera are lacking, a

primary requisite for the development of mitigation and crisis response strategies is to con-

sider a full range of possible scenarios. Even risk mitigation strategies based on elicitation pro-

cedures and cost/benefit analyses need volcanological-probabilistic scenarios for each VEI.

In order to assess a comprehensive set of reference eruptive scenarios at Campi Flegrei cal-

dera, we performed numerical simulations of PCs from explosive events ranging in VEI

between 2 and 6, on a new 5 m resolution digital elevation model (DTM from INGV-Osserva-

torio Vesuviano), to produce probabilistic hazard maps embedded in a GIS framework (Figs

2–6). This work builds on the model frame of Rossano et al. [11], which provided the yearly

probabilities of occurrence and areal dispersal of PCs averaged on the whole VEI range, with

the qualification that a complete set of distinctive scenarios for each VEI (from 2 to 6) is here

considered. The eruption VEI is essentially inferred from the scale of PC deposits, pyroclastic

fall events being quite subordinate at Campi Flegrei. By merging the available field data from

past eruptions of different size with a probabilistic approach, we compute the conditional

probability of each area to be invaded by PCs in case of an eruption with a given VEI, relevant

for the application of event-tree approach in the management of a volcanic crisis.

Eruptive history of Campi Flegrei

The activity history of the Campi Flegrei volcanic field in the last ~50 ka comprises a few large-

scale eruptions [35,36,37,38] and several tens of intermediate- to small-scale eruptions. In par-

ticular, the ~39 ka Campanian Ignimbrite super-eruption (VEI 7), with an inferred volume of

erupted products in the order of 300 km3 [39,40,22], and the ~15 ka Neapolitan Yellow Tuff

eruption (VEI 6), with inferred 40 km3 of products, were the dominant caldera-forming events

that controlled the volcanic-tectonic evolution of the area.

Between these two large events and following the Neapolitan Yellow Tuff eruption, the cal-

dera was the site of intense, mostly explosive, activity: at least eleven low- to moderate-scale

(VEI 2–5) explosive events have been recognized in the stratigraphic sequence between ~39

and 15 ka; after an eruptive break following the Neapolitan Yellow Tuff eruption, at least sev-

enty explosive eruptions clustered in the last ~10 ka [41,42,43], ranging between 2 and 5 in

VEI and between tens of millions of cubic meters to a few cubic kilometers in volume. These

recent events, including the AD 1538 Monte Nuovo eruption, the last one occurred at Campi

Flegrei, typically produced monogenetic tuff rings and tuff cones, and subordinate spatter
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Fig 2. Model results for VEI 2 eruptions at Campi Flegrei. A) Maximum limit (red line) reached by the PCs

during the 1538 AD Monte Nuovo eruption, representative of VEI 2 events at Campi Flegrei; B) typical

exposure of the Monte Nuovo PC deposits at about 0.5 km from the vent; C) hazard map of conditional

probability (i.e., probability of a given point to be affected by the passage of PCs in the case of an eruption of a

given VEI) and D) the associated maximum dynamic pressures (expressed in Pa) for moderate- to high-

particle concentration PCs; E) hazard map of conditional probability and F) the associated maximum dynamic

pressures for dilute PCs (see text and Tables 1 and 3 for the PC characteristics adopted in the simulations).

Levels of damage associated to different values of dynamic pressure (after Valentine 1988): 500 Pa = poor

damage; 5,000 Pa = window failure, lower limit for severe damage and collapse of weak non-aseismic

buildings; 10,000 Pa = limit for severe damage and collapse of weak aseismic buildings; 25,000 = limit for
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cones, scattered throughout the caldera. Commonly, monogenetic centers were formed as a

result of different eruptive styles, which produced in turn fallout horizons, lithic-rich breccia

layers, and a variety of deposits from different types of PCs. Phreatomagmatic activity was

largely dominant: both "wet" and "dry pyroclastic surges" from tuff cone- and tuff ring-forming

events covered areas of several square kilometers around intracaldera vents [44]. Subordi-

nately, widespread tephra sheets from Plinian-style fallout and major PCs, and occasional lava

domes and lava flows [45], were also produced.

The study PC deposits: Implications for modeling

Although field characteristics of PC deposits at Campi Flegrei are widely described in the liter-

ature, detailed data on related eruptive and emplacement mechanisms are reported in rela-

tively few cases [46,47,48,49,11,50,51,52,53]. In light of detailed model studies [51,52,53,49,11],

PC properties at Campi Flegrei show a wide range of variability. Textural and grain size fea-

tures of phreatomagmatic PC deposits indicate an emplacement by dilute to moderately con-

centrated PCs (i.e., densities between a few kg/m3 and 102 kg/m3). The latter prevailed in the

activity history and were related to several intracaldera tuff cones, as well as to a significant

part of the Neapolitan Yellow Tuff major eruption [54,55]. Based on thickness of individual

depositional units (ranging between tens of centimeters to a few meters) and the variety of

bedforms indicative of bedload transport and sedimentation, flow fronts a few meters- to sev-

eral tens of meters-thick and relatively low yield strength (<102 Pa) Bingham rheologies can

be inferred, also consistent with model data for "pyroclastic surges" worldwide

[56,57,58,59,60,61].

Conversely, other PCs at Campi Flegrei, including small-scale scoria flows (e.g., from the

AD 1538 Monte Nuovo eruption) and locally distributed proximal spatter- and lithic-rich

units of the Campanian Ignimbrite, show evidence for high-concentration PCs. From a Bayes-

ian inverse approach considering PC runout and response to topography [11,49], consistent

with calculations from clast grading patterns, densities up to 103 kg/m3, viscosities up to 103 Pa

s, and high yield strength (102−103 Pa) Bingham rheologies are derived, as typical of "pyroclas-

tic flows" s.s. [56,62,63,64,60,58,65].

PC distribution was controlled to variable extents by local geomorphic features (e.g., caldera

walls, intracaldera plains and ridges, cones and craters; Fig 1), depending on eruption size and

vent location. Generally, the propagation of PCs from low-VEI events was strongly controlled

by low-relief topography (i.e, not exceeding a few hundreds of meters in elevation) and, partic-

ularly, was impeded by the Posillipo and Camaldoli hills. Instead, major PCs from VEI>4

eruptions overtopped intracaldera reliefs and even the 400 m-high caldera walls, travelling

tens of km over the surrounding plains [66].

Previous work recognized the dominant phreatomagmatic signature of PC events at Campi

Flegrei [47,48,44,51,52,67]. In many cases, deposit textures and pyroclast shapes indicate that

explosive magma-water interaction was superimposed on magmatic activity and took place

after advanced levels of magma vesiculation (and, possibly, fragmentation). The depth and effi-

ciency of magma-water interaction varied from case to case and even in the course of individ-

ual events, over a wide range of eruption intensities from small tuff-cone-forming (e.g., VEI 2

AD 1538 Monte Nuovo) to Phreatoplinian (VEI 6 Neapolitan Yellow Tuff; [55,54,27]) events.

In these cases, external water drastically perturbed the ascending magma and enhanced its

collapse of strong aseismic buildings and volcanic masonry walls. The urbanization pattern is also shown in

C-F. The Campi Flegrei Digital Elevation Model is courtesy of Laboratory of Geomatica e Cartografia,

INGV-OV Naples.

https://doi.org/10.1371/journal.pone.0185756.g002
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Fig 3. Model results for VEI 3 eruptions at Campi Flegrei. A) Maximum limit (red line) reached by the PCs

during the ~ 3.9–3.7 ka Averno eruption, as example of VEI 3 events at Campi Flegrei; B) typical exposure of

the Averno PC deposits at about 1.5 km from the vent; C) hazard map of conditional probability and D) the

associated maximum dynamic pressures (expressed in Pa) for moderate- to high-particle concentration PCs;

E) hazard map of conditional probability and F) the associated maximum dynamic pressures for dilute PCs

(see text and Tables 1 and 3 for the PC characteristics adopted in the simulations). Levels of damage

associated to different values of dynamic pressure as in Fig 2. The urbanization pattern is also shown in C-F.

The Campi Flegrei Digital Elevation Model is courtesy of Laboratory of Geomatica e Cartografia, INGV-OV

Naples.

https://doi.org/10.1371/journal.pone.0185756.g003
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Fig 4. Model results for VEI 4 eruptions at Campi Flegrei. A) Maximum limit (red line) reached by the PCs

during the ~ 4.1–3.8 ka Astroni eruption, as example of VEI 4 at Campi Flegrei; B) typical exposure of the

Astroni PC deposits at about 1.5 km from the vent; C) hazard map of conditional probability and D) the

associated maximum dynamic pressures (expressed in Pa) for moderate- to high-particle concentration PCs;

E) hazard map of conditional probability and F) the associated maximum dynamic pressures for dilute PCs

(see text and Tables 1 and 3 for the PC characteristics adopted in the simulations). Levels of damage

associated to different values of dynamic pressure as in Fig 2. The urbanization pattern is also shown in C-F.

The Campi Flegrei Digital Elevation Model is courtesy of Laboratory of Geomatica e Cartografia, INGV-OV

Naples.

https://doi.org/10.1371/journal.pone.0185756.g004
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Fig 5. Model results for VEI 5 eruptions at Campi Flegrei. A) Maximum limit (red line) reached by the PCs

during the ~ 4.1 ka Agnano Monte Spina eruption, as example of VEI 5 at Campi Flegrei; B) typical exposure

of the Agnano Monte Spina eruption PC deposits at about 2 km from the vent; C) hazard map of conditional

probability and D) the associated maximum dynamic pressures (expressed in Pa) for moderate- to high-

particle concentration PCs; E) hazard map of conditional probability and F) the associated maximum dynamic

pressures for dilute PCs (see text and Tables 1 and 3 for the PC characteristics adopted in the simulations).

Levels of damage associated to different values of dynamic pressure as in Fig 2. The urbanization pattern is

also shown in C-F. The Campi Flegrei Digital Elevation Model is courtesy of Laboratory of Geomatica e

Cartografia, INGV-OV Naples.

https://doi.org/10.1371/journal.pone.0185756.g005
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fragmentation [44,67], with consequent changes in temperature, grain-size, density and veloc-

ity of the ascending mixture, which eventually controlled the eruptive dynamics and emplace-

ment mechanisms. The rapid conversion of thermal to mechanical energy due to explosive

magma-water interaction may have allowed even low-scale eruptions to produce relatively

high-mobility PCs.

According to the computation of Mastin [68], phreatomagmatic blasts may achieve high

initial pressures and initial velocities (up to 400 m/s). Enhanced magma fragmentation, pres-

sure and exit velocity may drastically change the properties of the erupting gas-mixture and

consequent transport and depositional mechanisms [69,49,70,51]. Generally, tuff-ring-form-

ing events at Campi Flegrei mostly produced relatively hot, dry, dilute PCs ("dry surges"),

while the predominant tuff-cone-forming events produced PCs with lower temperature and

higher particle concentration ("wet surges"), which were more effectively controlled by topog-

raphy [71]. Notably, these contrasting characteristics are independent on the eruption scale

Fig 6. Model results for VEI 6 eruptions at Campi Flegrei. A) Maximum limit (red line) reached by the PCs

during the ~14.9 ka Neapolitan Yellow Tuff eruption; B) typical exposure of the Neapolitan Yellow Tuff PC

deposits at Posillipo, along the southeastern caldera rim; C) Hazard map of conditional probability and D) the

associated maximum dynamic pressures (expressed in Pa), for VEI 6 PCs (see text and Tables 1 and 3 for

the PC characteristics adopted in the simulations). Levels of damage associated to different values of

dynamic pressure as in Fig 2. The urbanization pattern is also shown in C-F. The Campi Flegrei Digital

Elevation Model is courtesy of Laboratory of Geomatica e Cartografia, INGV-OV Naples.

https://doi.org/10.1371/journal.pone.0185756.g006
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and may refer to the full VEI 2–6 range, including the largest phreatomagmatic event, the Nea-

politan Yellow Tuff.

Conversely, PCs from purely magmatic, Plinian-style events are quite subordinate in the

Campi Flegrei activity record, so that the application of numerical simulations of PCs derived

from eruption column collapse [32] is not suitable for the large majority of PCs at Campi Fle-

grei. The extreme-scale Campanian Ignimbrite caldera-forming eruption (and, possibly, its

older analogous events; [35]) produced regional density-stratified PCs, as well as locally dis-

persed, topography-controlled, spatter- and lithic-rich concentrated PCs in proximal settings

(i.e., Piperno and Breccia Museo units) and pumice-rich concentrated PCs in distal ones

[72,73].

Owing to the large uncertainties in the type and size of a future event at Campi Flegrei, in

this work we explore a wide range of PC parameters to be adopted in numerical simulations,

by taking into account a full spectrum of potential VEI scenarios. To constrain the reference

data for PC-forming eruptions at Campi Flegrei, we bear on the results of previous studies (see

above) and new specific field investigations on representative PC deposits (NOTE: all the strat-

igraphic sequences explored in this study are located on public land, thus none specific

Table 1. Reference eruptions at Campi Flegrei.

Pyroclastic

Formation

Age

(Ka)

Volcanological

classification

Volcanic

Explosivity

Index (VEI)

eruptive

magnitude

average

total

volume

(km3)

Maximum

runout (km)

Inferred

initial

velocity of

PDCs (m/s)

*density

(kg/m3)

*thickness

(m)

*velocity

(m/s)

Campanian

Ignimbrite

39 low aspect ratio

ignimbrite

7 7.5 150 > 80 160–220 - - -

Breccia

Museo

39 block and ash

flow

5 5.0 2.5 - - - - -

Neapolitan

Yellow Tuff

14.9 hydromagmatic

flow/surge sheet

6 6.5 40 ca. 30 180–370 12 (20 km) 320 63

Gauro <12 tuff cone 4 4.5 1.5 3.4 129 - - -

Miseno 12 to

9.5

tuff cone 2 2.5 0.1 - - - - -

Nisida 12 to

9,5

tuff cone 2 2.0 0.02 - - - - -

Mofete >10 tuff cone 2 2.0 - - - - - -

Archiaverno 10.7 tuff ring 4 4.5 - - - - - -

Fondi di Baia 8.6 tuff cone 2 1.5 0.03 1.3 80 - - -

Baia 8.6 tuff ring 3 2.5 - 1.4 82 - - -

Cigliano 4.5 cinder cone 2 2.0 0.03 - 76 - - -

Solfatara 4 tuff ring 3 3.0 0.07 2.1 101 - - -

Agnano

Monte Spina

4.1 flow/surge sheet 5 5.3 - 22 328 5 (3 km) 76 39

Astroni 4.1–

3.8

tuff ring 4 4.5 1.00 3 121 10 (1 km) 87 34

Averno 3.9–

3.7

tuff ring 3 3.5 0.50 2.8 117 7.3 (1.5

km)

110 21

Monte Nuovo 1538

AD

cinder cone 2 2.5 0.04 1.3 80 54 (1 km) 64 38

Reference data for selected eruptions, representative of the full VEI spectrum at Campi Flegrei. Ages from [41]; eruptive magnitudes from [24]; average

total volumes and maximum runouts from [9];

*results of PCs stratified model for dilute currents (see text for further explanation); the distance from the vent of the sampling sites used for calculations is

also indicated in brackets.

https://doi.org/10.1371/journal.pone.0185756.t001
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permission was required during field activities). Table 1 summarizes the reference data for PC

events selected as representative of the full VEI spectrum at Campi Flegrei. Of note, even for

equivalent VEI, changes in the volcanic and geomorphic contexts (i.e., vent location, initial

conditions at PC generation, substrate topography) may generate largely different PC behav-

iors (transport mode, velocity, dynamic pressure, temperature, etc.) and resulting dispersal

patterns, with implications on related hazard.

The present PC modeling builds on the mass-independent kinematic approach for gravity-

driven PCs [74], which considers the spreading of a wide category of PCs (ranging from dilute,

highly turbulent blasts to high-density, non-turbulent flows and lahars) on a 3D model of

topographic surface. This model approach has also been applied to Campi Flegrei and

Somma-Vesuvius by Rossano et al. [49,75,11] and Mastrolorenzo et al. [28,29]. Here, we follow

the same approach to capture the key features of PCs on a regional scale (i.e., flow path, topog-

raphy control, distal reaches) relevant for hazard assessment, rather than the details of local

flow structure and sedimentation.

In dilute gas-particle dispersions, transport is driven by the motion of the “fluid” mixture

(e.g., fluid medium + suspended particles) in response to the density contrast with the ambient

fluid, and particle interactions are negligible (i.e., true suspension current; fluid gravity flows,
[76]). Instead, in highly concentrated gas-particle dispersions, it is the motion of solid particles

in response to gravity that makes the interstitial fluid move and particle interactions dominate

the transport system (sediment gravity flows, [76]). The approximation of a gas-pyroclast sys-

tem to a gravity-driven, continuum shearing flow is broadly apt to describe the overall behav-

ior of PCs on a macro-scale. Rheological models (combined to granular flow model) have been

also used to explain some relevant aspects of the deposits from moderate- to high-density PCs

(e.g., vertical and lateral coarse-tail grading, [65] and reference therein). Referring to the wide

spectrum of PC dynamics (e.g., following the conceptual frame of [70,65,77,78]), we remark

that the present model approach may describe suitably self-sustained, moderate- to high-parti-

cle concentration PCs (i.e., driven by dense, non-turbulent basal avalanches, possibly with

associated dilute ash clouds), as well as the concentrated basal portions of thick, density-strati-

fied, turbulent PCs. Model simplifications and assumptions (see below) limit its applicability

in the case of highly dilute and turbulent PCs (i.e., suspension currents driving bedload

motion) or to the dilute upper portions of thick, density-stratified PCs. For instance, model

frame implies fixed density and thickness along flow path, thus does not account for changes

of particle concentration that occur downcurrent due to air entrainment and sedimentation.

In this regard, the magnitude of thickness and density changes is much less significant in high-

concentration PCs (where it can be neglected at a first approximation) than in dilute PCs,

where the decreasing density contrast with ambient air is a controlling factor of PC dispersal,

together with mass eruption rate at flow inception and onset of supercritical regime [79].

Indeed, other Authors [32,80] modeled PCs in the Neapolitan area essentially as strongly

inflated, turbulent clouds resulting from Plinian-type collapsing columns. However, even in

this case, model results [81] show that high-particle concentration basal portions of turbulent

PCs become increasingly important with increasing grain size of the erupting mixture. More-

over, recently observed eruptions (cf. [77] and reference therein) provide evidence that the

dense basal part of a stratified turbulent current may detach as a concentrated underflow, out-

run significantly the parent current, and spread as far as the most distal reaches. Also, we stress

that high-particle concentration flows may pose locally the highest impact on the anthropic

environment, since they exhibit the highest values of the three factors responsible of casualties

and damages, i.e. dynamic pressure, heat and suffocation capability. Overall, modeling the

behavior of PCs as relatively concentrated flows (i.e., densities in the order of 10–1000 kg/m3)
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appears more appropriate to capture the general aspects relevant for hazard issues on a

regional scale.

Computational model

The reference eruptions considered in Table 1 put constraints on the range of variables that

can be used in predictive numerical models for PC hazard estimates at Campi Flegrei. In order

to perform quantitative assessment of the PC hazard related to each VEI scenario, we adopt

the volcanological-probabilistic approach in [49,75,11,28,12] where PCs are modeled on the

basis of a simple gravity-driven model [82,56,83,84]

PC physical model

The physical model adopted in our numerical simulations of PCs is an improved version from

[49,11] (see model details therein). We recall the set of equations that describe the motion of

Bingham and Newtonian fluids in an infinitely wide channel [74]. The steady, uniform vertical

velocity profile is (see also Table 2 for definition of notations):

vðzÞ ¼
1

Z

rg sinyðD2 � z2Þ

2
� kðD � zÞ

� �

ð1Þ

where z Dc is the height (measured from the bottom of the channel), k is the yield strength

(equal to zero for a Newtonian fluid), ρ is the flow density, g is the acceleration due to gravity,

Ɵ is the ground slope, η is the flow viscosity, D the total flow depth, and Dc is the plug flow

thickness:

DC ¼
2ðkDþ ZvÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2kDþ 2ZvÞ2 � 4k2D2

q

2k
ð2Þ

Table 2. Definition of notations through the text.

Symbol Definition

A Component of the acceleration due to gravity along the flow

Bi Bingham number

ca Drag coefficient for atmosphere

D Flow thickness

Dc Plug flow thickness

dv/dt Acceleration of the flow

G Acceleration due to gravity

K Yield strength

Re Reynolds number

T Time

V Mean cross-sectional velocity

v0 Initial velocity of the flow

vp Velocity of the plug flow

Z Distance within flow measured from ground

η Viscosity

Ɵ Ground slope

ρ Density of flow material

ρa Density of atmosphere

https://doi.org/10.1371/journal.pone.0185756.t002
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The acceleration of the plug flow is:

dvp

dt
¼ a �

2k
rðDþ DcÞ

�
2Zvp

rðD2 þ D2
CÞ

ð3Þ

where vp is the plug flow velocity and a is the component of the acceleration due to gravity

along the flow direction, which also takes into account ground friction and turbulence

resistance.

Flow motion is described by the mean cross-sectional velocity:

v ¼

Z D

Dc

vðzÞdzþ vpDc

D
ð4Þ

The resistance terms in the Bingham flow equation depend on several factors. The transi-

tion from laminar to turbulent regime in a Bingham flow depends upon two dimensionless

numbers: the Reynolds number, Re = ρv D/η, and the Bingham number, Bi = k D/η v. From

empirical relations when Bi exceeds about 1.0, the onset of turbulence occurs for Re/Bi 1000.

Following [74], the frontal air drag is neglected, and the flow deceleration due to air drag on its

upper surface is:

dv
dt
¼ � ca

ra

r

� �
v2

2D
ð5Þ

where ρ is the air density, and ca the drag coefficient for the atmosphere (between 0.1 and 1;

[85]). Since the effect of air drag is proportional to ρa/ρ, it will not be significant for relatively

dense flows.

Our model describes the flow motion as a family of paths of invidual 1D flow fronts, gener-

ated radially from each vent, moving on a 3D model of topographic surface with given kine-

matic and rheological properties. Since the possible downcurrent changes in the PC-ambient

density contrast are not considered by the model, the distal reaches of the flow (i.e., when

velocity drops to zero) essentially depend on the total energy balance of the moving flow,

including conservative and dissipative energies.

Input data: Eruptive vents

In spite of a huge improvement of knowledge on the volcano-tectonic setting, magma evolu-

tion and eruptive history of Campi Flegrei [86,87,22,43,88]), the vent location of a future erup-

tion remains highly uncertain. Eruptive sources shifted repeatedly through the Campi Flegrei

Table 3. Input parameters for PC simulations.

dilute PDCs concentrated PDCs

VEI2 VEI3 VEI4 VEI5 VEI� 6 VEI2 VEI3 VEI4 VEI5

height (m) 5�10 5�20 10�100 20� 200 30� 300 1�5 1�10 2�20 5�20

density (kg/m3) 2�30 2�100 2�100 2� 100 2� 100 200� 1500 200� 1500 200� 1500 200� 1500

viscosity (Pa s) 0.00002 0.00002 0.00002 0.00002 0.00002 1� 2000 1� 2000 1� 2000 1� 2000

initial velocity m/s 10�50 10�70 10� 200 30�300 30�300 5� 20 5� 30 10� 70 10� 100

yield strength Pa 0 0 0 0 0 1�2000 1�2000 1�2000 1E-1� 2000

Note: for each VEI class, several tens to some hundreds of combinations of input parameters have been used for simulations, by considering the extreme

and 1–2 intermediate values within the variation range of a specific parameter.

https://doi.org/10.1371/journal.pone.0185756.t003
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history without a clear time-space pattern. The activity younger than 15 ka shows a possible

relationship between vent locations and tectonic lineaments (e.g., Miseno-Baia and Concola-

Minopoli, [42]), as small-scale events with mafic magma compositions tend to concentrate

near caldera margins, while the majority of eruptions with felsic compositions tend to occur

from volcano-tectonic structures scattered throughout the caldera. However, in the last 5 ka,

although eruptions were often localized in the central part of the caldera, i.e. within ~2 km

from the present town of Pozzuoli (e.g., Solfatara, Agnano-Montespina, and Astroni erup-

tions), a number of eruptions (e.g., Archiaverno, Averno, Nisida, Baia, Miseno and the youn-

gest event of AD 1538 Monte Nuovo) were scattered over a wider area extending up to the

caldera rims, thus indicating that a future event might occur anywhere in the caldera, includ-

ing its margins. On the other hand, there is no evidence of an eruptive source outside the cal-

dera rim in the last 15 ka. Also, based on the known activity record, the probability of an

underwater vent opening in the submerged sector of the caldera is considered very low [24],

although this possibility has been considered by probabilistic hazard assessment related to

phreato-Plinian fallout activity [89]. Finally, [90] reported contemporaneous eruptions from

vents located in different sectors of the caldera during the last 4.1 ka.

On these grounds, in order to explore a representative set of likely vent locations (including

central, intermediate and peripheral zones of the caldera, as well as intra-caldera plains and

reliefs), we have fixed a set of fourteen vents with homogeneous level of probability, regularly

spaced along three concentric arcs centered at Pozzuoli (Fig 1A), which is considered the cen-

ter of the caldera, based on the youngest (<5 ka) eruption cluster, the peak of bradyseismic

and fumarolic activities in the last few decades, and the pattern of gravimetric anomalies.

In addition, a second set of simulations (from thirty-three source vents) has been per-

formed taking into account the probability map of vent opening produced by [91], based on

the eruptive record in the last 15 ka, as well as on the distribution of key structural features.

Results are reported in supporting information (S1, S2, S3 Figs).

From each vent, numerical modeling simulated a family of flow paths generated in all direc-

tions on a 3D model of topographic surface, considering a specific set of PC properties for

each VEI scenario (see following). Each flow path and corresponding distal reach thus results

from a specific combination of input PC parameters and interaction with topography.

Input data: PC properties for the different VEI scenarios

In light of the previous model frame [49,11] and the approach of [15] for Somma-Vesuvius,

here we simulate the PC reference scenarios potentially associated with eruptions of different

VEI at Campi Flegrei. In particular, for eruptions ranging in VEI from 2 to 6, we create

matrixes of input data for the PC key physical parameters, i.e.: initial flow velocity at the vent,

flow thickness, and rheological parameters of gas-particle mixtures (density, viscosity, and

yield strength; Table 3). In addition, we consider the characteristic parameters of a VEI 7

extreme event (e.g., the 39 ka Campanian Ignimbrite and possible analogous examples in the

earlier activity; [35]. For each VEI class, we perform PC simulations assuming a wide range of

input parameters, based on the values inferred for the reference events at Campi Flegrei

(Table 1), as well as for events of similar scale elsewhere reported in the Volcanology literature.

Due to the large uncertainty of actual values for a future PC-forming eruption at Campi Flegrei

(even within a specific VEI class), here we intend to explore a possible range of conditions at

PC inception, rather than replicating specific events occurred in the past.

To obtain an empirical estimate of the initial flow velocities in the input matrix, preliminary

calculations were performed by adopting the "energy line" (or, in three dimensions, the "energy

cone") approach for granular flows, based on the maximum runout distances of PCs actually
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recognized for each VEI class at Campi Flegrei (Table 3), and assuming the typical range of val-

ues of the Heim coefficient (0.1–0.8, [56]) for events of analogous scale worldwide. A flow vis-

cosity of 2 x 10−5 Pas (corresponding to pure hot steam) and yield strength of 0 Pa have been

fixed for Newtonian-type, highly dilute PCs, while a range of values has been considered

for moderate- to high-particle concentration PCs (Table 3). According to literature data

[64,60,61,92,70,74,65,53]flow density values may range between a few kg/m3 in the very dilute

portions of PCs and even>2000 kg/m3 (typical of rock slide avalanches) in the basal portions

of high-particle concentration, lithic-rich PCs; for increasing particle concentration, estimates

report yield strength values in the order of tens to>1000 N/m2, and viscosities from a few to

>1000 Pa.s. In order to constrain our simulations to PCs that are likely to occur at Campi Fle-

grei, we consider a wide range of input PC densities (Table 3). For concentrated PCs, input

data were retrieved from Rossano et al. (1998), also in light of literature estimates. For relatively

dilute PCs, density values for reference cases (reported in Table 1) were obtained from a

Matlab code developed by [15], based on the stratified flow model of [70] which describes the

particle concentration profiles for turbulent transport systems as a function of the flow Rouse

number, and Froude/Richardson numbers (for further explanations see the Appendix A). Fol-

lowing the calculation method of [53], this code computes flow thickness, density and velocity

at a given site, based on grain size data (MdF) and pyroclast densities in the related deposit. On

these grounds, a density range between 10 and 100 kg/m3 has been investigated for modeling

low- to moderate-concentration PCs. Notably, the flow velocities calculated by the code are

broadly consistent with those inferred from the energy line approach.

The sampling of the values reported in the matrix of Table 3 (i.e., a selected set of tens to

some hundreds of reasonable combinations for each VEI class) allow us to generate families of

numerical PC paths propagating from each vent in all directions on the Campi Flegrei Digital

Elevation Model (source: Laboratory of Geomatica e Cartografia, INGV-OV Naples). Compre-

hensive volcanologic—probabilistic scenarios are obtained by combining the entire set of com-

puter simulations for each VEI.

In particular, the model considers the motion of a material point with rheological proper-

ties (which represents the PC front advancing as a transient wave) along a digitalized 3D sur-

face (Fig 1B), subdivided in triangles that are equilateral of side 250 m in plain view (Fig 1C).

Site by site, the motion of the point (i.e. acceleration, deceleration, deviation) depends on the

value and direction of the ground slope. From each eruptive vent, for each specific combina-

tion of input parameters, individual flows are generated in all radial directions (i.e. a single

flow for each degree of the direction). Flow lines deviate from their initial direction and, in

places, intersect each other depending on the morphology. The hazard associated to each tri-

angle of territory is thus proportional to the ratio of the number of flows that cross the triangle

area vs. the total number of flows generated.

Results

Below we illustrate the results of the simulated scenarios, for a spectrum of PC concentrations,

for each VEI class (Figs 2–6), considering a vent distribution with homogeneous probability.

In addition, we report (see S1, S2, S3 Figs in supporting information) PC simulations consider-

ing a probability vent distribution according to [91]. A comparison between the two sets of

simulations show that no significant differences are observed for the higher intensity scenarios

(VEI� 4), neither with regard to the areas of invasion of PCs nor for the dynamic pressure val-

ues; conversely, for lower VEI scenarios, it is observed an extension of the invasion zone of the

PCs beyond the topographical barrier represented by the caldera rim, when the eruptive

sources are located in peripheral caldera settings.
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Model outputs yield the maximum PC travel distances in all directions and the number of

flow passages for each unit area, i.e. proportional to the probability of a given locality to be

affected by the passage of PCs (computed following [11]), in the case of a specific VEI event.

As stated above, this model approach can be applied to describe the regional features of PCs

(i.e., flow path, distal reaches, topography control) relevant for hazard assessment, rather than

the detailed PC behavior in terms of local fluid dynamics and sedimentation.

Moreover, model outputs provide the local PC impact at specific localities. In case of occur-

rence of a given VEI event (i.e., conditional probability equal to one), Figs 2–6 report for each

locality the probability for the passage of relatively dilute to concentrated PCs and the associ-

ated maximum dynamic pressures (calculated following the approach of [93]). The first assess-

ment of PC-induced damage to structures and natural environment, for different values of

dynamic pressure, was based on the effects of nuclear explosions [93]. More specifically, exper-

imental results reported for typical buildings of the Neapolitan area [94]and Montserrat [95],

indicate that: the lower threshold value of dynamic pressure for structure damage is ~1 kPa;

severe building damage and collapse may occur for dynamic pressures between 5 and 16 kPa;

extensive to total building collapse may occur for values in the order of a few tens of kPa.

Our numerical simulations allow us to explore the areal patterns of variably concentrated

PCs, over the likely range of expected eruption sizes. In order to provide regular zoning of the

hazard parameters, we have applied a contouring algorithm based on spline interpolation to

the output data. The donut hole around the vents in some maps of Figs 2–6 is due to the

adopted pattern of flow sources, i.e., families of radial 1-D flow lines, starting from a circle

with a radius of 250 m centered on each vent.

We point out that the radial pattern resulting for each VEI (Figs 2–6) is an overall pattern

derived by the superposition of all possible combinations of input parameters (i.e., vent loca-

tions and flow properties at flow inception). In some cases the flow paths from the most "effi-

cient" combination of parameters could be over-emphasized over the background (also hiding

the details of topographic effects). A few "more efficent" flow paths may account for the signifi-

cant differences over small distances in inundation probability even tens of km from the cal-

dera (this effect is particularly emphasized for high VEI scenario in Fig 6).

The hazard maps reported in this work are suitable to be incorporated in a geographic

information system (GIS) and made available via web, in order to render them usable by local

and government officials and expert users for risk mitigation and education management.

VEI� 3 scenario

VEI 2 (Fig 2) and VEI 3 (Fig 3) eruptions may produce variably concentrated PCs that are usu-

ally confined within the caldera and strongly controlled by topography. PCs can advance only

2 km from the vent; their distribution can be either subcircular or directional, depending on

vent location and surrounding topography. The PC dynamic pressure drops sharply with dis-

tance. Nevertheless, in the immediate vicinity of the vent, high-density PCs can produce

dynamic pressures in excess of 10 kPa.

VEI 4 scenario

In this scenario, PCs are moderately controlled by topography and may propagate as far as 3–5

km from the vent on average, being mostly confined in the caldera (Fig 4). However, in cases

of vents located in valleys, PCs can advance to distances even exceeding 10 km. The Camaldoli

and Posillipo hills always act as major barriers for PCs of different concentration, so that the

area Northeast of the caldera wall is sheltered from PCs. In particular, relatively dilute, highly

mobile PCs, also capable to preserve high temperature over long distance [96], may affect a
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wider area than high-concentration PCs, although with lower local dynamic pressures. Overall,

VEI 4 PCs pose very high risk in the whole highly urbanized district of Pozzuoli, as well as in

the western suburbs of Naples (e.g., Bagnoli, Fuorigrotta, Posillipo).

VEI 5 scenario

PCs of this VEI class are limitedly controlled by intra-caldera topography and may propagate

at distances even exceeding 25 km from the vent, well beyond caldera rims (Fig 5). However,

different from relatively dilute PCs, high-concentration PCs are effectively stopped by the ca

400 m high Camaldoli hill barrier, along the northeastern caldera ridge. Due to high mobility

and regardless the vent position, PCs of this class would impact the whole caldera area, includ-

ing the western suburbs of Naples (e.g., Bagnoli, Fuorigrotta, Posillipo). The capability to

impact also the Naples city center depends on the vent position and PC parameters, and it may

result higher for thick, relatively dilute PCs, capable to overtop topographic barriers and/or

develop concentrated underflows at considerable distances from vent.

VEI�6 scenario

Eruptions of this size have occurred two times in the last 40 ka, i.e., the VEI 6 Neapolitan Yel-

low Tuff (ca. 15 ka; Fig 6) and the VEI 7 Campanian Ignimbrite (ca. 39 ka), and possibly sev-

eral times in the last 300 ka (e.g., [35]). PCs from these VEI scenarios cover a wide range of

sizes, up to the most powerful PCs of the Campanian Ignimbrite dispersed on a regional scale.

Model output for a VEI 6 event (Fig 6) yields PC runout distances even in excess of 30 km.

Due to the high capability to overpass topographic highs, it appears that wide sectors of the

Campanian Plain beyond caldera rims would be affected by the passage of PCs of this magni-

tude. Topographic barrier effects become significant only in the most distal areas, as flow

velocity decreases. This poses extremely high risk for the whole Campi Flegrei caldera, the

Naples district and the surrounding areas of the Campanian region.

In addition to the modeled VEI 6 scenario, field distribution of the Campanian Ignimbrite

(e.g., Fisher et al. 1993) indicates that PCs from VEI 7 extreme events may propagate exten-

sively north- and eastward as far as the Roccamonfina volcano and intra-Apennine valleys, as

well as southward across the sea and eventually overpass the Sorrento Peninsula. The Campa-

nian Ignimbrite PCs have been described in terms of a thick, low-concentration, turbulent

"regional transport system", feeding a high-concentration, topography-controlled, "local depo-

sitional system" [72]. This behavior may produce locally the detachment of concentrated PCs

(underflows, [77]), resulting in high dynamic pressures even in most distal settings.

Discussion and conclusion

Model simulations allow us to explore the areal patterns of PCs related to a full range of VEI

eruptions potentially occurring at Campi Flegrei (Figs 2–6), with a variety of initial conditions

(i.e., PC velocity and thickness at flow inception, and vent location) and rheological properties.

The above maps may describe both PC paths along specific directions, and the whole sectors

potentially affected around each vent. The results point out that PC dispersal varies widely,

depending on the size and character of the PC and vent location. Numerical simulation of PC

paths over present-day topographic model of Campi Flegrei (DTM from INGV-Osservatorio

Vesuviano) shows that minor PCs from VEI = 2–3 eruptions are strongly controlled by the

rugged topography of the volcanic field and are confined in preexisting small valleys and crater

relics within a few km from the vent. PCs with intermediate mobility (VEI 4 scenario) for the

most part tend to channelize into the valleys contouring pre-existing crater rims and produce

irregular distribution patterns. These PCs are blocked by major topographic barriers, such as
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Camaldoli, Vomero-Colli Aminei and the western steep slope of Posillipo hill (200 m a.s.l.).

The most mobile PCs, typical of VEI�5, may travel even in excess of 30 km all around the

vent and overpass topographic barriers up to 400 m high.

The computed dynamic pressure values yield a quantitative estimate of the local PC impact.

For relatively dilute PCs, since model output refers to the behavior of the leading PC front and

neglects locally derived concentrated PCs, dynamic pressures even higher than reported in

Figs 2–6 may be expected in places. Overall, the intra-caldera area is always exposed to very

high hazard due to the passage of PCs with high values of dynamic pressure, while the plains

north of Campi Flegrei and the Naples city center are exposed to the effects of PCs with a prob-

ability about one order of magnitude lower. PC temperature is another essential factor to be

considered in risk assessment. Thermal remnant demagnetization analyses [71] point out that

even hydromagmatic "wet surges" may retain temperatures exceeding 200˚C as far as the distal

reaches. Thus, lethal conditions can occur in the whole area potentially invaded by PCs, even if

flow velocity and dynamic pressure drop below the survival threshold.

The extreme variability of eruptive and emplacement mechanisms recorded in the past

points out that a future eruption at Campi Flegrei may span over a wide range of phenomena

and intensities. Previous Authors [10] considered the geologic record of the last 5000 yrs as a

basis for hazard assessment. Although magma composition and volcano-tectonic setting did

not vary significantly in the last ~10 ka following the eruptive break after the Neapolitan Yel-

low Tuff eruption [41,86], actually the last 3500 yrs have been characterized by substantial

quiescence, interrupted occasionally by the AD 1538 Monte Nuovo eruption, which could be

the prelude to a new epoch of eruptive activity of uninferable intensity, style and space-time

location.

In light of the above numerical simulations and the existing highly inhomogeneous urbani-

zation pattern (Figs 2–6), the interplay of the different eruptive parameters and topography

determines the risk in a very complex way. The volcanic history documents, for example, that

PCs from the 4.1 ka Agnano-Monte Spina VEI = 5 eruption [66], in spite of moderate volume

(total 0.5 km3), affected an unusually wide area due to propagation along a sequence of con-

nected valleys. We stress that even slight changes in vent position and/or PC mobility may

result in drastic changes of the exposed value. For example (Fig 7), a future, relatively small

VEI = 3 event sourced within the present-day Agnano plain (the highest probability area

according to [24]) would have a substantially different impact in case of vent opening either in

the eastern part of the plain or in its western part, e.g. the area of Pisciarelli where a sensitive

unrest has been recorded in the last ten years.

Even human artifacts may act as an additional controlling factor for PC mobility. Simula-

tion of vent opening near the eastern caldera margin (i.e., Bagnoli-Fuorigrotta plain; Fig 8)

shows that the Fuorigrotta tunnels that connect the Phlegraean area with the city of Naples

may drive a small PC event directly toward the city center, bypassing the barrier of the caldera

wall.

On these grounds, the high sensitivity of the PC distribution pattern to the eruptive source

location, makes any inferences on the latter factor critical for risk mitigation strategies. The

possible location of a future eruptive vent within the zone of maximum ground deformation

during bradyseismic crises is uncertain. Woo and Kilburn [97], based on rock mechanic

model, instead suggest that the central part of the caldera affected by maximum ground defor-

mation would be the most resistant zone to dike propagation and eruption, while the area

most prone to future vent opening would be a ring zone around the caldera center.

A recently developed probability map for future vent location [24] does not allow a crucial

discrimination among the different zones prone to vent opening: except for a slightly higher

probability in the Agnano-San Vito zone, the probabilities elsewhere in the area of interest do
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not deviate significantly from the background. Indeed, the Campi Flegrei history highlights

the opening of new vents in different sectors of the caldera during the three recognized volca-

nic epochs, and thus the future vent location cannot be predicted on the basis of the past 5 ka.

Moreover, it is even uncertain how (and whether) vent opening probability is influenced by

previous eruption occurrences: i.e., whether a future vent location is to be expected within

areas of highest vs. lowest vent density. Given the present level of knowledge, eruptive unrest

could take place in the whole caldera area, including the highly urbanized intra-caldera plains

(e.g., Fuorigrotta, Soccavo, Pianura, Toiano, San Vito). Also, the possible occurrence of an

eruption from multiple vents [90]has to be taken into account.

On these grounds, any restricted choice of the zone of vent opening is somehow arbitrary.

Given the strong dependence of PC propagation on the vent position, hazard maps should

account for a representative set of potential source locations and surrounding geomorphic

conditions. With respect to emergency strategies, a future eruption could be heralded by

focused seismicity and/or ground deformation and other signals related to magma ascent (e.g.,

as reported for the AD 1538 Monte Nuovo eruption; [46]), although the identification of the

most likely vent opening area (not necessarily corresponding to the area of peak deformation)

wouldn’t be possible if not shortly prior to eruption. Then, a selected set of reliable vent loca-

tions and PC scenarios could refine the area of potential PC impact.

The present work provides implications on the crucial issue of the extension of the evacua-

tion zone in future emergency planning. In fact, considering the unpredictability of the erup-

tion size on the basis of the past activity history and precursors, there are no scientific

Fig 7. Examples of the different impact of relatively small (VEI = 3) PC events from two different vents

located in contiguous areas (i.e., eastern Agnano plain and Pisciarelli). Left bar shows the conditional

probability values. PC input data: initial velocity: 30 m/s; flow height: 10 m, viscosity = 5 Pa/s; yield

strength = 0; density = 50 kg/m3. The Campi Flegrei Digital Elevation Model is courtesy of Laboratory of

Geomatica e Cartografia, INGV-OV Naples.

https://doi.org/10.1371/journal.pone.0185756.g007
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constraints to support the choice of a VEI<5 event as reference scenario. Several authors

[66,30,98] consider a VEI 5 event as the maximum expected at Campi Flegrei and suggest the

4.1 ka Agnano Monte Spina VEI 5 eruption as the reference-scenario for the future eruptive

unrest. In our opinion, this is a conservative scenario for the maximum expected event

(defined as the largest out of all the possible eruptions in the next few decades, following

[99,100,101] in the near future, since its inferred probability of occurrence (4% conditional

probability, according to Orsi et al. 2009) exceeds the negligible threshold of 1% suggested by

[14], whereas the worst-case scenarios of VEI 6–7 events only approach the 1% conditional

probability limit. Fig 9 summarizes the combined hazard from PCs (areas exposed to the pas-

sage of PCs with�5 kPa maximum dynamic pressure, corresponding to severe building dam-

age or collapse) and concomitant fallout (areas with at least 10% probability of exposure to

critical tephra thickness for roof collapse, after [29] in the case of a VEI 5 eruption sourced in

the caldera.

Also very important is the lesson from the 2010 Merapi eruption in Indonesia [102], where

the frequent moderate events in the preceding 100 years of activity had led to PC hazard zona-

tion extended to 10 km from the source vent, despite the earlier history of the volcano was

indicating the possible occurrence of eruptions with much larger magnitudes [103]. Indeed,

the 2010 eruption produced PCs more energetic than expected, with a runout of at least 17 km

from the vent, which killed 367 people living mostly outside the formerly defined evacuation

area, thus forcing the prompt enlargement of the hazard zonation as far as 20 km in the course

of the eruptive crisis.

Fig 8. Example of a small (VEI�3) PC event from a vent located near the eastern margin of the caldera

(i.e., Bagnoli-Fuorigrotta plain). The presence of road and railway tunnels (1, 2, 3) connecting the

Phlegraean area with the city of Naples (Napoli), allows the PC to bypass the barrier of the caldera wall and

impact the city center. Left bar shows the conditional probability values. PC input data: initial velocity: 20 m/s;

flow height: 5 m, viscosity = 5 Pa/s; yield strength = 0; density = 50 kg/m3. The Campi Flegrei Digital Elevation

Model is courtesy of Laboratory of Geomatica e Cartografia, INGV-OV Naples.

https://doi.org/10.1371/journal.pone.0185756.g008
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Focusing on the recent activity record at Campi Flegrei (i.e., at least 70 eruption occur-

rences in the last 10 ka), an eruptive unrest has an average probability of 0.007 events/yr. In

the last few decades, the caldera area has experienced two bradyseismic crises, i.e. in 1969–

1972 and 1982–84, which could represent a long-term precursor of eruptive unrest [104], by

analogy with the classic example of the 21 years of unrest (i.e., seismic and ground deforma-

tion crises) that preceded the 1994 eruption at Rabaul caldera (Papua New Guinea). In light

of the behavior of Rabaul, which, in the last decades has undergone accelerated unrest with-

out eruption, as well as eruption without accelerated unrest until hours beforehand [105], it

can be expected that a future eruption at Campi Flegrei could also occur with only short

warning.

Up to now, the extremely risky Campi Flegrei volcanic field lacks an operative emergency

plan. Any reasonable safety strategy should consider a timely evacuation since the early phase

of the pre-eruptive alert that furthermore implies an effective communication system and a

rapid response by a prepared population. Analysis of the 1985 Nevado del Ruiz tragedy [106],

where over 23,000 people were killed by a lahar in the town of Armero (Colombia), 70 km

away from the eruptive source, indicates that many of the casualties could have been prevented

by improved hazard management practices [107,108,109,106].

Fig 9. Combined hazard from PCs (red: areas exposed to the passage of PCs with�5 kPa maximum

dynamic pressure, corresponding to severe building damage or collapse) and concomitant fallout

(yellow: areas with at least 10% probability of exposure to critical tephra thickness for roof collapse;)

in case of a VEI 5 eruption that may occur from any vent within the Campi Flegrei caldera, here

considered as conservative upper limit scenario. The Campi Flegrei Digital Elevation Model is courtesy of

Laboratory of Geomatica e Cartografia, INGV-OV Naples.

https://doi.org/10.1371/journal.pone.0185756.g009
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Appendix A—Physical model of turbulent pyroclastic density

currents

In order to gain insight into proprieties of moving PDCs from sedimentological features of

pyroclastic surges deposits we have developed a Matlab program based on the stratified flow

theory developed by Valentine [1987] in which particle transport is assumed to be by turbulent

suspension.

Following this theory the concentrations profiles for turbulent transport systems are gov-

erned by the Rouse number Pn, which is the ratio of particle settling velocity to the scale of

turbulence.

Following the Rouse equation [Rouse, 1939]:

Cy ¼ C0

y0

Htot � y
0

� �
Htot � y

y

� �� �Pn

ðA1Þ

which defines particle volumetric concentration, C, as a function of current height, y, with

respect to a reference level, y0, at which concentration, C0, is known. Htot is total flow

thickness.

Pn is the Rouse number, which is given by:

Pn ¼ wku � ðA2Þ

where Pn corresponds to particles with settling velocity w with shear velocity u�, k is the Von

Karman constant, that has a common accepted value of 0.4 [Valentine, 1987].

The following equations, summarized by Dellino et al., [2008] describe the particle trans-

port and settling in turbulent currents. The combined solution of these equations with the

grain-size and density values measured in laboratory for different deposits components (crys-

tals and pumice fractions) provides the moving PDCs shear velocity, density and thickness.

Particle settling described by the sedimentation criterion [Middleton and Southard, 1984]

occurs when:

w ¼ u � ðA3Þ

where w is given by the Newton impact law [Le Roux, 1992]:

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4gdðrS � rf Þ

p

3Cdrf
ðA4Þ

where g is gravity acceleration, and d is particle equivalent diameter, Cd is the particle drag

coefficient.

Shear velocity, that is needed to transport particles of a given size and density either by trac-

tion or by turbulent suspension, is obtained by combining the last two equations (B3) and

(B4):

u � 2 ¼ 4gdðrS � rf Þ3Cdrf ðA5Þ

Shear stress, τ0, acting at the ground surface is:

t0 ¼ rfu � 2 ðA6Þ

The lower limit of particle entertainment is given by Shield criterion [Miller et al., 1977]:

y ¼ rfu � 2ðrS1 � rf Þgd1 ðA7Þ

where ρS1 is the density of entrained particle and d1 is the diameter of entrained particle.
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θ for gaseous flows at high particle Reynolds number is about 0.015 [Miller et al., 1977].

Following Furbish [1997] the relation between average velocity of PDCs, shear velocity and

current height is given by:

uðyÞ
u�
¼ 1k ln yks þ 8:5 ðA8Þ

where ks is substrate roughness.
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Supporting information

S1 Fig. (A) Locations of additional thirty-three eruptive vents, following the probability map

of vent opening by [91] (B). The Campi Flegrei Digital Elevation Model is courtesy of Labora-

tory of Geomatica e Cartografia, INGV-OV Naples.

(TIF)

S2 Fig. Hazard map of conditional probability (i.e., probability of a given point to be

affected by the passage of PCs in the case of an eruption of a given VEI) for moderate- to

high-particle concentration PCs for different VEI (2–5) scenarios, based on the vent distri-

bution reported in S1 Fig. The Campi Flegrei Digital Elevation Model is courtesy of Labora-

tory of Geomatica e Cartografia, INGV-OV Naples.

(TIF)

S3 Fig. Hazard map of maximum dynamic pressures (expressed in Pa) for moderate- to

high-particle concentration PCs for different VEI (2–5) scenarios, based on the vent distri-

bution in S1 Fig. The Campi Flegrei Digital Elevation Model is courtesy of Laboratory of Geo-

matica e Cartografia, INGV-OV Naples.

(TIF)
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