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Objective: Severe malnutrition in patients with anorexia nervosa (AN) as well as possible 
trait-related aberrations lead to pronounced structural brain changes whose reversibility 
after recovery is currently unclear. Previous diffusion tensor imaging (DTI) studies 
investigating white matter (WM) microstructure alterations in AN are inconsistent.

Methods: In this so far largest DTI study in adults, we investigated 33 AN patients, 20 
recovered (REC), and 33 healthy women. DTI data were processed using the “DTI and 
Fiber tools,” and the Computational Anatomy Toolbox. WM integrity, both in terms of 
fractional anisotropy (FA) and mean diffusivity (MD), was assessed.

Results: We found a significant FA decrease in the corpus callosum (body) and an MD 
decrease in the posterior thalamic radiation in the AN group. The REC group displayed 
FA decrease in the corpus callosum in comparison to HC, whereas there were no MD 
differences between the REC and HC groups.

Conclusion: Despite prolonged restoration of weight in the REC group, no significant 
regeneration of WM integrity in terms of FA could be observed. Transient changes in 
MD likely represent a reversible consequence of the acute state of starvation or result 
from dehydration. Reduction of FA either may be due to WM damage resulting from 
malnutrition or may be considered a pre-morbid marker.
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INTRODUCTION

Anorexia nervosa (AN) is a severe mental disorder associated 
with persistent restriction of energy intake leading to a 
significantly low body weight, a preoccupation with weight gain, 
and an altered body perception (1).

Pathophysiology is currently unclear, but many studies point 
toward the involvement of various interacting developmental, 
genetic, environmental, and neurobiological factors (2, 3).

In terms of neurobiological alterations, most previous structural 
imaging studies focused on volumetric gray matter (GM) or white 
matter (WM) alterations and mainly reported reductions of these 
two measures in acute AN (4–6). A growing number of studies 
investigated WM integrity in AN performing diffusion tensor 
imaging (DTI). DTI is a noninvasive imaging technique that allows 
quantitative maps of microscopic, natural displacements of water 
molecules that occur in brain tissues as part of physical diffusion 
processes (7). Fractional anisotropy (FA) as an imaging marker 
is a scalar value of the degree of anisotropic/directional diffusion 
within a voxel (8). FA is linked to axon diameter, membrane 
permeability, and myelination, as well as packing density of fibers 
(9). Lower FA reflects isotropic, i.e., either unrestricted or equally 
restricted diffusion in all spatial directions (10). Another important 
marker is mean diffusivity (MD) defined as the average diffusion 
irrespective of directionality (8). MD is a sensitive marker that can 
be altered by any disease process that affects the barriers (e.g., cell 
membranes) which restrict water diffusion (11). Increased tissue 
water in edema was reported to increase, whereas cell proliferation 
in neoplasia may decrease MD (8).

Table 1 displays previous DTI investigations in AN. Several 
studies reported WM alterations in AN in comparison to healthy 
controls (HC). Nevertheless, the direction and localization 
of abnormalities is inconsistent with some studies suggesting 
increased (17, 19, 22, 25), others decreased (12, 14, 15, 21–25, 
27, 28), FA in acute AN. A recent study with a modest sample of 
adolescents with AN detected no WM microstructure alterations 
[FA, MD, radial diffusivity (RD: magnitude of water molecule 
displacements perpendicular to WM pathways), axial diffusivity 
(AD: rate of diffusion in the parallel direction (18)]. Other studies 
investigating MD, RD, or AD also found inconsistent results 
with some reporting decreased MD, RD, or AD in different 
brain areas (15, 17, 21, 24), others increased (21, 23–25, 28) or 
no alterations (15, 17, 18) in AN. Discrepant findings may result 
from differences in age group composition, disease duration, in 
applied analysis methods and definition of inclusion criteria. 
With respect to age effects, WM differences were reported in 
both adolescents and adults with AN. Yet, those findings are 
inconsistent. However, it remains to be investigated whether 
longer duration of illness or an early onset during adolescence 
might facilitate WM defects.

Further, methodological differences between tract-based 
spatial statistics (TBSS) and voxel-based analysis (VBA) could 
account for heterogeneity in WM findings, as TBSS seems to 
be more sensitive to FA reductions (29). Concerning body mass 
index (BMI) differences, an interesting study of Olivo et al. (30) 
compared 25 adolescents with atypical AN with 25 HC, who did 
not differ with respect to BMI. They did not find WM differences 

and discussed weight-related WM abnormalities as most 
likely in other studies. However, it might also reflect a sample 
characterized by missing tendencies to lose weight (and no 
premorbid WM abnormalities). Furthermore, disease duration 
was very short in this sample.

Various areas of altered microstructural integrity in AN 
have been described. A recent meta-analysis (n = 13) reported 
decreased FA in the corpus callosum, the left superior longitudinal 
fasciculus II, the left precentral gyrus, as well as increased FA in 
the right cortico-spinal projections, and lingual gyrus in AN in 
comparison to HC (31). Additionally, altered WM integrity was 
reported in the corona radiata (25, 27, 32), the fornix (21–22, 23, 
25, 28, 32), and the cingulum (14, 21, 25, 28).

The DTI studies on individuals recovered from AN (REC) are 
scarce with inconsistent findings of cross-sectional investigations 
reporting either no differences in microstructural integrity 
between REC and HC (13, 18, 26), or FA decrease in REC (20, 27). 
A limited number of longitudinal studies reported only partial 
normalization after weight rehabilitation (17, 19), whereas others 
proposed complete reversibility (12). Since there are only a few 
studies to date that examine REC subjects, meta-analyses have 
not been able to carry out subgroup analyses (31).

AIMS OF THE STUDY

Based on the available evidence, we aimed to identify brain 
regions with WM microstructural abnormalities in acute AN. 
Furthermore, we intended to obtain insight into whether there 
are WM alterations in the REC in comparison to the HC group. 
Regarding the heterogeneous result pattern concerning FA 
and MD, we tested for increase, as well as decrease, of these 
signals. Given the strict definition of recovery in our sample (see 
Materials and Methods), we hypothesized no differences in WM 
microstructure (FA, MD) between the REC and HC groups. As 
different areas of WM microstructure alterations in AN have 
been described, we did not restrict our analysis to a priori regions 
of interest (ROIs).

MATERIALS AND METHODS

Participants
The present study was approved by the ethics committee of the 
University Medical Center Freiburg (Approval ID: 520/13). 
Patients were recruited from the Department of Psychosomatic 
Medicine and Psychotherapy of the University Medical Center 
Freiburg. Thirty-three adult women with AN, 20 participants 
with a previous history and current recovery of AN (REC) and 
33 HC were included in the study. Following written informed 
consent, magnetic resonance imaging (MRI) scans were obtained.

Inclusion criteria for the AN group were a BMI ≤ 18.5 kg/m²  
and an age of ≥ 18 years. AN was diagnosed by senior consultants 
according to the DSM-5 criteria. Furthermore, an in-depth 
evaluation including the Eating Disorder Examination Interview 
(EDE) (33) was performed. Twenty-nine AN patients were of 
the restrictive subtype, whereas four were of the binge-eating/
purging subtype. Most AN participants were recruited via  our 
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TABLE 1 | Previous diffusion tensor imaging studies in anorexia nervosa.

Study n (AN/REC/HC) Age in years
(mean ± SD)

Methods Region(s) and results (AN/REC vs HC)

1. Von Schwanenflug et al., 
2018 (12)

56 AN

44 REC
60 HC

15.86 ± 2.93
15.40 ± 2.28
15.64 ± 2.27
16.19 ± 2.89

TBSS FA↓: body corpus callosum in AN vs HC
No differences between REC and HC
Longitudinal: FA↑ with weight gain in REC relative to AN in 
large parts of body corpus callosum and fornix; FA↓ in right 
corticospinal tract

2. Bang et al., 2018 (13) 21 REC (for 1year)
21 HC

27.62 ± 5.06
26.10 ± 4.75

FSL
TBSS

No differences in WM microstructure (FA, AD, MD and RD) 
between REC and HC

3. Hu et al., 2017 (14) 8 AN
14 HC

17.6 ± 2.2
19.1 ± 3.1

SPM
voxel-based method

FA↓: left superior frontal gyrus, medial frontal gyrus, anterior 
cingulate cortex, middle frontal gyrus, inferior frontal gyrus, 
thalamus, bilateral insula

4. Gaudio et al., 2017 (15) 14 AN
15 HC

15.7 ± 1.6
16.3 ± 1.5

FSL
TBSS

FA↓: left anterior and superior corona radiata, left superior 
longitudinal fasciculus (SLF), fornix, body corpus callosum
AD↓: SLF bilaterally, left superior and anterior corona radiata, 
and external capsule, right posterior limb of the internal capsule, 
right posterior thalamic radiation
RD, MD: no significant differences

5. Zhang et al., 2016 (16) 24 REC
31 HC
29 BDD

21.3 ± 4.5
20.9 ± 3.9
23.2 ± 5

DTI Studio
whole-brain WM 
tractography

AN showed abnormal network modularity involving frontal, basal 
ganglia, and posterior cingulate nodes
No standard analysis of FA, MD, AD, RD

6. Vogel et al., 2016 (17) 22 AN
9 REC
21 TD

15.0 ± 1.6
14.8 ± 2.3
15.2 ± 1.3

FSL
TBSS

FA↑: bilateral superior region of corona radiata, corpus callosum, 
anterior and posterior thalamic radiation, anterior and posterior 
limb of internal capsule, left inferior longitudinal fasciculus
Elevated FA at admission was associated with reduced MD and 
RD, but not AD
FA↑: partially normalized after weight rehabilitation

7. Pfuhl et al., 2016 (18) 35 AN
32 REC
62 HC

16.1 ± 2.8
22.5 ± 3.0
16.4 ± 2.0

FSL, TRACULA No group differences in FA, MD, RD, AD after correction for 
multiple comparisons.

8. Cha et al., 2016 (19) 22 AN
18 HC

19.5± 2.4
20.5 ± 3.0

FSL, TBSS FA↑: fronto-accumbal WM ROI near the lateral orbitofrontal 
cortex and nucleus accumbens both before and after weight 
restoration 

9. Shott et al., 2016 (20) 24 REC
24 HC

30.3 ± 8.1
27.4 ± 6.3

FSL, TBSS REC FA↓: anterior corona radiata, capsula interna, cerebellum 
(corticopontine tract, inferior, and middle peduncle), corpus 
callosum, anterior thalamic radiation, inferior fronto-occipital, 
uncinate fasciculus MD, RD, AD: no differences

10. Hayes et al., 2015 (21) 8 AN
8 TD

35.0 ± 11.0
36.0 ± 9.0

FSL, 3D Slicer FA↓: bilateral anterior limb of capsula interna, right anterior 
cingulum, left inferior fronto-occipital fasciculus, left crus fornix
AD↓: right anterior limb of capsula interna, right anterior 
cingulum
RD↑: bilateral anterior limb of capsula interna, left inferior fronto-
occipital fasciculus, left crus fornix

11. Travis et al., 2015 (22) 15 AN
15 HC

16.6 ± 1.4
17.1 ± 1.3

mrDiffusion FA↓: right anterior superior longitudinal fasciculus, bilateral fibria-
fornix, corpus callosum
FA↑: right anterior thalamic radiation, left anterior SLF

12. Via et al., 2014 (23) 19 AN
19 TD

28.37 ± 9.55;
28.63 ± 8.58

FSL,
TBSS

FA↓: parietal part of the left SLF and the fornix
MD, RD↑: SLF and fornix
AD↑: fornix

13. Nagahara et al., 2014 (24) 17 AN
18 TD

23.8 ± 6.68
26.2 ± 5.6

FSL,
TBSS

FA↓: left cerebellar hemisphere
MD↑: anterior body of the fornix
MD↓: right corpus callosum, right SLF

14. Frank et al., 2013 (25) 19 AN
22 TD

15.4 ± 1.4
14.8 ± 1.8

SPM, NordicICE FA↓: left fornix, bilateral cingulum, right forceps major, right 
superior, and left posterior corona radiate, occipital part corpus 
callosum
FA ↑: left SLF, bilateral anterior corona radiata, bilateral inferior 
fronto-occipital fasciculus
ADC↑: left fornix, right corpus callosum, right corticospinal tract, 
right posterior corona radiata, bilateral corticopontine tract, 
bilateral SLF
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outpatient department (25 AN), whereas eight patients 
had just started the inpatient treatment. Outpatients were 
offered inpatient multimodal psychotherapeutic treatment 
comprising cognitive behavioral therapy, as well as systemic 
and psychodynamic modalities.

For inclusion in the REC group, participants did not suffer 
from eating problems for at least 1 year prior to scanning. Further, 
a minimum BMI ≥ 20 kg/m2 was set. Most, but not all REC met 
this criterion. Four participants had a BMI slightly below 20 kg/
m2 (19.3−19.8 kg/m2) and 2  a BMI of 18.5−19.0 kg/m2. These 
participants had not exceeded a BMI of this range previous to the 
onset of the disorder and were clinically completely recovered. 
The latter was tested using the EDE (33), and scores had to 
be within one standard deviation of normal, which is a strict 
criterion. Nineteen REC were of the restrictive, whereas one was 
of the binge eating/purging subtype.

The AN, REC, and HC participants were matched, with 
respect to the intelligence quotient (IQ). They were standardized 
with regard to hormone status (all participants were amenorrheal 
or in the luteal phase of the menstruation cycle at the scanning 
date (REC, HC); if taking oral contraceptives, they had to be in 
phase when taking both progesterone and estrogen, i.e., similar 
to the luteal phase).

The following psychometric tools were used in all participants: 
SKID I, SKID II (34), Beck Depression Inventory (BDI-II) (35, 
36), EDE (33), Eating Disorder Inventory (37), and the State-
Trait Anxiety Inventory (STAI) (38). IQ was assessed with the 
Multiple-Choice Word Test B (MWT-B) (39) as a measure of 
estimated premorbid IQ.

We defined the following exclusion criteria for all three groups: 
schizophrenia, bipolar I disorder, a history of neurological 
diseases, substance abuse, a severe medical illness or general 
contraindications for MRI (claustrophobia, metallic implants, 
pregnancy). No participant took any psychiatric medication, 
except one AN patient who had just started escitalopram but had 
not yet reached an effective serum level.

The analysis of GM and WM volumes as well as of cortical 
thickness of an overlapping sample has already been published 

elsewhere (40). From the sample reported by Nickel et al. (40), 
three AN had to be excluded due to spiking artifacts in the DTI 
data, whereas two AN with minor head motion artifacts were 
only excluded in the voxel-based morphometry analysis. In four 
HC, no DTI data were recorded (termination of the measurement 
by the participant) and four had spiking or head motion artifacts. 
In the REC sample, three subjects were excluded due to spiking 
artifacts and of one subject no DTI sequence was recorded.

Image Acquisition
Image acquisition of all participants took place between March 
2015 and April 2017. Scanning was performed with a 3T Siemens 
PRISMA Magnetom (Erlangen, Germany) equipped with a 
20-channel head coil for signal reception. A standard MPRAGE 
(magnetization-prepared rapid gradient echo) T1-weighted 
anatomical scan was obtained for each participant with the 
following parameters: relaxation time = 2,300 ms, echo time = 
2.98 ms, flip angle = 9°, field of view (FOV) = 240 × 256 mm2, 
voxel size = 1 × 1 × 1 mm3. We used a single-shot, spin echo, 
echo planar (EPI) sequence to obtain diffusion weighted images 
for each participant. For the calculation of the diffusion tensor, 
61 spatial directions were respected. The b-value for control of 
diffusion weighting was set at 1,000 s/mm2. We chose the imaging 
parameters for the DTI sequence as follows: FOV = 192 × 192 
mm2, slices = 60, echo time = 80 ms, voxel size = 2 × 2 × 2 mm3.

Preprocessing
All EPI images were corrected with a reliable and fully automated 
distortion correction (41). Before data analysis, all DTI images 
were screened carefully for motion or spike artifacts using the 
SPM Artrepair toolbox.

Processing
The diffusion tensor was calculated with the software “DTI and 
Fiber Tools” (42). Diffusion in 61 spatial directions was registered 
for tensor calculation. The FA and the MD values of each voxel 
were computed from corresponding diffusion tensors.

TABLE 1 | Continued

Study n (AN/REC/HC) Age in years
(mean ± SD)

Methods Region(s) and results (AN/REC vs HC)

15. Yau et al., 2013 (26) 12 REC
10 TD

28.7 ± 7.9
26.7 ± 5.4

FSL FA: No group differences
MD↓, AD, and/or RD↓: left superior frontal WM including corona 
radiata (superior and posterior), corpus callosum (body and 
bilateral splenium), posterior limb of capsula interna, left SLF, left 
posterior cingulum, precuneus, superior parietal WM, left dorsal 
cingulum, right precuneus, and posterior corona radiata, right 
posterior cingulum, and posterior corona radiata 

16. Frieling et al., 2012 (27) 12 AN
9 REC
20 TD

26.8 ± 6.9
27.4 ± 5.3
24.8 ± 2.6 

SPM FA↓ (AN and REC): bilateral posterior thalamic radiation (optic 
radiation, left mediodorsal thalamus), bilateral posterior corona 
radiate, left middle cerebellar peduncle, parts of left SLF

17. Kazlouski et al., 2011 (28) 16 AN
17 TD

24 ± 7
25 ± 4

SPM, DTI Studio FA↓: bilateral fimbria-fornix, fronto-occipital fasciculus, posterior 
cingulum WM

AN, anorexia nervosa; REC, recovered; HC, healthy controls; SD, standard deviation; WM, white matter; FA, fractional anisotropy; MD, mean diffusivity; RD, radial diffusivity; AD, 
axial diffusivity; ADC, apparent diffusion coefficient; DTI, diffusion tensor imaging; TBSS, tract-based spatial statistics; SPM, statistical parametric mapping; TRACULA, TRActs 
Constrained by UnderLying Anatomy; SLF, superior longitudinal fasciculus; ROI, region of interest.
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With SPM12 [Statistical Parametric Mapping Software, 
Wellcome Department of Cognitive Neurology, University 
College London UK; for details, see Ref. (43)] in Matlab R2012 
(Mathworks, Sherborn, MA), we performed a co-registration of 
anatomical MPRAGE images onto the B0-images. Segmentation 
and normalization of MPRAGE images was carried out with 
Computational Anatomy Toolbox (http://dbm.neuro.uni-jena.
de/vbm.html). After segmentation procedure, GM, WM, and 
cerebrospinal fluid (CSF) segments were available. For the 
normalization into MNI space, the deformation fields derived 
from the normalization step were applied to the individual FA 
and MD maps. Smoothing was performed with an 8-mm full 
width at half-maximum Gaussian kernel.

Statistical Analysis
Psychometric Data
Group comparisons of demographic and psychometric data (age, 
IQ, psychometric scores) were carried out using SPSS software, 
version 22 (IBM Corp., Armonk, NY). We conducted an analysis 
of variance (ANOVA) followed by a post hoc Tukey-Kramer Test.

Analysis of DTI Data
Analysis of imaging data was performed in SPM12 and Matlab 
R2012 (Mathworks, Sherborn, MA). We calculated group-wise 
comparisons (AN versus HC, REC versus HC and vice versa) 
applying SPM-t-contrasts. Age and total intracranial volume 
(TIV) were respected as covariates to exclude confounding 
effects. We applied a statistical threshold of p < 0.05 after family-
wise error (FWE) correction.

In a further analysis, the BDI-II (35, 36) was added as a 
covariate to correct for the influence of depressiveness.

Regression Models
Additionally, we run SPM regression models of FA and MD 
values with the EDE total score (33) and BMI across all groups.

RESULTS

Demographic and Psychometric Data
Table 2 lists the demographic and psychometric data of the 
AN, the REC, and the HC group. For final data analysis, 33 
patients with AN, 20 participants with a previous history of AN 
currently recovered (REC), and 33 HC were included. The three 
groups showed no significant differences concerning gender 
or IQ according to the MWT-B (39) (Table 2). As expected, 
the REC sample was older than the AN or HC samples. The 
AN participants showed a lower BMI and scored higher in the 
BDI-II (35, 36) and STAI (38) questionnaire than HC. According 
to SKID I (34), seven AN were diagnosed with a current major 
depression, two AN and one REC participant with a specific 
phobia, and two REC with a social anxiety disorder.

Twenty-nine AN (88%), 17 REC (85%), and 31 HC (94%) had 
successfully completed the highest school grade (“Abitur”) in the 
German school system.

DTI Results
Fractional Anisotropy
Calculating between group differences (HC versus AN), we found 
decreased FA in AN reaching significance on cluster level in the 
body of the corpus callosum (x = −14, y = −15, z = 33; Z = 4.14; k = 
504; pFWEpeak = 0.219; pFWEcluster = 0.012). This difference 
was also observable in HC versus REC (x = −14, y = −15, z = 
32; Z = 3.86; k = 368; pFWEpeak = 0.481; pFWEcluster = 0.040). 
After correction for effects of depression according to BDI-II 
(35, 36) only the HC versus REC contrast remained significant 
(x = −12, y = −15, z = 32; Z = 3.90; k = 369; pFWEpeak = 0.457; 
pFWEcluster  = 0.039). Figure 1 illustrates the results for FA 
contrasting AN versus HC.

Mean Diffusivity
In the group-wise comparisons (HC versus AN), there was a 
significant MD decrease in the right posterior thalamic radiation 

TABLE 2 | Demographic and psychometric data.

AN (n=33)
mean ± SD

REC (n=20)
mean ± SD

HC (n=33)
mean ± SD

ANOVA Post-hoc Tukey-
Kramer test

Age (y) 24.3 ± 4.2 27.2 ± 7.4 23.0 ± 2.5 df = 2,83; F = 5.2; p = 0.007 REC>AN, HC
Current BMI (kg/m²) 16.3 ± 1.4 20.7 ± 1.3 21.9 ± 2.3 df = 2,83; F = 88.8; p < 0.001 HC>REC>AN
Illness duration (y) 6.7 ± 3.8 5.5 ± 5.1 Not applicable
Lowest lifetime BMI (kg/m²) 14.8 ± 1.4 14.6 ± 2.2 20.3 ± 1.7 df = 2,62; F = 58.3; p < 0.001 HC>REC, AN
Duration of recovery Not applicable 4.5 Not applicable
EDE – total score 3.2 ± 1.1 0.6 ± 0.4 0.4 ± 0.3 df = 2,83; F = 142.8; p < 0.001 AN>REC, HC
EDI-2 – total score 61.1 ± 8.9 47.3 ± 5.1 44.2 ± 3.0 df = 2,83; F = 65.7; p < 0.001 AN>REC, HC
BDI-II 20.9 ± 10.6 6.0 ± 6.1 2.2 ± 2.9 df = 2,83; F = 56.4; p < 0.001 AN>REC, HC
STAI – State Score 39.0 ± 7.0 35.2 ± 5.5 32.4 ± 4.7 df = 2,83; F = 10.5; p < 0.001 AN, REC>HC
STAI –Trait Score 46.7 ± 7.5 31.4 ± 7.8 29.1 ± 6.8 df = 2,83; F = 53.8; p < 0.001 AN>REC, HC
MWT-B 28.5 ± 5.0 29.5 ± 5.0 27.7 ± 4.1 df = 2,83; F = 0.9; p = 0.4
Fasting before MRI (min) 42.9 ± 10.0 49.3 ± 17.4  42.2 ± 12.4 df = 2, 81; F = 2.1; p = 0.1
Calories of food intake before 
scanning

110.8 ± 114.4 290.5 ± 141.0 380.3±113.8 df = 2,83; F = 42.1; p < 0.001 HC>REC>AN

AN, anorexia nervosa; REC, recovered; HC, healthy controls; SD, standard deviation; y, years; min, minutes; ANOVA, analysis of variance; BMI, body mass index; EDE, Eating 
Disorder Examination Interview; EDI, Eating Disorder Inventory; BDI, Beck Depression Inventory; STAI, State-Trait-Anxiety Inventory; MWT-B, Multiple-Choice Word Test B; MRI, 
magnetic resonance imaging.
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reaching significance on cluster- as well as on peak level (x = 36, y = 
−50, z = 8; Z = 4.77; k = 493; pFWEpeak = 0.018; pFWEcluster = 
0.028). REC and HC showed no significant differences in MD 
after FWE correction. After correction for effects of depression 
according to BDI-II (35, 36) no significant results remained. 
Figure 2 illustrates our results for MD.

Regression Models
No significant correlations neither between FA and BMI nor 
EDE total score (33) could be detected.

Calculated across all groups, there is a positive correlation 
between the BMI and the MD in the following areas: the right 
middle temporal gyrus (x = 60, y = −20, z = −10; Z = 4.95; k = 226; 
pFWEpeak = 0.008; pFWEcluster = 0.217) and the right lingual 
gyrus (x = 14, y = −62, z = −3; Z = 4.57; k = 225; pFWEpeak = 
0.041; pFWEcluster = 0.219).

There is a negative correlation between the EDE total score 
(33) and the MD in the left precuneus (x = −10, y = −54, z = 42; 
Z = 4.83; k = 129; pFWEpeak = 0.014; pFWEcluster = 0.479) and 
the left inferior frontal gyrus (x = −51, y = 4, z = 30; Z = 4.69; k = 
43; pFWEpeak = 0.026; pFWEcluster = 0.870).

DISCUSSION

This DTI study is so far the largest focusing on differences in 
FA and MD between adult women with AN in comparison to 
REC and HC groups. We found a decreased FA in the body of 
the corpus callosum and a reduced MD in the posterior thalamic 
radiation in acute AN. Although the REC group showed reduced 
FA compared with HC, there was no difference in MD detectable 

after recovery. Our results suggest only partial regeneration of 
affected WM alterations after recovery from acute AN.

Fractional Anisotropy
Our result of reduced FA in acute AN adults is in line with most 
previous studies (12, 14, 15, 21–24, 25, 27, 28). Nevertheless, few 
studies suggest FA increase (17, 19, 25) in AN or no alterations 
between AN and HC (18). Apart from often small sample sizes 
another source of heterogeneity might result from different AN 
subtypes, differences in duration of illness, age of onset and 
symptom severity as well as inclusion of patients in different 
stages of refeeding therapy across the various studies. Further 
influencing factors are the intake of psychiatric medication and 
differences in data processing.

Various areas have been reported to be affected by FA 
alterations in AN patients. In accordance with our results, a 
recent meta-analysis investigating FA in patients with AN in 
comparison to HC detected the largest cluster with decreased FA 
in the corpus callosum (31). Von Schwanenflug et al. (12), Gaudio 
et al. (15), and Travis et al. (22) found a FA decrease in the same 
subregion (body) of the corpus callosum. Although these three 
investigations had studied adolescents, we focused on adults 
with a longer duration of illness. The corpus callosum facilitates 
communication between left- and right-sided brain structures 
(44). The body of the corpus callosum is considered to connect 
precentral frontal regions and parietal lobes and is involved in 
several motor, perceptual, and cognitive functions (see Figure 1) 
(45). Altered WM integrity may, therefore, contribute to the 
distorted body perception in AN (12, 46).

FIGURE 2 | Mean diffusivity (MD). (A) Glass brain view of the difference in 
MD signal depicted in purple between AN and HC individuals in right and top 
view. Individuals with AN show significantly lower MD values in the posterior 
thalamic radiation (x = 36, y = −50, z = 8; Z = 4.77) as compared to HC. 
(B) Network involvement of the region with abnormal MD signal. We tracked 
the connectivity of the ROI in the posterior thalamic radiation (x = 36, y = −50, 
z = 8) which showed a significantly lower MD in AN to illustrate the network 
involvement. Red: left – right; green: anterior – posterior; blue: superior – 
inferior. MD, mean diffusivity; AN, anorexia nervosa; HC, healthy controls; 
ROI, region of interest.

FIGURE 1 | Fractional anisotropy. (A) Glass brain view of the difference in FA 
signal depicted in purple between AN and HC individuals in left and top view. 
Individuals with AN show significantly lower FA values in the body of the corpus 
callosum (x = −14, y = −15, z = 33; Z = 4.14) as compared to HC. (B) Network 
involvement of the region with abnormal FA signal. We tracked the connectivity 
of the ROI in the body of the corpus callosum (x = −14, y = −15, z = 33) which 
showed a significantly lower FA in AN to illustrate the network involvement. Red: 
left – right; green: anterior – posterior; blue: superior – inferior. FA, fractional 
anisotropy; AN, anorexia nervosa; HC, healthy controls; ROI, region of interest.
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To date, the underlying neurophysiological mechanisms 
of reduced FA remain unclear. The alterations in WM 
microstructure could either be a premorbid trait marker or 
result from malnutrition (47). Axon density, fiber geometry, and 
myelination are proposed to contribute to the DTI-signal (48). A 
tendency for larger diameter axons was suggested for medial and 
posterior cross-sections of the corpus callosum (49, 50). Previous 
investigations propose that axons of larger diameter tend to 
have thicker myelin sheets with higher concentration of lipids 
(51). This may render the body of the corpus callosum more 
susceptible to myelin loss due to lipolytic mechanisms following 
malnutrition (52).

Mean Diffusivity
MD computes the average diffusion irrespective of directionality. 
It is sensitive to myelin changes as well as variations in intra/
extra cellular spaces (53). Previous studies focusing on MD are 
heterogeneous with some reporting increased MD in adults 
(23, 24) others no MD differences (15, 18) or decreased MD in 
adolescents with AN (17, 24). We found an MD decrease in the 
posterior thalamic radiation, an area where a decreased FA in AN 
patients has already been described (27). Fibers of the posterior 
thalamic radiation project into the occipital, the temporal, 
and parietal cortex and connect to cortical regions involved in 
processing of the body image (see Figure 2) (27).

It was supposed that MD decrease might result from 
dehydration in AN, which could potentially limit water diffusion 
(24). However, previous AN studies assessed hydration by 
measuring urine specific gravity prior to scanning but found 
no evidence of dehydration or hyperhydration in their sample 
(12, 18). It is not yet clarified whether urine specific gravity may 
sufficiently reflect the hydration status (54).

Recovery
We detected FA decrease in the corpus callosum in REC in 
comparison to HC, whereas no MD differences were detectable. 
Studies investigating AN patients after recovery are scarce, and 
findings are inconsistent. In line with our finding, two cross-
sectional studies reported FA differences between REC and 
HC (20, 27) and two longitudinal investigations suggested only 
partial rehabilitation of WM after weight restoration (17, 19). 
In contrast to our results, four studies found no differences in 
microstructural integrity between REC and HC (12, 13, 18, 26). 
The discrepant results might be due to differences in sample 
characteristics, including definition of recovery and analytical 
approach. Therefore, future studies should be carefully controlled 
and include well-defined samples (55, 56).

Our results of FA decrease in the corpus callosum after 
prolonged weight restoration and absence of AN symptoms 
indicate that complete recovery may be a long-lasting process, 
i.e., the duration of recovery of our sample was too short to detect 
complete reversibility. Furthermore, a parallel study of GM and 
WM did not detect differences between REC and HC (40). 
However, due to our strict inclusion criteria, it likely represents 
a permanent “scar” of the acute disease process. Alternatively, 
the FA decrease in AN and REC could also be regarded as a 

persisting premorbid trait, i.e., a neural endophenotype. To 
clarify this hypothesis, an investigation of disease-free siblings 
and a longitudinal study design might shed light on the issue.

The detection of no differences in MD between the REC and 
HC groups supports the hypothesis that a reduced intensity of 
diffusion is reversible following weight restoration.

Regression Models
The positive correlation between MD and BMI is in line with the 
assumption that MD alterations in AN patients are associated 
with dynamic processes. As underlying factors dehydration or 
malnutrition would be conceivable (57).

We detected a negative correlation between the EDE total 
score (33) and the MD in the left precuneus and the inferior 
frontal gyrus. In the precuneus, a region associated with self-
processing and episodic autobiographic memory retrieval (58), 
a diminished GM in AN has already been detected (59). The left 
inferior frontal gyrus is suggested to be involved in impulsivity 
regulation (60).

No correlation neither between FA and BMI nor between FA 
and EDE total score (33) could be found. This is in line with the 
meta-analysis by Barona et al. (31) who reported no association 
between BMI- and AN-related FA reductions. One possible 
explanation could be that, in contrast to the MD, the FA is not 
primarily weight-dependent and, therefore, not state-related.

Methodological Issues and Limitations
Strengths of the current study are the well-defined AN sample, 
strict definition of recovery criteria and the inclusion of relevant 
covariates (age, TIV, depression).

The sample size compares well to other studies in the field. 
In fact, so far this is the largest DTI study in adults with AN, 
REC, and HC. Still, larger samples sizes might have allowed the 
detection of possible more subtle differences. Another limitation 
of our study is that we did not check for the hydration status of 
participants which might have helped with the interpretation of 
the MD findings. Moreover, weight restoration before scanning 
was not specifically evaluated; however, we do not assume 
relevant weight increase as patients were largely outpatients 
seeking treatment or at the beginning of inpatient treatment.

Our MD results did not survive a correction for the measures 
of depression when adding the BDI-II scores as a covariate to 
the statistical analysis. Since AN symptoms and BDI scores were 
highly correlated, we cannot disentangle their influences and, 
therefore, cannot rule out any confounding effects arising from 
depression. Similar effects of comorbid depressive symptoms 
are found in other psychiatric disorders, too, and are difficult to 
disentangle, which we discussed previously (40, 61). In contrast, 
following correction for the effect of depression, FA signals of REC 
and HC still differed significantly from each other. Therefore, it is 
unlikely that the reduced FA in AN is driven solely by effects of 
depression. However, it is important to recognize that depressive 
symptoms may be regarded as the sequel of malnutrition in AN 
(62). The chronicity of the illness itself can induce depressive 
symptoms as in most chronic diseases (63). Our study sample had 
a relatively long duration of illness and might, therefore, show 
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more pronounced depressive symptoms as compared to other 
studies. The only way to disentangle AN-only and depressive 
effects would be to recruit a depressive control group. However, 
reversely, even in this setting, malnutrition effects cannot be 
excluded due to loss of appetite in depressive patients.

Results in previous studies may have been biased by 
ventricular enlargements in AN (13). Recent investigations 
showed that especially differences in fornix FA between AN 
and HC disappeared after correction for cerebrospinal fluid 
partial volume effects (64). Therefore, it is possible that findings 
of reduced FA in AN, especially in areas close to ventricles, are 
biased (13). Longitudinal studies could provide more insight into 
whether complete reversibility is possible after a longer period 
of recovery.

Summary
In this study of women with acute AN, control subjects, and 
recovered patients, we could confirm impairments of WM 
integrity in acute AN. Differences in FA were detectable between 
the REC and HC groups, whereas there were no alterations 
between REC and HC concerning MD. Thus, impairments of 
FA measures possibly reflecting disturbed brain connectivity 
may either be seen as a trait marker of AN or a “connectivity 
scar,” whereas reduced MD measure probably represents state 
markers of the acute state of AN. The underlying neurobiological 
mechanisms are not yet clarified. To get more information about 
the existence of pre-morbid markers, studies on participants at 
risk for anorexia need to be conducted. In future studies, it is 
important to follow precisely defined guidelines and to include 
carefully selected samples (55, 56).
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