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Abstract

Cellular heterogeneity can emerge from the expression of only one parental allele. However, it has 

remained controversial whether, or to what degree, random monoallelic expression of autosomal 

genes (aRME) is mitotically inherited (clonal) or stochastic (dynamic) in somatic cells, 

particularly in vivo. Here, we used allele-sensitive single-cell RNA-seq on clonal primary mouse 

fibroblasts and in vivo human CD8+ T-cells to dissect clonal and dynamic monoallelic expression 

patterns. Dynamic aRME affected a considerable portion of the cells’ transcriptomes, with levels 

dependent on the cells’ transcriptional activity. Importantly, clonal aRME was detected but was 

surprisingly scarce (<1% of genes) and affected mainly the most low-expressed genes. 

Consequently, the overwhelming portion of aRME occurs transiently within individual cells and 

patterns of aRME are thus primarily scattered throughout somatic cell populations rather than, as 

previously hypothesized, confined to patches of clonally related cells.
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Stochastic cellular processes, such as gene expression1,2, can cause phenotypic variation 

even in the absence of genetic variation and within equivalent environments3–6. aRME 

represents an important facet of cellular stochasticity7–9, although its levels and nature have 

remained contentious. Early microarray studies reported clonally inherited aRME for 5–15% 

of genes in bulk-population analyses of long-term cultured human10 and mouse11 cells. 

These data were the basis for several subsequent investigations of histone modifications over 

promoters and gene bodies of reported clonal aRME genes12, computational inference of 

clonal aRME in other cell types12, and an exploration of the phenotypic consequences of 

clonal aRME8. Recently, a study analyzed evolutionary signatures in 4,227 inferred clonal 

aRME genes13, assuming clonal aRME for nearly 20% of autosomal genes. On the other 

hand, RNA-seq analyses of clonal somatic cell populations arrived at lower rates (2–3%) of 

clonal aRME14,15, and single-cell studies suggested that high levels of cellular aRME 

reflect burst-like transcription from each allele16–18. However, available single-cell data on 

allelic expression16–18 lacked information on clonality, precluding dissection of clonal and 

dynamic aRME. Finally, transcriptome-wide studies of clonal aRME in vivo are completely 

lacking. Therefore, we used single-cell RNA-seq on clonal primary cells to simultaneously 

investigate clonal and dynamic aRME. Moreover, by analyzing clonal T-cells isolated 

directly from human blood, we provide the first global analysis of aRME in vivo.

We started by sequencing the transcriptomes of individual mouse primary fibroblasts 

(n=285, passage 2–4, CAST/EiJxC57BL/6J reciprocal cross, Supplementary Table 1a), 

either picked randomly or after monoclonal expansions, using Smart-seq219 (Fig. 1a). Seven 

clones were harvested after 2–7 cellular divisions (4–115 cells). We detected (RPKM>1) on 

average 10,702 genes in fibroblasts (Supplementary Fig. 1), exhibiting highly correlating 

expression levels (average Spearman rho=0.85) (Supplementary Fig. 2) and strain-specific 

single nucleotide polymorphisms (SNPs) in 82% of genes. Using SNPs, we classified the 

expression of each gene as biallelic, maternal monoallelic, paternal monoallelic, or not 

detected, in each cell (Online Methods and Supplementary Figs. 3–7).

We first characterized aRME using an expression threshold suitable for determining rates of 

dynamic aRME (RPKM>20; see Online methods), and observed 13% (median) monoallelic 

expression of autosomal genes in fibroblasts (Fig. 1b). To determine the contribution of 

clonal and dynamic aRME, we investigated whether the monoallelic expression was the 

same across clonal cells by pooling cellular allelic calls in silico and determining the percent 

consistent monoallelic expression over clonal cells (Fig. 1c and Supplementary Fig. 6e). We 

excluded imprinted genes as well as regions with cell- or clone-specific chromosomal 

aberrations (Online Methods and Supplementary Fig. 7) – which often appear in cultured 

cells20. Since dynamic aRME can generate consistent allelic expression patterns in groups 

of cells by random chance (with probability inversely related to the number of cells), we 

contrasted the percent allele-consistent aRME in clones with the levels expected by dynamic 

aRME alone, by in silico pooling of the same number of non-clonal cells (Fig. 1c). This 

strategy was experimentally validated by physical pooling and joint sequencing of multiple 

cells from one clone (Fig. 1d). Our data showed that dynamic aRME accounted for nearly all 

aRME in fibroblasts. Indeed, above the expression-level threshold RPKM>20 we did not 

detect clonal aRME (P=0.8, one-sided Wilcoxon test), whereas analyses including all 

expressed genes (RPKM>1) revealed a low frequency of clonal aRME (Fig. 1e), affecting 
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0.5% of expressed genes (median, P=0.015, one-sided Wilcoxon test). As expected due to 

X-chromosome inactivation (XCI), X-linked genes had clone-consistent monoallelic 

expression of a single parental X-chromosome in female cells (Fig. 1c and Supplementary 

Fig. 7a–c) – thereby serving as an internal positive control for detectability of clonal 

monoallelic expression; confirming that the scarcity of clonal aRME was not due to 

insufficient power. Additionally, the X-chromosome data provided the opportunity to 

explore properties of genes that escape XCI from a single-cell perspective (Supplementary 

Note 1, Supplementary Figs. 8–9 and Supplementary Table 2).

Thus, our data demonstrate that dynamic aRME constitutes the vast majority (>95%) of 

aRME occurring in primary fibroblasts. Next, to identify individual clonal aRME genes we 

devised a gene-level test detecting significantly skewed frequencies of monoallelic 

expression compared to the background expectation of random allelic expression fluctuation 

(Online Methods and Supplementary Fig. 6f). Genetic biases in allelic expression were 

observed for ~24% of genes (Supplementary Fig. 10), in line with a recent study21, and 

were accounted for in the background expectation. We validated our gene-level test on 

imprinted genes (i.e. parental-specific monoallelic expression), which were reliably 

identified (Fig. 2a–b and Supplementary Table 3a). As further validation of sensitivity in 

allele-specific detection using our single-cell assay, we performed deep sequencing on bulk 

RNA extracted from a fibroblasts culture using stranded mRNA TruSeq, and found that the 

single-cell data performed at least equally well in correctly identifying known imprinted 

genes (Supplementary Note 2, Supplementary Table 3b and Supplementary Fig. 9b; 

including information on allelic expression leakage of the imprinted gene Impact). Next, we 

applied the gene-level test on the two largest fibroblast clones (having adequate number of 

cells) and found significant (FDR<5%) clonal aRME for 41 and 47 autosomal genes (0.45 

and 0.57% of eligible genes) in the two clones respectively (Fig. 2c–d, Supplementary Table 

4 and Supplementary Fig. 11). Again, X-chromosome genes were highly significant for 

clonal monoallelic expression (Fig. 2d), verifying sensitivity.

Clonal aRME genes were expressed at significantly lower levels than other genes (P<10−9, 

Wilcoxon test, Fig. 2e), with a median of only ~2 RNA copies per cell (estimated using 

spike-in RNA). The clonal aRME expression was not dosage compensated, as clonal aRME 

tended to produce half the expression-level recorded in non-clonal populations (P-values 

1.8x10−3 and 4.4x10−6, Wilcoxon test) (Fig. 2f). Furthermore, comparing clonal aRME to 

monoallelic observations in non-clonal cells (essentially only dynamic aRME) revealed 

equal transcriptional output (Fig. 2f). Thus, clonal aRME in primary fibroblasts mainly 

affects low-expressed genes without dosage compensation. Clonal aRME genes were 

enriched for membrane, extracellular and signaling functions (Supplementary Table 5). Five 

genes (Mr1, Chn1, Ceacam1, Entpd1 and 5830432E09Rik) had clonal aRME in both clones, 

either from the same or opposite alleles in the clones (Supplementary Table 4). Although 

this represents a statistically significant overlap (P<10−3, hypergeometric distribution) it also 

highlights the scarcity of clonal aRME and that most clonal aRME genes differ between 

clones.

Next, we determined the prevalence of dynamic and clonal aRME in a somatic cell type in 
vivo for the first time. A male human donor was vaccinated with a yellow fever vaccine 
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(YFV-17D), and blood samples were collected at the acute (day 15) and memory phase (day 

136) of the vaccine response (Fig. 3a). We tracked the CD8+ T-cell responses using HLA 

class I dextramers that identified cells responding to an immunodominant (HLA-A02:01/

LLWNGPMAV, “HLA-A2”) and a subdominant (HLA-B07:02:RPIDDRFGL, “HLA-B7”) 

T-cell epitope22 by fluorescence-activated cell sorting (FACS) (Supplementary Fig. 12). We 

sequenced the transcriptomes19 of individual in vivo T-cells (n=545 post quality filtering), 

and reconstructed their rearranged T-cell receptor sequences (TCR-α and TCR-β) (Online 

Methods). As rearrangements of the two TCR chains result in immense sequence 

variability23, cells with identically rearrangements were identified as clones (Supplementary 

Table 1b). We identified 32 in vivo T-cell clones with 3–20 sampled cells each. To identify 

SNPs, we performed exome sequencing of the donor, and used confirmed SNPs to determine 

allelic expression in the single T-cells (mean 1,846 genes expressed; 806 allele-informative 

genes passing SNP filtering). We observed aRME for ~60–85% of expressed genes (RPKM 

>20) across in vivo T-cells (Fig. 3b and Supplementary Fig. 13). Interestingly, aRME was 

more prevalent in T-cells collected during the memory phase (P=2.6x10−4, Wilcoxon test) 

(Fig. 3b), coinciding with decreased transcriptional activity in these cells (Supplementary 

Fig. 14). Next, we determined the prevalence of clonal aRME by comparing clonally 

consistent monoallelic expression to that expected from the background of fluctuating allelic 

expression using in silico pooling. Although the T-cells had high levels of dynamic aRME, 

clonal aRME was only observed for 0.9% (median) of genes (P=0.02, one-sided Wilcoxon 

test), demonstrating that clonal aRME is surprisingly scarce also in T-cells in vivo (Fig. 3c). 

To obtain sufficient number of T-cells per clone for gene-level identification of clonal 

aRME, we FACS-sorted single HLA-A2-specific T-cells from the same donor into separate 

culture wells, and clonally expanded cells ex vivo using autologous-antigen-presenting cells 

and LLWNGPMAV peptide in the presence of IL-2. We collected and sequenced cells from 

nine clonal expansions (in total 347 T-cells, 29–48 cells per clone). As expected from the in 
vivo results, the gene-level test identified a small number of clonal aRME genes, most 

notably a significant (P=1.6x10−8) clonal RME of KLRB1 (Killer Cell Lectin-Like 

Receptor) in one clone (Fig. 3d) and allelic imbalance in other clones (Supplementary Figs. 

15–16 and Supplementary Table 6). Additionally, we noted clone-consistent aRME for CD7 
(T-cell antigen) in two clones with opposite alleles expressed. Both these genes are immune 

related and membrane associated. We conclude that even in T-cells with high levels of 

monoallelic expression, the vast majority of aRME is dynamic with only sparse clonal 

aRME.

We detected remarkable variation in dynamic aRME across different cell types as well as 

among equivalently cultured fibroblasts (4–33%, Fig. 1b–c). We therefore pursued 

determinants of dynamic aRME levels, hypothesizing that increased transcription rates in 

larger cells24 could result in lowered levels of dynamic aRME. We therefore picked and 

sequenced large (ødissociated 25–35µm) and small (ødissociated 10–20µm) fibroblasts in 

culture, and expectedly, large cells contained more polyA+ RNA than small cells 

(P=5.3x10−9, Wilcoxon test) (Supplementary Figs. 17-18). Importantly, large cells had lower 

degree aRME than small cells (P=3.0x10−8, Wilcoxon test, median 9.1%, and 17% of genes 

respectively) (Fig. 4a). This was supported by split-cell control experiments (Online 

Methods and Supplementary Fig. 19), analytically inferring less monoallelic expression in 
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large (median 7.8% of genes) than in small (median 15% of genes) fibroblasts from the 

paired allelic calls in split-cell lysates (P=3.3x10−3, Wilcoxon test) (Fig. 4b). Experiments 

considering intermediate cell sizes, further supported a dependence between size and 

dynamic aRME (Supplementary Fig. 20). Correlation between cellular size (determined by 

FACS) and degree dynamic aRME was furthermore observed in T-cells (Pearson 

correlation=–0.33, P=2.1x10−10, Fig 4c). Across additional mouse in vivo cell types we 

found that aRME levels varied with the total RNA content (Supplementary Fig. 21). In 

addition to maintaining overall RNA concentrations24, we found evidence that 

concentrations for cellular compartments are maintained (Supplementary Tables 7–11), e.g. 

membrane- and cytosol-related transcripts were elevated along with increased cell size, as 

recently hypothesized25. Using the fibroblast data, we further investigated how the degree 

dynamic aRME varies with cell-cycle phase. Using the most-variable cell-cycle genes, we 

classified the cells into G0, G1 and S/G2/M phases (Supplementary Fig. 22; S/G2/M could 

not be sub-stratified). Interestingly, levels of aRME were elevated in the “resting” G0 phase 

(P≤2x10−5) (Fig. 4d–e), in line with elevated aRME in human memory T-cells in vivo (Fig. 

3b) that also reside primarily in G026.

Here we used single-cell transcriptomics to dissect the nature of monoallelic expression in 

somatic cells. In contrast to previous studies that analyzed bulk-populations of longer-term 

expanded cell cultures8,10,11,14,15, we show that clonal aRME is very scarce (<1%) in 

primary and in vivo cells. Indeed >95% of observed cellular aRME was dynamic, with levels 

correlating with the transcriptional activity of the cells and further reflected from immune-

activated responses and cell-cycle phase. These data alter the interpretation of several 

previous reports on monoallelic expression27–33, as cellular observations of monoallelic 

expression alone is not indicative of stable allele-level regulation. This also questions the 

notion of widespread clonal aRME affecting thousands of genes8,10,13,34. The revelation 

that clonal aRME appear only at miniscule levels in somatic primary and in vivo cells 

advances our knowledge of allele-specific gene expression and shed light on how variable 

expressivity and penetrance may emerge from aRME. Thus, in addition to heterogeneity 

emerging from scarce clonal aRME8, by far the majority of cellular variability in allelic 

expression occurs randomly throughout somatic cell populations and fluctuates over time.

Experimental procedures

Derivation of primary mouse fibroblasts

Primary fibroblasts were derived from adult CAST/EiJxC57BL/6J or C57BL/6JxCAST/EiJ 

mice (ethical permit: N343/12, Jordbruksverket) by skinning, mincing and culturing tail 

explants in fibroblast medium (Supplementary Note 2). For one clone (cl6) the fibroblasts 

were derived from minced E14.5 skin instead of tails, using the same procedure. After 

removal of explants, the culture was passaged twice to attain a pure fibroblast culture. Cells 

from passage 2–4 were dissociated (TrypLE Express, Gibco Ref. 12604-013), diluted to low 

cell density, and cells were picked by mouth pipetting using a thin glass capillary under 10x 

or 20x magnification. Cells for RNA-seq were transferred to RNAse-free PCR tubes 

containing 2µl Smart-seq2 lysis buffer and snap-frozen on dry ice.
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Single-cell RNA-sequencing: Reverse transcription and cDNA amplification

Smart-seq2 cDNA libraries were prepared as described earlier19 and outlined in 

Supplementary Note 2. The cDNA was purified using AMPure XP beads (Beckman Coulter, 

Ref. A63882) and inspected on an Agilent 2100 Bioanalyzer to determine cDNA 

concentration and size distribution.

Single-cell RNA-sequencing: Tagmentation and sequencing

Successful cDNA libraries were tagmented, either using the Nextera XT DNA kit (Illumina 

Cat. FC-131-1024) or using our in-house-generated Tn5 (which produces sequencing 

libraries of indistinguishable characteristics to those generated using the Nextera XT kit)35. 

Details on tagmentation and library amplification are available in Supplementary Note 2. 

Libraries were purified using AMPure XP beads and inspected on an Agilent 2100 

Bioanalyser. Sequencing was performed on an Illumina HiSeq2000. All mouse single-cell 

RNA-seq libraries used in the analyses of aRME are listed in Supplementary Table 1 and 

deposited to GEO (GSE75659).

Generation of libraries from split-cell lysates

Split-cell libraries were prepared as for single cells, with the following modifications: Single 

cells were lysed in 4µl lysis buffer instead of 2µl, and the lysate was thoroughly 

homogenized by pipetting up and down. 2µl of the homogenized lysate was then transferred 

to two separate tubes, each containing 0.5µl lysis buffer (to facilitate complete release of the 

lysate), and processed into sequencing libraries. Only split-pairs that generated similar 

Agilent Bioanalyzer profiles were selected for sequencing.

Exogenous spike-in RNA

Spike-in RNA (ERCC, Ambion, Ref. 4456740) was diluted in 10mM Tris-HCl pH7.5. 0.1µl 

of diluted (1:109,658, stock:final concentration) ERCC was added to each cell’s RT priming 

buffer (corresponding to 56,848 ERCC molecules). For T-cell libraries spike-in RNA was 

diluted 1:1,200,000 and 0.1µl (corresponding to 5,195 ERCC molecules) per reaction was 

added to the RT priming buffer.

Monoclonal fibroblasts

Single fibroblasts (from passage 2–4) were placed within marked areas in the bottom of 

gelatinized culture dishes containing fibroblast medium, observing the release of a single 

cell per dish under microscope. Monoclonally expanding cells were picked after 2–7 cellular 

divisions. For one clone (cl7), we also picked multi-cell samples of 5 or 15 cells that were 

jointly lysed and processed into sequencing libraries.

Human subjects for isolation of T-cells

Human volunteers were recruited to participate in an ongoing study examining the 

longitudinal immune response to the yellow fever vaccine YFV 17D (approved by the 

Regional Ethical Review Board in Stockholm, Sweden: 2008/1881-31/4, 2013/216-32 and 

2014/1890-32). A single subject (ID: YFV2001(male)) was selected for in depth analysis 

based on being both HLA-A2 and HLA-B7 positive and having T-cell responses against 
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YFV epitopes presented on both HLA types. Peripheral blood was collected at day 15 and 

day 136 after vaccination. Peripheral blood mononuclear cells (PBMCs) were isolated by 

density centrifugation (Lymphoprep, Stem Cell Technologies, Ref. 07801) and stored in 

liquid nitrogen in 90% FCS and 10% dimethylsulfoxide (DMSO) until sorting.

Single-cell sorting of human CD8+ T-cells

Cryopreserved PBMCs were thawed and re-suspended in cold FACS buffer (PBS, 2% 

bovine serum, 2mM EDTA). CD8+ T-cells were enriched by negative selection (Miltenyi 

Human CD8 negative selection kit, Ref. 130-096-495), and were incubated for 15 min with 

either HLA-B07:02/RPIDDRFGL-dextramers (day 15 and day 136 cells) or HLA-A02:01/

LLWNGPMAV-dextramers (day 15 cells) (Immudex, Denmark), followed by incubation 

with a panel of surface antibodies to detect live CD3+CD8+ T-cells (CD3-Alexa Flour 700 

(UCHT1, BD Biosciences), CD8-APC Cy7 (SK1, BD Biosciences), CD4-PE-Cy5 (RPA-T4, 

Ebiosciences), CD14-Horizon V500 (MΦP9, BD Biosciences), CD19-Horizon V500 

(HIB19, BD Biosciences), and Live/Dead Fixable Aqua dead cell stain kit (Invitrogen, Cat. 

L34957)). After 30 minutes of incubation at 4°C, the cells were washed and resuspended in 

cold FACS buffer for sorting. The cells were sorted using single-cell mode on a 

BecktonDickinson ARIA III cell sorter (equipped with a 405nm violet laser, 488nm blue 

laser, 561nm yellow/green laser, and 633nm red laser) into PCR plates containing 4ul Smart-

seq2 lysis buffer.

Ex vivo expansion of human primary T-cells

CD8+ T-cells were isolated by negative selection from thawed cryopreserved PBMCs and 

were stained with the HLA-A2/LLWNGPMAV dextramer and antibodies as described 

above. Single live CD8+CD3+HLA-A2 dextramer+ cells were sorted directly into 96 well U-

bottom plates containing 2μg/ml peptide (LLWNGPMAV), 20U/ml IL-2, and 50.000 

irradiated (40Gy) CD3-depleted autologous PBMCs in complete T-cell media 

(Supplementary Note 2) and were cultured for 18 days. Every 4–5 days half of the media 

was replaced with fresh T-cell media containing 50U/ml IL-2 and 2μg/ml peptide, and the 

wells were visually inspected for proliferation. After 18 days, nine expanded clones were 

selected for single-cell sorting for RNA-seq based on the presence of sufficient cell numbers 

(>100) and no evidence of contaminating cells (all live cells were CD8+ and bound the 

HLA-A2/LLWNGPMAV dextramer). Single-cell RNA-seq libraries were generated as 

described below for the in vivo studies on YFV-specific CD8+ T-cells.

Single-cell RNA–seq on human T-cells

Smart-seq2 libraries from T-cells were prepared as described for mouse cells, with minor 

modifications (Supplementary Note 2). All T-cell single-cell RNA-seq libraries used in the 

analyses are listed in Supplementary Table 1 and deposited to GEO (GSE75659).

Exome sequencing

Exome capture was performed on unsorted PBMCs from donor YFV2001 using the Nextera 

Exome Sequencing kit (Nextera Rapid Capture Expanded Exome Kit, Illumina, Ref. 

FC-140-1000).
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Computational procedures

Alignment of reads and allelic calling for mouse cells

Reads were aligned using RNA-STAR36 independently towards the mm9 genome assembly 

(C57 genotype) and an in-house generated CAST mm9 assembly (Supplementary Note 2). 

We counted C57- and CAST-informative bases for each gene, using the samtools mpileup 

command. To eliminate false SNP calls, occurring at low frequency, we only conceded the 

allelic calls for genes with ≥3 allele-informative reads. The allelic expression of each gene in 

each cell was called “biallelic”, “reference monoallelic”, “alternative monoallelic” or “not 

detected” (Supplementary Fig. 6a). A gene was called monoallelically expressed in a cell if 

one allele contributed ≥98% of the genotype-informative bases. Thus we allowed for up to 

2% of reads to be aligning to the other allele without calling it “biallelic”, in order to tolerate 

a small degree of PCR and sequencing errors known to affect high-expressed genes in 

particular16; considerably more stringent than previous studies RNA-seq 

studies14,15,37,38. We demonstrated that our criteria (≥98% of the reads from one allele, 

and ≥3 allele-informative reads) were robust and resulted in accurate calls through analyses 

of genes on the X chromosome in male cells (i.e. cells with only one parental X 

chromosome) (Supplementary Fig. 3a–b). We verified that SNPs within the same genes and 

cells provided coherent allelic information (Supplementary Fig. 5). Fibroblasts expressed on 

average 10,702 genes. The number of allele-informative autosomal genes, eligible in the 

gene-level test for fibroblasts, was 8,264–9,195 genes, and the number of allele-informative 

genes with mean RPKM >20 in fibroblasts was 4,514.

Expression levels

We calculated RPKM values (reads per kilobase and million mapped reads) using 

rpkmforgenes39 version 7 Feb 2014 with uniquely mapped reads; Ensembl annotation (from 

UCSC genome browser, last modification date 11 April 2012) for mouse, and hg19 for 

human; length compensation for unmappable positions40 and the settings -fulltranscript -

mRNAnorm -rmnameoverlap and -bothendsceil.

Percent monoallelically expressed genes

Percent monoallelically expressed genes for each cell was calculated as the number of genes 

with monoallelic calls divided by the total number of genes with informative (biallelic or 

monoallelic) calls in the cell multiplied by 100, including genes with mean expressions 

above 1 or 20 RPKM over the group of cells considered (thresholds stated in figure legends). 

The 20 RPKM threshold was applied when estimating total aRME in fibroblast cells, since 

at this threshold the false negatives and false positives monoallelic calls are in balance both 

in previous experiments16 and in the split-cell experiments on the mouse fibroblasts. The 1 

RPKM threshold was applied when performing tests on clonal aRME, since clonal aRME 

genes were expressed at these low levels.

Analyses of allelic calls in split-cell experiments

We inferred monoallelic expression and allelic dropouts in a cell before its lysate were split 

into two fractions and tubes using the analytical model we recently developed16. In brief, 
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we compared allelic calls for each gene in the paired libraries and determined the fraction of 

genes for which the splitted cells gave coherent calls, and the fraction of genes with different 

calls (Supplementary Note 2). We introduced equations that model the observed allelic calls 

and account for allelic losses (e.g. from biallelic to monoallelic or not detected; from 

monoallelic to not-detected) as detailed in fig. S26 in Deng et al.16. We solved the equations 

to find the fraction of monoallelic expression (x), the allelic losses (z) and the fraction 

biallelic expression (y). From these variables, we calculated the fraction of expressed genes 

that were monoallelic as x/(x+y) (Supplementary Fig. 19a–b). Since z would depend on the 

starting number of transcripts, we inferred x, y, z for different expression levels (i.e. RPKM 

bins) and we plotted the inferred variables as a function of expression level (Supplementary 

Fig. 19c–d). Importantly, the analytical model solves the allelic dropouts and monoallelic 

expression per expression bin, and it is a threshold-independent method that can account for 

varying dropout levels depending on RNA contents of cells prior to lysis and splits. 

Therefore the approach allows for varying allelic dropouts in the analyses of each split-cell 

pair, and we observed that smaller fibroblasts obtained slightly higher dropout levels than 

larger fibroblasts (Supplementary Fig. 19c–d).

Corrections for chromosomal aneuploidies

We surveyed the allelic calls along chromosomes to detect large-scale chromosomal 

aberrations, including aneuploidies. These were identified as chromosomes, or parts of 

chromosomes, where a large number of genes were deviating in allelic expression in favor of 

CAST or C57 genotypes. Chromosomes were flagged if abs(monoallelic calls CAST – 

monoallelic calls C57) > 50% and were then visually inspected. Supplementary Note 2 

provides details on flagged cells and chromosomes.

Inferring number of RNA molecules per cell from spike-ins

To determine the total number of polyA+ molecules per cell (used for Supplementary Fig. 

21), we divided the number of added ERCC spike-in molecules by the total RPKM for 

spike-ins in each a sample and multiplied by the total RPKM for genes (Supplementary Note 

2).

Identification of genes with imprinted or strain-biased allelic expression

We translated the CAST and C57 calls to maternal and paternal calls, according to the 

parental genotypes. P-values for imprinted allelic expression were calculated using Fisher’s 

exact test on the frequency of monoallelic expression in a parental-specific manner 

compared to the overall call frequencies (Supplementary Fig. 6c). To consider a gene 

imprinted, and for inclusion in Supplementary Table 3a, the criteria were coherent 

monoallelic parental-specific calls in ≥90% of the cells and P<0.05 for the paternal bias in 

monoallelic expressions. We further performed imprinting analyses using bulk RNA 

sequencing on fibroblasts (described in Supplementary Note 2). We identified genes with 

strain-biased allelic expression using the observed frequencies C57 or CAST monoallelic in 

cells (Supplementary Fig. 6b), and we evaluated the frequency deviation from P=0.5 using a 

binominal test (Supplementary Fig. 6d). Previously known imprinted (genes in the 

GeneImprint repository) and novel imprinted genes were filtered out before strain analyses.
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Analysis of clonal random monoallelic expression

Clone-consistent random monoallelic expression was investigated using two approaches. To 

estimate the percentage of genes with clonal aRME in mouse primary fibroblasts or human 

in vivo T-cells we compared the observed frequency of clone-consistent monoallelic calls 

over the cells of each clone separately to the expected clone-consistent aRME deriving from 

dynamic aRME through “in silico pooling” of cellular allelic calls (Supplementary Fig. 6e). 

Observed clone-consistent monoallelic expression was computed as the percentage of 

detected genes with allele-consistent monoallelic in the clonal cells. The expected 

background frequency of clone-consistent monoallelic expression (being consistent 

monoallelic over cells by random chance alone, due to transcriptional bursting and/or 

technical dropout of RNA species) was computed through in silico pooling of non-clonal 

cells and/or allelic calls. We evaluated the background frequencies derived from in silico 
pooling of either random cells or randomized allelic calls and both approaches yielded 

similar background estimates. For analyses presented in the study, we used randomized 

allelic calls rather than cells, since pooling of randomized calls conserve possible clone-

specific patterns of expressed genes. In each round (500 random samplings), we replaced 

informative allelic calls per gene (i.e. calls assigned as biallelic, reference-monoallelic, or 

alternative-monoallelic) in the cells of each clone, with a random informative call with 

probability according to the frequency at which the different calls occurred in the non-clonal 

cell population (Supplementary Fig. 6b). The clonal aRME (reported in Supplementary Fig. 

6e, Fig. 1e and Fig. 3c) was defined as the observed percent of genes with clone-consistent 

monoallelic expression minus the median percent genes with clone-consistent monoallelic 

expression in 500 random samplings.

Gene-level test to identify genes with clonal aRME

To identify individual genes with clonal aRME in fibroblasts and ex vivo T-cells we applied 

a gene-level test (Supplementary Fig. 6f), assessing the statistical significance of skew in 

allelic call frequencies in a clone compared to the overall call frequencies in non-clonal cells 

(i.e. taking genetic effects into account). We classified genes as subjected to clonal aRME 

based on: i) Fisher’s exact test P<0.05 (one-sided test for either over-representation of 

reference-monoallelic calls or over-representation of alternative-monoallelic calls) and ii) 
required consistent monoallelic calls in ≥90% of the cells with informative calls for the 

particular gene and clone. The rationale for requiring 90% of cells having clone-consistent 

calls was based on analyses of imprinted genes (see the shape of the distribution in Fig. 2b). 

Imprinted genes were filtered out before all clonal aRME analyses. To account for multiple 

testing, we computed the expected number of false positives (E-values) using randomly 

sampled non-clonal cells (1000 randomizations per clone).

Identification of T-cell in vivo clones

T-cell clones were identified based on cDNA sequences corresponding to the TCR-alpha 

(TCRα) and TCR-beta (TCRβ) chains using the MiTCR platform41, and a list of putative 

TCRα and TCRβ sequences was identified for each single-cell RNA-seq library. Reads were 

filtered to remove unproductive sequences corresponding to erroneous calls or PCR artifacts 

(as annotated in the MiTCR output). A secondary pipeline was developed in which publicly 
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available sequences in the NCBI and Ensemble gene repositories of TCRα- and TCRβ-

related gene components were used as reference to screen for reads aligning to these regions. 

Reads were aligned to this reference, assembled using Velvet42, and submitted to the 

International ImMunoGeneTics (IMGT) TCR sequence identifying platform43. The 

resulting hits were compared with the MiTCR screen to validate the individual sequences. In 

most cases either one or both of the TCR chains could be identified with both methods, and 

only cells with a high degree of certainty, presenting both the TCRα and TCRβ sequences, 

were considered for analysis of their clonal identity. Since both TCR chains are generated as 

separate recombination events it is extremely rare that two distinct T-cells will arise bearing 

identical both TCRα and TCRβ chains at the nucleotide level23. Cells with identical TCRα 
and TCRβ sequences were consequently classified as clones. Clones with at least three cells 

were considered for further analysis of clonal aRME, resulting in 32 individual in vivo T-cell 

clones.

Identification of heterozygous SNPs in human donor T-cells

To identify high-confidence SNPs in the male donor, we considered only heterozygous bases 

supported in the exome data and present in dbSNP (build 138) reference database. The 

criteria for inclusion were: ≥3 reads of each SNP variant in the exome data and ≤50-fold 

difference between the two, and that both SNP bases were validated by the single-cell RNA-

seq data (informative call for the SNP in ≥1% of the cells). To filter out SNPs expressed with 

strong genetic bias, imprinted genes, and possible remaining false-positive SNPs, we 

discarded SNPs with a detected bias for one base (reference or alternative) >70% over all 

cells (Supplementary Fig. 3c), and all X-chromosome genes. This resulted in the inclusion 

of 1,010 confirmed autosomal SNPs expressed in the human donor’s T-cells, corresponding 

to 806 unique genes post filtering. For genes with multiple SNPs we used the most 

informative SNP (i.e. the SNP with highest number of reads). T-cells expressed (RPKM>1) 

on average 1,846 genes, and the number of expressed genes varied between the acute and 

memory phase (Supplementary Fig. 14a). The number of eligible allele-informative genes in 

ex vivo-expanded T-cell clones ranged between 370 and 660 (Supplementary Fig. 15), and 

the number of allele-informative genes with mean RPKM >20 was 399.

Allelic calling for human cells

For the analysis of allelic expression in T-cells, we used the same criteria and analyses as for 

fibroblasts (but using human reference/alternative SNPs rather than mouse CAST/C57 

SNPs), considering genes with a mean expression of at least 1 or 20 RPKM over the group 

of T-cells considered, as stated in the figure legends.

GO analyses of genes correlating with cellular size and mRNA content

GO analyses (described in detail in Supplementary Note 2, results in Supplementary Table 

7-11) were performed using DAVID44,45, and genes expressed in fibroblasts (genes with 

mean expression >1 RPKM) were used as background set.
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Cell-cycle classification on fibroblast cells

The cell-cycle phase of individual fibroblasts cells was identified by regressing the cell-cycle 

genes identified by Whitfield46. A fit was performed using the R function glmgam.fit(), as 

previously described by Brennecke et al.47. The 100 cell-cycle genes presenting the greatest 

variability were used for principal component analysis whereby three phases of the cell 

cycle could be separated.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The vast majority of aRME in primary mouse fibroblasts is dynamic.
(a) Schematic overview of the experimental design. (b) Histogram showing percent aRME 

in randomly picked primary mouse fibroblasts (n=163). (c) Percent autosomal genes with bi- 

or monoallelic expression in single cells, after aggregating all cells of a clone, and expected 

levels from randomly pooling allelic calls of the same number of non-clonal cells. Dots 

represent percent monoallelic genes observed in single cells and bars depict the average. 

Observed allelic expression on the X-chromosome is shown to the right of each clonal set. 

Biallelic genes on female X-chromosomes are X-inactivation escapees (Supplementary Fig. 

7–9). Sex and number of sequenced cells (out of all cells of the clone) are indicated above. 

(d) Percent of genes with aRME when sequencing transcriptomes of 5 or 15 pooled clonal 

cells (dots), and values obtained after in silico pooling of clonal or non-clonal cells shown as 

boxplots; indicating median (belt), interquartile range (box) and farthest points at maximum 

1.5 times the interquartile rage (whiskers). Expression threshold in (b–d): RPKM>20. (e) 

Percent clonal aRME in the seven clones (circles) (observed minus expected), for genes 

detected either above 20 or 1 RPKM. The P-value denotes a median significantly greater 

than zero (one-sided Wilcoxon test). “ns”: not significant.
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Figure 2. Scarce clonal aRME in low-expressed genes
(a) Genes with parental-specific (imprinted) monoallelic expression, ordered and colored 

according to chromosomal localization, with –log10 P-values (Fisher’s exact test) on y-axis. 

(b) Gene scatter with fraction cells having consistent maternal or paternal monoallelic 

expression (x-axis) plotted against the –log10 P-values (Fisher’s exact test). Genes with 

P<0.05 and consistent monoallelic in ≥90% of expressing cells were classified parent-of-

origin-specific monoallelic, all being known imprinted genes except the novel candidates in 

brackets (DLX5 is known imprinted in human). (c) Test on clonal aRME (as in (a)) for male 

primary fibroblast clone 6 (n=38 cells), and scatterplot (as in (b)). E-values denote expected 

number of false positives above thresholds. (d) Test on clonal aRME for female primary 

fibroblast clone 7 (n=60 cells) and scatterplot (as in (c)). (e) Expression-level boxplots of 

clonal aRME (colored) and other genes (gray) in clones 6 and 7. P-values from two-sided 

Wilcoxon test. (f) Boxplots of relative expression of clonal aRME genes, over whole cell 

populations (left), or single cells expressing monoallelic (clonal or dynamic aRME) in both 
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clone and non-clonal cells. P-values signify deviation from equal expression (two-sided 

Wilcoxon test). Additional boxplots (right) show relative expression levels in cells with 

dynamic aRME and biallelic expression, demonstrating the expected ~1:2 expression-level 

when transcribing 1 versus 2 alleles. (a–f) Threshold: RPKM>1.
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Figure 3. Dynamic and clonal aRME in human T-cells.
(a) Schematic representation of the experimental design. (b) Boxplots of percent aRME 

genes in HLA-B7 restricted T-cells, isolated at day 15 (red) or 136 (blue) after vaccination; 

and in all in vivo- (green) and ex vivo-expanded (orange) T-cells. Threshold: RPKM>20. (c) 

Upper panel: Percent aRME in 32 in vivo T-cell clones (circle: per cell, dot: median) and in 

all in vivo T-cells as a boxplot to the right. Lower panel: Percent clone-consistent aRME 

(observed minus expected, from sampled in silico pooling) as blue boxplots. The pink 

boxplot (lower right) and red solid line show median percent clonal aRME estimated over all 
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clones. P-value for clonal aRME above zero according to a one-sided Wilcoxon test. 

Threshold: RPKM>1. (d) Example of gene-level identification on an ex vivo-expanded T-

cell clone (clone C), showing highly significant clonal aRME of KLRB1 (Scatter plots as 

described in Fig. 2c–d).
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Figure 4. Cellular size and cell-cycle phase affect the degree dynamic aRME.
(a) Observed allelic expression in primary fibroblasts of large and small cellular size. P-

value: two-sided Wilcoxon test. (b) Percent monoallelic expression in large and small 

fibroblasts inferred by split-cell analysis. P-value: two-sided Wilcoxon test. (c) Scatter plot 

and Pearson correlation of percent aRME and cell size (estimated by FACS) in ex vivo-

expanded T-cells. (d) Principal component analysis (scatterplot of component 1 and 2) of 

fibroblasts using the top 100 most-variable cell-cycle genes, with cells colored according to 

cell-cycle classification. (e) Boxplots of percent aRME in fibroblasts of different cell-cycle 

phases. P-values: two-sided Wilcoxon test. (a–d) Expression threshold: RPKM>20.
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