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Abstract
Background: Activin and inhibin are glycoproteins structurally related to the transforming growth
factor-beta superfamily. These peptides were first described as factors that regulate the follicle-
stimulating hormone (FSH) at the pituitary level. The possible role of inhibin and activin, at the
ovarian level, in mediating the stimulatory actions of a Fundulus pituitary extract (FPE) and
17alpha,20beta-dihydroprogesterone (DHP) on oocyte maturation was investigated in this study.

Methods: In vitro culture of ovarian follicles and induction of oocyte maturation were carried out
in 75% Leibovitz L-15 medium. Follicles or denuded oocytes were exposed to FPE, inhibin, activin,
ethanol vehicle (control group), or DHP. The competence of the follicles or denuded oocytes to
respond to the hormones was assessed by scoring germinal vesicle breakdown (GVBD) used as an
indication of the reinitiation of meiosis or oocyte maturation. DHP level was measured by
radioimmunoassay.

Results: Addition of FPE promoted the synthesis of DHP by the granulose cells of fully grown
ovarian follicles and thus stimulated GVBD in the oocyte. Presence of porcine inhibin did not hinder
the synthesis of DHP stimulated by FPE, although it did inhibit the subsequent GVBD in a dose-
dependent manner, suggesting that the action of inhibin was at the oocyte level. Similarly to the
findings with FPE, inhibin also blocked the DHP-induced GVBD in intact follicles, as well as the
spontaneous and steroid-induced GVBD of denuded oocyte. Inhibin straightforwardly blocked the
response to a low dose of DHP throughout the culture period, while higher doses of the steroid
appeared to overcome the inhibitory effect especially at later times. In contrast to inhibin,
recombinant human activin A significantly enhanced DHP-induced GVBD in a dose-dependent
manner after 48 hr, although activin alone was not able to induce GVBD without the presence of
the steroid.

Conclusion: Taking together with our previous studies that demonstrate the presence of activin/
inhibin subunits in the ovary of F. heteroclitus, these in vitro findings indicate that inhibin and activin
are local regulators in the teleost ovary and have opposing effects in modulating oocyte maturation.
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Background
Activin and inhibin are peptides structurally related to the
transforming growth factor-β (TGF-β) superfamily of pro-
teins. Inhibins are heterodimeric glycoproteins composed
of an α-subunit and one of several forms of β-subunits
(e.g. βA or βB), resulting in biologically active forms
termed inhibin A and inhibin B. Activins are composed of
two β subunits in any combination [1]. These peptides,
found in mammalian follicular fluids, were first described
as factors that regulate the follicle-stimulating hormone
(FSH) at the pituitary level [2-4]. Cumulative evidence
further has established that activin and inhibin function
also as local autocrine/paracrine regulators in the gonads.
Indeed, these peptides have been implicated in an array of
processes in the ovary of mammals including follicle
recruitment, granulosa and theca cell proliferation and
atresia, steroidogenesis, ovulation, and luteinization [5-
7]. In addition, activin and inhibin have been implicated
in oocyte maturation, albeit conflicting evidence has been
reported. In this regard, inhibin was shown to have no
effect [8] or to inhibit spontaneous division in both
cumulus enclosed and denuded oocytes from immature
rats [9] and to suppress luteinizing hormone-induced
meiosis in follicle-enclosed oocytes of preovulatory rats
[8]. Activin was reported to have no effect on oocyte mat-
uration in rats [9] and pig [10], but it has been shown to
increase oocyte maturation in immature rats [11,12],
monkeys [13], cows [14] and humans [15]. Compared to
the information available for mammalian species, less is
known about the effect of TGF-β related peptides in lower
vertebrates. Yet, lower vertebrates offer large numbers of
ovarian follicles and therefore they have already served as
excellent models for the study of oocyte development and
maturation. Indeed, it is well known that in lower verte-
brates, oocyte maturation is triggered by a surge of gona-
dotropin hormones that, acting in the granulose cells,
increases the production of progestogens, which action on
the oocyte initiates germinal vesicle breakdown (GVBD),
or oocyte maturation.

In fish, all major components of the activin-inhibin-fol-
listatin system have been identified [16]. In fact, several
studies have shown that inhibin/activin β-subunits are
expressed in goldfish [17-19]; rainbow trout [20]; mullet
[21]; zebrafish [22-25]; and killifish [GenBank:AF503775,
GenBank:DQ149108, GenBank:DQ387061]. So far, there
is evidence for two isoforms of activin βB and two iso-
forms of βA in teleost. Furthermore, recombinant goldfish
activin A (βA βA) and activin B (βB βB) with biological
activities were prepared and used for physiological studies
[26]. However, while the biological activity of activin has
been documented particularly in goldfish at the level of
the pituitary regulation of gonadotropin [27], and in
zebrafish at the ovarian level [25,28-30], the biological
activity of inhibin was not investigated in fish and it is

much less understood. Only recently, the complete
inhibin α-subunit has been cloned or deduced for three
species of fish Oncorhynchus mykiss (rainbow trout) [Gen-
Bank:AB044566], Fundulus heteroclitus (killifish) [Gen-
Bank:AY836522], and Danio rerio (zebrafish)
[GenBank:NM_001045204], thus indicating that differ-
ent assembled dimeric inhibin/activin isoforms may be
present in the fish ovary. The aim of this study was to
explore and characterize the effects of inhibin on both
steroidogenesis and oocyte maturation, or GVBD, in F.
heteroclitus. In addition, activin was also used in this study,
and results show that while activin alone does not initiate
GVBD, inhibin and activin have mutually opposing
actions to modulate steroid-induced oocyte maturation.

Methods
Animal
Killifish (Fundulus heteroclitus) were collected from salt
marshes in the vicinity of St. Augustine, Florida. In the
laboratory, fish were maintained in a 25 gal. aquarium at
25°C on a 14/10 hr light/dark cycle, and were fed three
times a day with flake food (TetraMin). The care and use
of, as well as all procedures involving, animals have been
approved by Barry University's Institutional Animal Care
and Use Committee (IACUC), in accordance with the
guidelines of the IACUC of the National Institutes of
Health (NIH). Fish were anesthetized in 100 ppm 3-ami-
nobenzoic acid ethyl ester methanesulfonate salt (MS-
222; Sigma, St Louis, MO) before being killed.

Hormones and test substances
The effect of gonadotropin was tested by using a F. hetero-
clitus pituitary extract (FPE) prepared as described by [31]
at a concentration of 10 pituitary equivalents/ml and kept
in 100-µl aliquots at -20°C. Porcine inhibin (Sigma, St.
Louis, MO) [with no specification of what form of inhibin
(inhibin A or inhibin B or a mixture of both) is present in
the preparation], recombinant human activin A [#15365-
36(1)], and recombinant human inhibin A [#NU1-4315]
that were supplied by Dr. A. F. Parlow (NIDDK's National
Hormone and Pituitary Program and NICHD), were dis-
solved in culture media, aliquoted, and kept at -20°C.
FPE, inhibin, and activin aliquots were thawed only once
before each experiment and added directly to the culture
to obtain the desired concentration. The steroid 17α,20β-
dihydroprogesterone (DHP) was obtained from Ster-
aloids Inc. (Newport, RI), dissolved in ethanol, and added
(5 µl) directly to the culture medium.

In vitro culture of ovarian follicles and induction of oocyte 
maturation
Ovaries were removed from females and placed in 75%
Leibovitz L-15 medium with L-glutamine (Sigma) con-
taining 100 µg gentamicin/ml, and adjusted to pH 7.5
with HCl [32]. Intact fully grown prematurational follicles
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(1.2–1.4 mm in diameter), with visible germinal vesicle,
were manually isolated from several ovaries with the aid
of fine forceps under a stereomicroscope. F. heteroclitus
intact follicles are surrounded by a single layer of granu-
losa cells external to the vitelline envelope, a vascularized
connective tissue sheath or theca, and a simple surface
epithelium [33]. Denuded oocytes (without the envelop-
ing follicular cell layers) were obtained by a combination
of manual dissection to remove the epithelium and theca
layers, and treatment with Ca2+/Mg2+-free medium to
remove the granulosa cells according to [34]. In both
cases, intact follicles or denuded oocytes (pooled from 2–
4 ovaries) were washed several times with fresh medium
during the isolation procedure. After 1 hr at room temper-
ature (22–25°C), the atretic oocytes were discarded, and
the remaining healthy follicles or oocytes were randomly
distributed into 24-well tissue culture trays (Costar
No.3525). Each culture well contained 20 intact follicles/
1 ml L-15 media or 10–14 denuded oocytes depending of
the experiment. Follicles or denuded oocytes were then
exposed at time zero to FPE, inhibin, activin, ethanol vehi-
cle (control group), or DHP, identified as the matura-
tional inducing substance (MIS) in F. heteroclitus [35].
Incubations were carried out at room temperature for up
to 72 hr with no subsequent hormone addition or media
change as previously described [31]. The competence of
the follicles or denuded oocytes to respond to the hor-
mones was assessed by scoring germinal vesicle break-
down (GVBD) used as an indication of the reinitiation of
meiosis or oocyte maturation [36] several times up to 72
hr.

DHP Radioimmunoassay (RIA)
Previous data for this species [31] have shown that after
FPE stimulation the maximum level of steroid production
occurs around 24 hr and it is prior to the occurrence of
GVBD, which maximum response takes place around 72
hr. Based on these findings, aliquots of culture medium
were removed at 24 hr and directly assayed for DHP as
previously described [37]; while GVBD was monitored up
to 72 hr of culture in the same group of follicles. Radio-
chemical used as tracer for the DHP radioimmunoassay
was obtained from New England Nuclear, Boston, MA,
and prepared as described by [31]. Antiserum against
DHP was a gift from Dr. Y. Nagahama (Japan).

Statistics
Data are presented as mean ± SEM from three or more
experiments performed at different dates. Statistical com-
parisons were conducted by analysis of variance, and the
means were subsequently compared by Tukey's test or
Hall-Sidak method (all pairwise multiple comparisons).
Differences were considered significant if P ≤ 0.05.

Results
Inhibin effects on oocyte maturation induced by 
gonadotropin
It has been well documented that addition of FPE (used as
a source of homologous gonadotropin hormones) to F.
heteroclitus intact follicles cultured in vitro promotes an
increase in the synthesis of 17α,20β-dihydroprogesterone
(DHP) by the granulosa cells [33,38]. This steroid, DHP,
has been demonstrated to be the natural maturation
inducing substance in this species [35], and it acts directly
on the oocyte to induce GVBD. To investigate whether the
gonadal peptide inhibin can affect these follicular
responses, follicles were incubated with various doses of
FPE and purified porcine inhibin. Results (Fig. 1) show
that inhibin significantly reduced the number of follicles
that underwent GVBD in response to the low dose of FPE
(0.025 pit. equiv./ml). The maximum response to FPE in
terms of GVBD occurred at 72 hr, and a consistent dose-
dependent inhibitory effect of inhibin was observed
throughout the entire incubation period (Fig. 1A). On the
other hand, the response of the follicles to a higher dose
of FPE (0.25 pit. equiv./ml) was affected to a lesser extent
by inhibin (Fig. 1B). Only the higher dose of inhibin (250
IU) caused a significant but not complete inhibition in the
GVBD response (Fig. 1B).

In addition, radioimmunoassay of the culture media col-
lected after 24 hr of incubations (Fig. 2), shows an FPE
dose-dependent increase in the levels of DHP as previ-
ously demonstrated for this species [31]. Addition of
inhibin (50–250 IU/ml) in combination with FPE (0.025
and 0.25 pit. equiv./ml) did not significantly affect the
steroid levels induced by FPE stimulation. Addition of
inhibin simultaneously or one hr previous to the addition
of FPE has shown similar results (data not shown).

Inhibin effects on oocyte maturation induced by steroid
Because FPE induction of GVBD is mediated through the
synthesis of DHP, and since the production of this steroid
was not affected by inhibin (Fig. 2), the previous experi-
ments suggest that inhibin may affect the process leading
to GVBD initiated by the steroid on the oocyte. The next
experiments were conducted to investigate the effect of
inhibin on the GVBD response to exogenously added
DHP. Results (Fig. 3) show that inhibin decreased DHP-
induced GVBD during the first 24 hr of culture (Fig. 3A
and 3B) at all concentration of DHP used. At this point in
time, an apparent and significant dose-dependent inhibi-
tion caused by inhibin was observed when it was com-
bined with the lowest dose (0.001 µg/ml) of DHP, while
only a partial inhibition (approximately 30% less GVBD)
was observed when inhibin was combined with higher
doses of DHP (0.01 and 0.1 µg/ml) (Fig. 3B). Interest-
ingly, after 40 hr of culture (Fig. 3C), when the maximum
GVBD was achieved in response to the various doses of
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DHP alone, the inhibitory effect caused by inhibin, which
was observed at earlier times, became less evident. No
inhibition was observed with any of the inhibin doses
(50–250 IU/ml) and the highest doses of DHP (0.1 µg/
ml). Only the highest dose of inhibin (250 IU/ml) par-
tially blocked the response (80% vs. 50% GVBD) to the
middle dose of DHP (0.01 µg/ml). However, the inhibin
dose-dependent inhibition only persisted with the lowest

doses of DHP (0.01 µg/ml) throughout the entire culture.
In contrast to the inhibitory action on the DHP-induced
GVBD observed in the presence of porcine inhibin, we
found that addition of recombinant human inhibin A had
no effect on GVBD. It did not induce GVBD on its own;
neither blocked nor enhanced DHP-induced GVBD (data
not shown).

Inhibin effects on denuded oocytes
To investigate whether the inhibition on the DHP-
induced GVBD was the result of a direct interaction of
inhibin with the oocyte or whether the inhibitory action
was mediated through the follicular cells surrounding the
oocyte other than the synthesis of DHP, we treated
denuded oocytes (without cellular investments) with
inhibin and DHP. In contrast to intact follicles, a higher
incidence of GVBD (spontaneous maturation) is observed
in F. heteroclitus denuded oocytes without exogenous
stimulation [34]. Figure 4 show that inhibin blocked the
spontaneous as well as the DHP-induced GVBD of
denuded oocytes at both 48 hr and 72 hr of culture. How-
ever, the inhibitory effect was less pronounced at the latest
time in the group of denuded oocytes induced by a low
dose of DHP.

Activin effects on oocyte maturation induced by steroid
In contrast to inhibin, preliminary experiments indicated
that activin may increase the number of oocytes undergo-
ing GVBD. Thus, in order to explore the effect of activin on
the DHP-induced GVBD, a sub maximal dose (0.001 µg/

Effects of inhibin on FPE-induced steroid secretionFigure 2
Effects of inhibin on FPE-induced steroid secretion. After 24 
hr of culture with the various treatments described in Fig. 1, 
a fraction of the media was collected for determination of 
steroid level by radioimmunoassay. Values are the mean ± 
SEM from four different experiments. Control = follicles cul-
tured in medium alone without FPE or inhibin. ND = not 
detectable.

Effects of inhibin on FPE-induced oocyte maturationFigure 1
Effects of inhibin on FPE-induced oocyte maturation. Isolated 
ovarian follicles were treated with two doses of FPE: 0.025 
pit. equiv./ml (A) or 0.25 pit. equiv./ml (B) alone or in the 
presence of inhibin (50–250 IU/ml) as indicated on the 
abscissa. Inhibin was added simultaneously or 1 hr previous 
to FPE addition. Oocyte maturation was monitored by scor-
ing GVBD at 24, 48, and 72 hr of incubation, also indicated 
on the abscissa. Data are the mean ± SEM from four different 
experiments. Same letter indicates significantly different from 
each other at P ≤ 0.05.
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ml) of the steroid was used in combination with various
doses of the gonadal peptide. Follicles from the same
batch were also incubated with higher doses of DHP alone
to get the maximal response. Results presented in Fig. 5
show that recombinant human activin A alone did not
induce oocyte maturation (GVBD). Moreover, DHP-
induced GVBD was not apparently affected by activin dur-
ing the first 24 hr of culture (Fig. 5). However, activin A
significantly enhanced, in a dose-dependent manner, the
GVBD induced by a sub maximal dose of steroid (0.001
µg/ml) after 48 hr of culture. The highest dose of activin
used (250 ng/ml) raised the GVBD values to a level simi-
lar to those induced by a dose of DHP ten times higher
(0.01 µg/ml).

Effects of inhibin on denuded oocytesFigure 4
Effects of inhibin on denuded oocytes. Oocytes without cel-
lular investments were treated with or without DHP (0.001 
µg/ml) and/or inhibin (200 IU). In parentheses is the number 
of oocyte with GVBD/total number of oocytes per treat-
ment.

Effects of inhibin on DHP-induced oocyte maturationFigure 3
Effects of inhibin on DHP-induced oocyte maturation. Vari-
ous doses of inhibin, as indicated on the abscissa, were added 
to the culture media together with three doses of DHP 
(0.001, 0.01, and 0.1) µg/ml. Oocyte maturation was moni-
tored by scoring GVBD at 16 (A), 24 (B) and 40 hr (C) of 
incubation. Data are the mean ± SEM from 3–4 different 
experiments. Same letter indicates significantly different from 
each other at P ≤ 0.05.
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Discussion
Results from the present study demonstrate that inhibin
and activin have mutually opposing effects on modulat-
ing the process of oocyte maturation or GVBD induced by
steroid in F. heteroclitus, thus implying a local role for
these gonadal peptides in the fish ovary. This is supported
by the findings that α- and β-subunits, which are the com-
ponents of inhibin (dimmer of α and β subunits) and
activin (dimmer of ββ subunits), are expressed in the
ovary of this species [GenBank:AF503775, Gen-
Bank:DQ149108, GenBank:AY836522, Gen-
Bank:DQ387061].

Similar to other teleost, the process of GVBD in F. hetero-
clitus is initiated in the prophase I-arrested fully grown
oocyte by gonadotropin stimulation of follicular DHP
secretion [35]; this steroid (MIS) then acts on the oocyte
to trigger the events leading to the reinitiation of meiosis.
In the present study, data (Fig. 1) show that inhibin
reduced FPE (used as a source of gonadotropin)-induced
GVBD. The inhibitory effect on GVBD observed in the
presence of inhibin was not only dependent on the
inhibin dose but also on the FPE dose used to stimulate
oocyte maturation. In effect, inhibin can readily block the
stimulation of a low dose of FPE (0.025 pit. equiv./ml)

but only moderately affects the response of the follicles to
a higher dose of FPE (0.25 pit. equiv./ml) stimulation,
suggesting that the inhibitory effect can be overcome by
the action of gonadotropin. Furthermore, the action of
inhibin on the FPE stimulation of GVBD is not apparently
caused by a decrease in the production of the MIS by the
granulosa cells. Data from the radioimmunoassay (Fig. 2)
show that the DHP increase that follows FPE stimulation
was not altered in the presence of porcine inhibin. It is
important to note that medium steroid levels and GVBD
were monitored simultaneously in the same set of follicles
for each experiment. Since the action of FPE to induce
GVBD is mediated through the synthesis of DHP, which
was not affected by inhibin, it appears that the inhibin
action to suppress GVBD in F. heteroclitus is more likely to
occur at the oocyte level rather than to block steroid pro-
duction by the follicle cells. In addition, we have previ-
ously shown that FPE initiates steroidogenesis in the F.
heteroclitus ovarian follicles by mobilizing endogenous
cholesterol into the mitochondria where the set of
enzymes required for the synthesis of DHP are present
even in unstimulated follicles [37]. Thus, results from this
study indicate that inhibin does not affect the early ster-
oidogenic pathway leading to DHP, the maturational ster-
oid (MIS) in this species. Concomitant to DHP, F.
heteroclitus follicles also synthesize testosterone and estra-
diol [31], which were not measured in this study, and thus
we cannot discard the possibility that inhibin may affect
other steroidogenic reactions. Interestingly, in a previous
study from our laboratory [39] using intact follicles of the
amphibian Rana pipiens (leopard frog), we have observed
that porcine inhibin significantly blocks both the proges-
terone synthesis that follows gonadotropin stimulation
and the subsequent GVBD. Similar to these findings in
amphibians, inhibin has been shown to modulate ster-
oidogenesis in avian species [40], and in mammalian spe-
cies (for review see [6,41,42]. More data are necessary in
other species of fish to investigate whether activin and
inhibin can also serve as modulators of steroidogenesis in
teleost.

Results from Fig. 3 show the dose-dependent inhibition of
exogenously added DHP-induced GVBD by inhibin. Sim-
ilar to the observations made for FPE, the inhibitory effect
of inhibin on GVBD was very dependent not only on the
inhibin dose but also on the doses of DHP used to trigger
the maturational events. Inhibin straightforwardly
blocked the response to a low dose of DHP (0.001 µg)
throughout the culture period, while higher doses of the
steroid appeared to overcome the inhibitory effect, espe-
cially at later times. The direct action of inhibin on the
oocyte was also investigated in denuded oocytes (stripped
of all follicular cells). It has been reported that removal of
the granulosa cell layer from the oocyte of F. heteroclitus
frequently triggers the resumption of meiosis in the

Effects of activin on DHP-induced steroid secretionFigure 5
Effects of activin on DHP-induced steroid secretion. Various 
doses of human activin A (0–250 ng/ml), as indicated on the 
abscissa, were added to the culture media alone or in combi-
nation with a sub maximal dose of DHP (0.001 µg/ml). Folli-
cles were also treated with higher doses of DHP (0.01 and 
0.1 µg/ml) alone as positive controls. Oocyte maturation was 
monitored by scoring GVBD at 24 and 48 hr of incubation. 
Data are the mean ± SEM from 5 different experiments. 
Same letter indicates significantly different from each other at 
P ≤ 0.05.
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absence of exogenous hormonal stimulation (spontane-
ous maturation) and thus it was postulated that granulosa
cells are somehow responsible for the maintenance of
meiotic arrest in non-hormone-treated oocytes [34]. As
seen from the results depicted in Fig. 4, fifty percent of
denuded oocytes underwent spontaneous maturation and
they also responded to exogenously added DHP for the
induction of GVBD. Addition of inhibin to denuded
oocytes reduced both the spontaneous maturation as well
as the maturation induced by DHP, indicating that
inhibin acts directly on the oocyte to suppress GVBD.
These results support the hypothesis postulated for other
species that inhibin can act as a negative modulator of
oocyte maturation. Indeed, bovine inhibin was reported
to inhibit spontaneous oocyte maturation in both cumu-
lus enclosed and denuded rat oocytes [9]; ovine inhibin
and transforming growth factor beta (TGFβ) partially
inhibited luteinizing hormone (LH)-induced meiosis in
rat follicle-enclosed oocytes [8]; and porcine inhibin
inhibited both the gonadotropin-stimulated progesterone
production and the subsequent oocyte maturation in the
amphibian Rana pipiens [39]. However, Wu et al. [30] have
reported that recombinant human inhibin A stimulates
GVBD in zebrafish follicles. Similarly to the zebrafish
study, maturation-enhancing effects of recombinant
human inhibin A were reported for primates [13]. We
have also tried incubations of F. heteroclitus ovarian folli-
cles with recombinant human inhibin A and found that it
did not induce GVBD on its own; neither has it had an
enhancement nor inhibitory effect on DHP-induced
oocyte maturation (data not shown). Kagawa et al. [43]
also reported that recombinant human inhibin A has no
effect on oocyte maturation of another teleost, the red sea-
bream. Since not all the forms of inhibin are available to
specifically investigate their autocrine/paracrine role, the
apparent conflicting results may be related to both the var-
iations in the form of inhibin present in the preparations,
as previously suggested by other researchers, and the spe-
cies' specific responsiveness to the various forms of
gonadal peptides. Thus, taking together all of these find-
ings, it appears that recombinant human inhibin A may
have a stimulatory effect in terms of oocyte maturation in
some species, while the inhibin used in the other studies,
including this one, may have contained a mixture of both
inhibin A and inhibin B. Then, we can speculate that
inhibin B may be responsible for the inhibition observed
on oocyte maturation.

Regarding the activin effects, our findings are consistent
with those reported for zebrafish [30] in that recombinant
human activin A has a stimulatory effect on F. heteroclitus
oocyte maturation. However, in contrast to the zebrafish,
recombinant human activin A alone did not induce
oocyte maturation (GVBD) in F. heteroclitus. Nevertheless,
recombinant human activin A significantly enhanced

DHP-induced GVBD in a dose-dependent manner after
48 hr (Fig. 5). No activin effect was observed during the
first 24 hr of culture indicating that activin does not affect
the time course of oocyte maturation induced by the ster-
oid, but rather it increases the number of the oocytes
undergoing GVBD. In effect, the highest dose of activin
used (250 ng/ml) in combination with a low dose of DHP
(0.001 µg/ml) raised the GVBD values to a level similar to
those induced by a dose of steroid alone ten times higher
(0.01 µg/ml). These results support the hypothesis pro-
posed by Pang and Ge [44] that activin may act directly on
the oocyte to enhance the maturational competence or
responsiveness to DHP in zebrafish. Similarly, it was pro-
posed that activin enhances the oocyte developmental
competence in mammals [7]. Activins and other members
of the TGFβ initiate their biological actions by interacting
with transmembrane receptors named receptor serine
kinases (RSKs) [45]. The presence of type I, type II, and
type IIB receptors has been demonstrated in a variety of
tissues including the ovary, testis, and brain in goldfish
and zebrafish [16], thus giving support for the actions of
inhibin and activin molecules in teleosts.

F. heteroclitus, have group-synchronous ovaries, in which
all sizes of vitellogenic follicles are present at any time,
and clutches of follicles from a population of oocytes in
late vitellogenic stages, are periodically recruited into mat-
uration [46,47]. In order to maintain the integrity of the
follicular sequence in this species, it was postulated that
local factors other than gonadotropins or steroids might
regulate follicle selection into maturation by modulating
the oocyte sensitivity to the MIS [48]. Taken together, the
in vitro findings from this study indicate that inhibin and
activin, which have opposing effects on modulating
oocyte maturation and are expressed in the F. heteroclitus
ovary, are good candidates to serve as local factors in this
respect.

Conclusion
The inhibitory action of inhibin on the FPE stimulation of
oocyte maturation was not caused by a decrease in the
production of the steroid DHP (the natural inducer of
GVBD). Inhibin appears to act directly on the oocyte to
block the spontaneous maturation of denuded oocytes, as
well as the DHP-induced maturation of intact follicles and
denuded oocytes. The inhibitory effect on oocyte matura-
tion was dependent not only on the dose of inhibin, but
also on the dose of the stimulatory hormones. High dose
of inducing hormone (FPE or DHP) was able to overcome
the inhibin inhibition. Activin, on the other hand, signif-
icantly enhances DHP-induced GVBD, but does not
induce oocyte maturation on its own. Hence, both
inhibin and activin are paracrine regulators in the teleost
ovary and have opposing effects in the modulation of
oocyte maturation.
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