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Abstract: The properties of a semiflexible polymer with fixed ends exposed to oscillatory shear flow
are investigated by simulations. The two-dimensionally confined polymer is modeled as a linear
bead-spring chain, and the interaction with the fluid is described by the Brownian multiparticle
collision dynamics approach. For small shear rates, the tethering of the ends leads to a more-or-less
linear oscillatory response. However, at high shear rates, we found a strongly nonlinear reaction,
with a polymer (partially) wrapped around the fixation points. This leads to an overall shrinkage of
the polymer. Dynamically, the location probability of the polymer center-of-mass position is largest
on a spatial curve resembling a limaçon, although with an inhomogeneous distribution. We found
shear-induced modifications of the normal-mode correlation functions, with a frequency doubling
at high shear rates. Interestingly, an even-odd asymmetry for the Cartesian components of the
correlation functions appears, with rather similar spectra for odd x- and even y-modes and vice versa.
Overall, our simulations yielded an intriguing nonlinear behavior of tethered semiflexible polymers
under oscillatory shear flow.

Keywords: mesoscale simulations; nonequilibrium simulations; LAOS; polymer dynamics

1. Introduction

The structural and rheological properties of polymers are strongly affected by external fields,
such as shear or extensional flows. As such, this is well established, and the external fields provide
means to control the behavior of polymer solutions, melts, and networks [1–5]. Similarly, it has been
shown that the macroscopic rheological behavior of a polymer solution, e.g., shear-rate dependent
viscosities, normal-stress differences, and shear thinning, are tightly linked to the microscopic polymer
conformational and dynamical properties [5–11]. Hence, insight into the behavior of individual
polymers is fundamental in the strive to unravel the macroscopic nonequilibrium polymer properties.

Direct observation of the nonequilibrium properties of single molecules, also termed “molecular
rheology” [5], in experiments [12–19] and simulations [10,13,20–44] has provided valuable visual
illustrations of polymer conformations and has helped to characterize their nonequilibrium properties
in terms of their deformation, orientation, relaxation dynamics, and rheology, both for free and tethered
molecules in shear and extensional flow. These studies, however, typically probe the linear viscoelastic
properties, which are usually insufficient to fully characterize the nonlinear aspects of polymers
under flow.

In order to probe nonlinear properties of complex fluids, the large-amplitude oscillatory shear
(LAOS) method was developed [19,45–48]. Here, in contrast to small-amplitude oscillatory shear,
the stress response is typically no longer sinusoidal, but of rather complex shape. Such strong,
time-dependent flows will affect the conformational properties of individual polymers to a yet
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unresolved extent. Studies on the dynamics of single polymers under large-amplitude oscillatory
extensional flow yield qualitatively different stretching flow-rate curves (Lissajous curves) as a function
of the extension rate and the oscillation frequency [19], and illustrate the complex interplay between
time-dependent flows and polymer conformations. Here, further studies are desirable to resolve the
time-dependent conformational properties of single polymers under large-amplitude oscillatory flows,
aspects which, so far, have not been addressed by simulations.

In this article, we perform non-hydrodynamic, Brownian-type simulations of individual polymers
exposed to large-amplitude oscillatory shear. The ends of the polymer are fixed and the polymer
dynamics is constraint to the xy-plane of a Cartesian reference frame. We consider stiffer polymers only,
with the persistence lengths Lp/L = 1/2 and 2, respectively (Lp is the persistence and L the polymer
contour length). In any case, the polymers exhibit cyclic conformational modulations, specifically
at higher Weissenberg numbers (Wi), which is the product of the applied shear rate and the longest
polymer relaxation time. The tethering of the ends leads to a more-or-less linear oscillatory response
at small Weissenberg numbers, where a polymer moves back and forth like grass swaying in the
wind. With increasing Wi, polymers (partially) wrap around the fixation points and shrink. In general,
the probability of the center-of-mass position is largest on a limaçon-type curve, as a consequence of
the periodic excitation, however, with a non-uniform probability. Interestingly, the center-of-mass
autocorrelation function normal to the line connecting the tethering points exhibits frequency doubling
with respect to the imposed shear frequency, as a consequence of the non-crossability of the polymer
and the tethering points. This reflects the symmetry breaking of the polymer dynamics during an
oscillation cycle. Our findings illustrated the complex nonlinear interplay of polymer internal degrees
of freedom and external periodic oscillations.

The rest of the paper is organized as follows. In Section 2, the polymer model and the coupling to
the shear flow are described. Section 3 presents results for conformational and dynamical properties.
Our findings are summarized in Section 4.

2. Model and Method

The two-dimensional linear polymer chain is composed of N beads of mass M, with its ends,
r1, rN , tethered at r1 = (−H/2, 0)T and rN = (H/2, 0)T , respectively (cf. Figure 1). The contour
length L = (N − 1)r0, where r0 is the bond length, is fixed and L > H. The interactions between
the beads are defined in terms of the potential U = Ubond + Ubend + Uex, comprising bond, bending,
and excluded-volume interactions. The bonds between consecutive beads are described by the
harmonic potential:

Ubond =
κh
2

N−1

∑
i=1

(|ri+1 − ri| − r0)
2, (1)

where ri is the position of bead i (i = 1, . . . , N) and κh is the elastic constant. Bending restrictions are
captured by the potential:

Ubend = κ
N−2

∑
i=1

(1− cos ϕi), (2)

with κ the bending rigidity and ϕi the angle between two consecutive bond vectors. In the limit
κ → ∞, the persistence length is given by Lp = 2κr0/kBT, with T the temperature and kB
Boltzmann’s constant. Bead overlapping and bond crossings are prevented by the shifted and truncated
Lennard–Jones potential:

Uex = 4ε
[(σ

r

)12
−
(σ

r

)6
+

1
4

]
Θ(21/6σ− r), (3)

where r is the distance between two non-bonded beads, and Θ(r) is the Heaviside function; Θ(r) = 0
for r < 0 and Θ(r) = 1 for r > 0. The dynamics of the beads is described by Newton’s equations of
motion, which are integrated by the velocity-Verlet algorithm with time step ∆tp [49,50].
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The polymer is coupled to a Brownian heat bath implemented via the Brownian (or random)
multiparticle collision dynamics (B-MPC) approach [51–53]. Hence, no hydrodynamic effects are
considered in the present work. MPC consist of streaming and collision steps, where collisions occur in
regular time intervals of length ∆t [52,54]. During streaming, the dynamics of the beads is described by
Newton’s equations of motion. In the collision step, the velocities of the beads change in a stochastic
manner. In B-MPC, the Brownian interaction of a bead with the surrounding fluid is implemented by
a stochastic collision with a phantom particle, taking its momentum from the Maxwell–Boltzmann
distribution of variance MkBT and a mean, which is zero in absence of shear. In the presence of
oscillatory shear in the xy-plan the mean momentum is Mvs

i (t), with the shear velocity:

vs
i (t) = (γ̇yi cos(ωt), 0)T (4)

at the time t; γ̇ is the shear rate and ω the frequency (cf. Figure 1). The collision is implemented
via the stochastic rotation dynamics variant of MPC [52,55,56]. Here, the relative velocity of a bead,
with respect to the mean of the velocities of the bead and related phantom particle, is randomly rotated
by angles ±α.

We choose the following parameters for the simulations: α = 130◦, M = 5, ∆t = 0.1tu, with

the time unit tu =
√

Mr2
0/(5kBT), κhr2

0/(kBT) = 4 × 103, ε/(kBT) = 1, σ = r0, N = 101, hence,

the polymer length is L = 100r0, and ∆tp = 10−2∆t. The value of κh guarantees that the polymer length
is constant within 1% for all considered systems. Two bending rigidities are considered, corresponding
to the persistence lengths Lp/L = 0.5 and 2.

Simulations of free polymers yield the longest relaxations times τr/tu = 1.9 × 106 and
τr/tu = 3.9 × 106 for the two stiffness values, determined from the end-to-end vector correlation
function [11,40]. The strength of the shear flow is characterized by the Weissenberg number Wi = τrγ̇,
for which the values Wi = 10, 25, 50, and 100 are considered. The frequency ω is related to the
Deborah number De = τrω, where we set De = 10.

The polymer, with H = L/5, is initialized with beads along a semi-elliptical contour with the
major axis along the y-direction and minor axis along the x-axis. The polymers are equilibrated up to
5 × 106tu > τr, and data are collected up to the longest simulated time tL = 108tu.

-H/2 H/2
x

y

Figure 1. Sketch of the tethered bead-spring polymer exposed to oscillatory linear shear flow.

3. Results

The oscillatory flow dragged the beads along and, at least at small shear rates, the polymer
moved back and forth like grass swaying in the wind. This is illustrated in Figure 2. The stiffer
polymer (Lp/L = 2) closely maintained its shape at low shear rates (Figure 2b). A flexible polymer
was deformed more easily, but an in-phase oscillation was still present (Figure 2a). Larger Weissenberg
numbers led to stronger conformational changes and larger bead displacements (Figure 2c–h).
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Figure 2. Conformations of the polymer at times t = 0 (solid line), 0.5π/ω (dashed line), π/ω (dotted
line), 1.5π/ω (dash-dotted line) after equilibration for Lp/L = 0.5 (left), 2 (right), and Wi = 10, 25, 50,
100 (from top to bottom). Black dots denote the position of fixed beads.

3.1. Center-of-Mass Properties

Figure 3 shows the time-dependence of the x-coordinate of the center-of-mass position for various
Weissenberg numbers. For smaller Wi . 25, entropic effects were strong, and xcm was only partially
following the external flow. Perturbations were stronger when the polymer got trapped by the fixation
points and some time was needed to disentangle it (cf. Supplementary Movies for Lp/L = 0.5, 2 and
Wi = 25). There were in-phase periods with a small phase shift, which were interrupted by time
intervals with a center-of-mass motion decoupled from the flow. A stronger flow (Wi ≈ 50) enhanced
the in-phase periodic motion, but the center-of-mass dynamics was phase shifted and seemed to be no
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longer harmonic. The modulations of the approximately periodic peaks became more pronounced
for Wi = 100, and an original single peak split into two peaks, with the minimum of the second peak
close to zero. Hence, xcm exhibited an approximate doubling of the frequency, an aspect which is more
closely discussed in Section 3.2.2 in the context of normal modes. Overall, we found a highly nonlinear
response of the polymer to the external excitation. This modified the polymer conformational and
dynamical properties (cf. Supplementary Movies for Lp/L = 0.5, 2 and Wi = 100).
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Figure 3. Time-dependence of the center-of-mass coordinate along the x-axis for Lp/L = 0.5 (left) and
2 (right), and Wi = 10, 25, 50, 100 (from top to bottom). The black lines correspond to the externally
applied shear flow with arbitrary amplitude.
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Figure 4 depicts the probability distribution of the center-of-mass position for various Weissenberg
numbers. The probability was high for positive ycm-values, specifically at lower Wi. This was
related to the chosen initial conditions, with a polymer always in the half-plane y > 0. Evidently,
the polymers were too stiff to restore isotropy normal to the shear-flow direction. The anisotropy
was maintained at higher Wi. However, the most probable center-of-mass position shifted gradually
to larger |xcm|. At large Weissenberg numbers, the probability increased in the vicinity of xcm = 0.
As illustrated in Figure 2g,h, the polymers were wrapped around the tethering points by the flow.
Overall, the probability of the center-of-mass position was highest on a limaçon-type curve, however,
with a non-uniform distribution. A limaçon is defined as a curve formed by the path of a point fixed to
a circle, when that circle rolls around the outside of a circle of equal radius. In our case, the shear flow
(partially) rotated (oscillated) the semiflexible polymer of more-or-less circular shape, which looked
like rolling, and the center-of-mass followed a limaçon.

The polar coordinate representation of a limaçon is r = a + b cos θ, and the parameter
representation for our reference frame is [57]:

x = r cos θ = [a + b sin θ] cos θ, (5)

y = y0 + r sin θ = y0 + [a + b sin θ] sin θ, (6)

with the off-set y0. The fits of Equations (5) and (6) to our simulation results for Lp/L = 2 are displayed
in Figure 4. For Wi = 10, the limaçon was hardly distinguishable from an ellipse. With increasing
Weissenberg number, we approached a limaçon, and for Wi = 100, the limaçon turned into a cardioid,
where a = b. The limaçon curves for Wi = 50, and especially Wi = 100, did not fully agree with the
simulation data for ycm/r0 & 10. The reason was the conformational freedom of the polymer and
shear-induced shape changes, implying changes in the radii of the rolling circles underlaying the
mathematical limaçon construction. These changes were most pronounced while the polymer explored
regions of high shear rate.

The distribution functions for the center-of-mass Cartesian coordinates of the polymers are
displayed in Figure 5. The distribution function for P(xcm) (Figure 5a,b) is symmetric with respect
to the center between the tethered ends. At small shear, distinct “off-center” peaks were present as
a consequence of the projection onto the x-axis. With the increasing Weissenberg number, the peaks
became more pronounced and shift closer to the end positions. This is also reflected in the variance〈

x2
cm
〉
, which increased with Wi. At high Weissenberg numbers, a peak appeared in the center,

reflecting the polymer “wrapping” around the fixed ends. The asymmetry in the initial condition of
ycm is also reflected in Figure 5c,d, with a pronounced peak at positive ycm. The probability of smaller
ycm increased with increasing Wi, and for Wi & 100, a peak appeared at ycm < 0, consistent with the
high probability in the vicinity of xcm = 0 of Figure 4g,h. The snapshots in Figure 2g,h show stretching
and alignment along the x-direction of the polymer-part between the fixed end point and the point
where wrapping around the other fixed end appears. For such conformations, the major parts of the
polymer were at y < 0. The wrapping combined with the reversal of the polymer advective dynamics
resulted in a slow lateral dynamics, resulting in a high probability with ycm < 0. Yet, the average 〈ycm〉
was always positive, as shown in Figure 6, but decreased quickly with increasing Wi. A fit with the
logarithmic Weissenberg-dependence 〈ycm〉 = −βr0 ln Wi yielded β = 4.9 and 7.6 for Lp/L = 1/2 and
2, respectively. Evidently, the drop is more pronounced for the stiffer polymer.

The stronger conformational changes with increasing strength of the shear flow imply a
shrinkage of the polymer. The mean square radius of gyration shrinks by 10–15%, with respect
to non-sheared conformation.
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Figure 4. Probability distribution of the center-of-mass position of the tethered polymers for Lp/L = 0.5
(left) and 2 (right), and Wi = 10, 25, 50, 100 (from top to bottom). Black dots indicate the position
of fixed ends. The lines for Lp/L = 2 (right) are limaçons according to Equations (5) and (6) for the
parameters: (b) a/r0 = 20.48, b/r0 = 1.92, y0 = 0, (d) a/r0 = 19.91, b/r0 = 2.72, y0 = 0, (f) a/r0 = 17,
b/r0 = 14, y0/r0 = −6, (h) a/r0 = 16, b/r0 = 16, y0/r0 = −6.
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Figure 5. Probability distribution functions of the x (top) and y (bottom) coordinates of the polymer
center of mass for Lp/L = 0.5 (left), 2 (right) and Wi = 10 (•), 25 (N), 50 (?), 100 (�).
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Figure 6. Average position along the y-direction of the polymer center of mass as a function of
the Weissenberg number for Lp/L = 0.5 (•), 2 (N). Lines are the fits < ycm > /r0 ∼ β ln Wi with
β = −4.9± 0.4 (full line) β = −7.6± 0.6 (dashed line).
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3.2. Conformational Properties

3.2.1. Normal Mode Expansion

We studied the internal polymer conformational and dynamical properties via the mode
amplitudes An(t) = (Anx(t), Any(t))T of the eigenfunction expansion of a polymer with fixed
ends [58],

ri =
H(2i− N − 1)

2(N − 1)
x̂ + 2

N−1

∑
n=1

An sin(qn[i− 1]) , (7)

with x̂ the unit vector along the x-axis and the wave numbers qn = nπ/(N − 1) (n = 1, . . . , N − 1).
The mode amplitudes are:

An =
1

N − 1

N−1

∑
i=1

Si sin(qn[i− 1]), (8)

in terms of the bead positions Six = rix − (2i− N − 1)H/2(N − 1) and Siy = riy (i = 1, . . . , N).
The mean, 〈S〉, and mean square, 〈S2〉, values of the components of S are displayed in Figure 7

for Lp/L = 2. The behavior was qualitatively similar for Lp/L = 1/2. The shape of 〈Sx〉 was
centrosymmetric with respect the polymer center i = 50. Any deviation was a consequence of
statistical inaccuracy. The magnitude |〈Sx〉| decreased significantly with the increasing Weissenberg
number, and the mean was close to zero for Wi = 100. The component 〈Sy〉 was always positive and
the largest amplitude was naturally in the polymer center. With increasing Wi, the amplitudes shrunk,
and 〈Sy〉 was close to zero for all beads. The mean square values 〈S2

y〉 (Figure 7, right) decreased with
increasing Wi. However, 〈S2

x〉 changed in a nonmonotonic manner, and the fluctuations were larger
for Wi = 50 than for Wi = 100. This was a consequence of the symmetry-breaking shear flow with
respect to the x-axis and the wrapping of the polymers around the tethering points.
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Figure 7. Mean (left) and mean square (right) values of the components of the displacement S
as a function of the bead index, i, of the semiflexible polymer with Lp/L = 2 for Wi = 10 (◦),
25 (4), 50 (?), 100 (2). Open symbols indicate Sx and filled symbols Sy.

Figure 8 depicts the dependence of the variance of the mode amplitudes:〈
δA2

n

〉
=
〈
(An − 〈An〉)2

〉
, (9)

on the mode number for the two stiffness values and the various Weissenberg numbers. For small
Wi, we obtained a 1/n4 dependence as characteristic for stiff polymers [59,60]. This even applied over
a range of mode numbers 4 < n . 40 at higher shear. However, the variances of the lower-mode
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amplitudes deviated from this dependence, with a weaker mode-number dependence for small n,
and a rapid drop from mode n = 3 to n = 4. This reflected the large-scale conformational changes by
the wrapping of the polymers.
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Figure 8. Variance of the mode components Anx (open symbols with solid lines) and Any (solid
symbols with dashed lines) as functions of mode number n for Lp/L = 0.5 (left), 2 (right) and
Wi = 10 (•), 25 (N), 50 (?), 100 (�). The slope of the solid lines is −4.

3.2.2. Dynamical Properties

Since the large-scale properties of the polymer were modified most by the shear flow, we more
closely considered the dynamics of the mode amplitudes for the modes n = 1 and 2 by the
mode-autocorrelation function Cn(t) = 〈An(t) · An(0)〉. Results for various Weissenberg numbers and
the persistence length Lp/L = 2 are presented in Figure 9. The simulation data were analyzed by
fitting the exponentially damped periodic function:

F(t) = e−γt/T0 cos(Ωωt), (10)

where T0 = 2π/ω is the period of the applied oscillation, γ characterizes the damping, and Ω accounts
for variations of ω. The correlation C1x(t) = 〈A1x(t)A1x(0)〉, in Figure 9a, decreased at short times
and increased again for t/T0 > 1/2. Fitting yielded a factor Ω ≈ 1.2, i.e., C1x(t) followed roughly the
shear flow. At high Weissenberg numbers, an additional weak modulation appeared, which, however,
did not change the primary frequency. The decay of the correlation function C1y(t) = 〈A1y(t)A1y(0)〉
showed a strong Weissenberg number dependence. As depicted in Figure 9b, C1y(t) depended only
very weakly on time for Wi = 10. With the increasing Weissenberg number, the decay rate, γ,
increased, and the correlation function showed damped oscillations, which were most pronounced
for Wi = 100. Interestingly, the characteristic frequency was twice the externally applied frequency
(Ω ≈ 1.8). The correlation function C2x(t) exhibited a very similar time and Weissenberg number
dependence as C1y(t) (cf. Figure 9c), in terms of drop at the various Wi, as well as the characteristic
frequency. The correlation C2y(t) (cf. Figure 9d) was very similar to C1x(t), where the fitted expression
closely followed the simulation data. Here, we found Ω ≈ 1, i.e., the external frequency, but the
decay was stronger with γ ≈ 1.4. Moreover, within both sets of correlation functions, the exponential
decay depended only weakly on the Weissenberg number. It was easily recognized that there was an
odd-even asymmetry between the x- and y-correlation functions. This asymmetry was also obtained
for higher mode numbers.
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Figure 9. Autocorrelation function of the mode amplitudes for the modes n = 1 (top) and n = 2
(bottom) as a function of time along the x- (left) and y-direction (right). The polymer stiffness is
Lp/L = 2 and the Weissenberg numbers Wi = 10 (◦), 25 (4), 50 (?), 100 (2). The black solid lines are
fits of a damped sinusoidal oscillation.

Theoretical models of flexible and semiflexible polymers predict an exponential decay of the
normal-mode correlation functions of the form e−t/τn , where the τn are the relaxation times [6,61]. In the
presence of external fields, e.g., shear flow, the time dependence is modified and the normal-mode
correlation functions do not necessarily decay exponentially anymore [11], but the exponential factor
is still determined by the relaxation times. We did find an initial exponential decay, but no clear
mode-number dependence. Figure 8 shows a deviation of the smaller mode numbers from the
dependence τn ∼ 1/n4, but the relaxation times of the modes n = 1 and 2 were still different. This is not
reflected in Figure 9, where the decay of 〈A1x(t)A1x(0)〉 and 〈A2y(t)A2y(0)〉 differs by approximately a
factor of 2.5, which is roughly the ratio of the mode numbers. Hence, the oscillatory flow field strongly
affected the relaxation times, at least at higher Weissenberg numbers. This reflects and is consistent
with a rather nonlinear response of the polymer with respect to the external periodic excitation.

The autocorrelation functions for the center-of-mass Cartesian coordinates displayed in Figure 10
help to understand the appearance of the frequency doubling. Evidently, both Cartesian components
exhibited a periodic motion, with typically larger amplitudes for higher Weissenberg numbers. Clearly,
the x-component shows the same frequency as the applied flow, with some modulations appearing
for the highest value of Wi. In contrast, the y-component revealed frequency doubling for Wi & 25.
The Supplementary Movies illustrate the different dynamical features of xcm and ycm. In one period, the
x-position of the center of mass, let us say, moved from the maximum positive value to the minimum
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value (half period) and, by the oscillation, back again to the maximum x-value. The oscillation was
similar to a complete “rotation” (period), and no difference between oscillation and rotation was visible.
The behavior of the amplitude of ycm was different. While in a cycle, xcm decreased, ycm increased first,
reached its maximum for xcm = 0, and decreased then again. Instead of being able to complete a full
cycle, the oscillation and the tethering constrained ycm to move back along a similar path as in the
first half of the period, i.e., 〈ycm(t + T0/2)〉 increased, reached again a maximum and decreased then
again to a value close to the initial value. Hence, ycm exhibited two maxima during a period, whereas
xcm exhibited only one. As a consequence, the correlation function 〈ycm(t)ycm(0)〉 showed twice the
frequency than the respective correlation function of the x-coordinate. The primary reason was the
self-avoidance by the tethering points, which forced a reversal of the dynamics along the y-direction.
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Figure 10. Autocorrelation function of center-of-mass Cartesian coordinates as a function of time along
the x- (left) and y-direction (right). The polymer stiffness is Lp/L = 2 and the Weissenberg numbers
Wi = 10 (◦), 25 (4), 50 (?), 100 (2).

4. Summary and Conclusions

We have analyzed the nonequilibrium properties of semiflexible polymers confined in two
dimensions with tethered ends exposed to oscillatory shear. The applied Brownian multiparticle
collision dynamics algorithm neglected hydrodynamic interactions. It coupled the polymer dynamics
in a stochastic (Brownian) manner to the local flow field and allowed for fluctuations, since the average
flow field was imposed only.

For small shear rates, low Weissenberg numbers (Wi . 10), the tethering of the ends led to
a more-or-less linear oscillatory response, where the polymers moved back and forth like grass
swaying in the wind. With increasing Wi, the polymers (partially) wrapped around the fixation points
and a more complex, nonlinear response emerged. In fact, the wrapping significantly changed the
polymer conformations, and the overall size, measured by the radius of gyration, shrunk. Dynamically,
the probability of the polymer center-of-mass position was largest on a spatial curve resembling a
limaçon, although the distribution was inhomogeneous. Of course, this was a consequence of tethering
and periodic excitation of the polymer, moving it cyclically back and forth, which led to an approximate
rolling motion of the center-of-mass, the origin of the limaçon.

At high Weissenberg numbers, we found shear-induced modifications of the mode-spectrum of
the mode-amplitude correlation functions. Since we considered semiflexible polymers only, the mode
spectrum exhibited the characteristic 1/n4 dependence for low Wi. At high Wi, the lower modes,
specifically the modes n 6 3, showed a weaker n dependence. This is reflected in a particular dynamical
behavior, where a frequency doubling appeared for the normal-mode amplitudes along the x- and
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y-direction. However, the doubling appeared alternating for even and odd modes—the correlation
function 〈A1y(t)A1y(0)〉 shows twice the frequency of 〈A1x(t)A1x(0)〉, whereas 〈A2x(t)A2x(0)〉 is
similar to 〈A1y(t)A1y(0)〉. The frequency doubling is also reflected in the autocorrelation function of
the y-coordinate of the center-of-mass position. It was a consequence of the hindered and truncated
“rotational” motion of the polymer by the tethering points.

In the current simulations, hydrodynamic interactions (HI) have been neglected. Such interactions
are of major importance for flexible polymers, since they significantly change the relaxation time
spectrum, but are less relevant for semiflexible polymers, where they provide approximately
logarithmic corrections only [62]. Hence, we expected only minor differences between the presented
results for free-draining polymers and simulations, accounting for HI as long as the polymer motion
follows instantaneously the fluid flow.

Our studies revealed an intriguing behavior of tethered polymers under oscillatory flow, which
affects their macroscopic rheological behavior. Specifically, the overall shrinkage of the polymer
reduced the viscosity. The consequences of the frequency doubling on macroscopic properties need to
be further analyzed.
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