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Neuronal responses to ongoing stimulation in many systems change over time, or “adapt.” Despite the ubiquity of
adaptation, its effects on the stimulus information carried by neurons are often unknown. Here we examine how
adaptation affects sensory coding in barrel cortex. We used spike-triggered covariance analysis of single-neuron
responses to continuous, rapidly varying vibrissa motion stimuli, recorded in anesthetized rats. Changes in stimulus
statistics induced spike rate adaptation over hundreds of milliseconds. Vibrissa motion encoding changed with
adaptation as follows. In every neuron that showed rate adaptation, the input-output tuning function scaled with the
changes in stimulus distribution, allowing the neurons to maintain the quantity of information conveyed about
stimulus features. A single neuron that did not show rate adaptation also lacked input-output rescaling and did not
maintain information across changes in stimulus statistics. Therefore, in barrel cortex, rate adaptation occurs on a slow
timescale relative to the features driving spikes and is associated with gain rescaling matched to the stimulus
distribution. Our results suggest that adaptation enhances tactile representations in primary somatosensory cortex,
where they could directly influence perceptual decisions.
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Introduction

Adaptation is the accommodation of neuronal responses to
an ongoing stimulus [1,2]. In the anesthetized rat primary
somatosensory “barrel” cortex (BC), it is established that
neuronal responses adapt robustly to repetitive whisker
stimulation [3-11].

Although adaptation is observed almost universally across
species and sensory modalities, in most cases its functional
effects and underlying mechanisms have not been established.
In several instances in the sensory periphery, adaptation
helps neurons solve the fundamental problem of encoding
signals that vary over a wide range compared to the range of
responses available to the neuron. In these instances,
adaptation involves shifts in the neuronal input-output
relationship (tuning curve) following changes in the stimulus
statistical distribution [12-16]. The shifts cause the range of
neuronal responses to match the statistical distribution of the
stimulus, thus optimizing information transmission [15-24].
Adaptation can occur to the stimulus distribution’s mean, to
its variance, and to other statistical properties [15,23-26],
such as the correlations specific to natural stimuli [27]. In any
system where responses to ongoing stimulation vary over
time, it is important to understand whether adaptation
constitutes a stimulus-specific change in coding.

Quantitative study of the role of adaptation in information
transmission in sensory cortex is of particular interest for two
reasons. First, the excitability of cortical neurons is strongly
modulated by central factors other than sensory environment
(e.g., [28-32]). It needs to be ascertained whether adaptation
can enhance information transmission even in the face of
large nonsensory inputs. Second, cortical activity is likely to
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be closely related to the sensory experience of the animal.
Consequently, if cortical adaptation entails adjustments in
neuronal coding, it can lead to a sharpening of discriminative
capacities [27]. Motivated by this possibility, here we
examined the effects of adaptation on vibrissa motion
encoding. Whisker motion across a textured surface [33]
induces vibrations with frequencies up to ~200 Hz. The
vibration associated with any texture is characterized by
rapid, irregular, intermittent variations in velocity. In some
cases, the vibrations evoked by different textures differ
markedly in mean velocity [33,34]. Under these conditions,
BC neurons could represent texture by encoding mean
velocity by the firing rate averaged across a stimulus
presentation [35]. However, textures with similar overall
roughness and mean velocity can be discriminated only by
the specific sequence of vibrations along the whisker sweep.
In that case, firing rate by itself is not adequate to
discriminate between textures; rather, the precise “kinetic
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Author Summary

Neuronal responses to continued stimulation change over time, or
“adapt.” Adaptation can be crucial to our brain’s ability to
successfully represent the environment: for example, when we
move from a dim to a bright scene adaptation adjusts neurons’
response to a given light intensity, enabling them to be maximally
sensitive to the current range of stimulus variations. We analyzed
how adaptation affects sensory coding in the somatosensory
“barrel” cortex of the rat, which represents objects touched by
the rat’s whiskers, or vibrissae. Whiskers endow these nocturnal
animals with impressive discrimination abilities: a rat can discern
differences in texture as fine as we can distinguish using our
fingertips. Neurons in the somatosensory cortex represent whisker
vibrations by responding to “kinetic features,” particularly velocity
fluctuations. We recorded responses of barrel cortex neurons to
carefully controlled whisker motion and slowly varied the overall
characteristics of the motion to provide a changing stimulus
“context.” We found that stimulus-response relationships change
in a particular way: the “tuning functions” that predict a neuron’s
response to fluctuations in whisker motion rescale according to the
current stimulus distribution. The rescaling is just enough to
maintain the information conveyed by the response about the
stimulus.

signature” must also be encoded [35]. Thus, any adaptive
mechanism that optimizes the representation of fine kinetic
features could improve discrimination between textures.

To test whether adaptation may facilitate discriminations
that depend on a precise representation of whisker kinetics,
we applied stochastic, continuously changing stimuli distrib-
uted as a Gaussian in displacement and velocity. The
Gaussian’s variance in position and velocity switched back
and forth between two set values, altering the parameters of
the distributions—the statistical “context”—within which
individual stimulus values were delivered. We asked whether
neurons used fixed input-output tuning functions to encode
individual stimulus values or, alternatively, whether they
developed stimulus-specific functions that shifted according
to the statistics of the ongoing distribution.

Results

Adaptive Responses to Switching Variance of Noise
Stimuli

We analyzed how adaptation affects the encoding of whisker
motion in BC. Continuous, filtered white-noise (hereafter
referred to simply as “noise”) stimuli were applied to the
principal whisker and surrounding whiskers of recorded
neurons. Motion varied on two timescales. First, instantaneous
whisker position and velocity varied on a timescale of ~5 ms.
Second, the variance of the randomly fluctuating whisker
deflections switched between two values at fixed intervals of 5 s
duration (Figure 1A). The problem of interest was whether
neuronal encoding of stimulus fluctuations on short time-
scales (up to tens of milliseconds) changed according to the
longer-timescale statistical context within which fluctuations
were delivered. Statistical context, in our experiments, was
defined by the variance. For example, how is a specific stimulus
event—whisker movement from position A to position B—
represented when that event occurs against a background of
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large amplitude, fast movements as compared to a background
of smaller amplitude, slower movements (Figure 1B)?

We examined response dynamics in a dataset of single layer
4 neurons that showed stable responses to noise stimulation
(criteria for inclusion in the dataset are discussed in Materials
and Methods). The dataset comprised 34 single neurons and
multineuron clusters, of which ten single neurons fulfilled all
selection criteria for spike-triggered covariance (STC) anal-
ysis (see below). For these neurons, average firing rates during
stimulation were significantly (around six times) larger than
before stimulus onset. Moreover, the rates were markedly
higher in the high-variance epoch compared to the low-
variance epoch (Figure 1C). Thus the neurons were both
responsive to the noise stimulus and sensitive to the changes
in stimulus statistics.

We tested neurons for adaptation as follows. Responses
were quantified by measuring how firing rate varied during
the course of the switching cycle (Figure 2). Neurons typically
showed prominent adaptation in firing rate. Mean firing rate
sharply increased when the distribution of stimulus positions
and velocities switched from low to high variance and then
slowly adapted, or declined, as high-variance stimulation
continued. After switching back to low variance, firing
probability decreased sharply and then recovered somewhat
during the course of the low-variance epoch (Figure 2B and
2C). Of the ten highly stable single neurons selected for full
analysis, nine displayed clear adaptive dynamics (Figure 2D).
In total, 33 out of the 34 single neurons and multineuron
clusters in the dataset showed adaptation (Figure 2E) (the
nonadapting neuron is discussed below).

Time Courses of Adaptation

The time course of rate adaptation was on the order of
hundreds of milliseconds for all the adapting single neurons
(Figure 2D) (280 £ 180 ms, range 150-550 ms, n = 9). This
presents an interesting contrast to the timescales over which
BC neurons encode individual stimulus parameters. Upon
whisker deflection with steps, ramp-and-hold pulses, or
sinusoidal waveforms, BC neurons have a transient response
to stimulus onset during which their firing rate robustly
encodes whisker velocity [3,36,37]. The firing rate then
typically shows a rapid decline (within 10 ms of the response
onset) (e.g., [37]) to a low level of tonic firing, although
adaptive decay of responses can continue over a longer
timescale [8,11]. With noise stimuli, the time course of rate
adaptation was an order of magnitude longer than the time
course associated with stimulus-feature encoding. This
suggests that the responses of BC neurons did not depend
only on local stimulus fluctuations, but also depended on
changes in the stimulus distribution.

Adaptive Changes in Coding Scheme

Although adaptive changes in firing rate were present in
the great majority of recorded single neurons, this need not
indicate modulation of stimulus-response relationships (e.g.,
[38,39]). For instance, the velocity sensitivity of BC neurons
can account for their strong response to the ramping phase
of a deflection and their “adapting” response to a maintained
deflection [36]. Further, decreased responses to repetitive
stimulation can be due to fatigue of neuronal and synaptic
processes. We investigated whether the rate adaptation we
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Figure 1. Adaptive Responses to Stimuli with Switching Variance

(A) Vibrissa motion waveforms (central plot) were made by drawing
instantaneous displacement values from a Gaussian distribution whose
variance was switched every 5 s. The ratio of low to high variance was
0.49. The bottom plot shows the “mask” used to implement the switch
in variance. Transitions were smoothed over 10 ms; stimulus values were
smoothed over ~5 ms and were white noise in frequency up to ~210 Hz
(see magnified plots at top; scale bars of magnified plots, vertical, 5 pm;
horizontal, 25 ms). The inset plot shows the distributions’ relative widths,
where the x-axis is position and the y-axis is the probability density (scale
bar, 20 pm).

(B) A whisker displacement from x = A to x = B can occur against a
context of high-variance (left) or low-variance stimuli (right).

(C) Spike times from a single neuron’s response over ten successive
stimulus cycles. Stimulus values did not repeat, so the spikes were not
temporally aligned on successive cycles.
doi:10.1371/journal.pbio.0050019.g001
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found was of this type, or whether it was associated with a
true modulation of the stimulus-response relationship.

One property common to noise stimuli and naturalistic
texture stimuli is that the timescale over which the stimulus can
vary (here, ~5 ms) is much shorter than typical BC inter-spike
intervals or neuronal integration times [33]. Because of this, the
output of BC neurons represents a temporally filtered version of
the stimulus, characterized by a reduced set of properties, or
features. For BC neurons tested with naturalistic stimuli,
relatively simple stimulus features such as velocity account for
much of the response [33], in common with other well-
characterized neurons that detect motion [22]. In general,
understanding a stimulus-response relationship requires iden-
tifying the set of stimulus features to which a neuron is sensitive
and estimating the input-output functions, or tuning curves,
that describe how features modulate the neuron’s firing
probability. A powerful way to do this is STC analysis [22,40].
As detailed in Materials and Methods and in Protocol S1, this
technique first identifies the relevant set of features. Having
extracted these features, it then computes the generally non-
linear input-output function governing the neuron’s responses
to them. The identified features and input-output function
constitute a “linear-nonlinear” characterization of the neuron’s
stimulus-response relationship (reviewed in [41,42]).

To test how adaptation affects coding of whisker stimuli,
we carried out STC analyses once response rates had reached
steady state (2-5 s after each switch). We analyzed high- and
low-variance stimulus periods separately to determine which
aspects of stimulus coding were altered by adaptation.

Figure 3 shows results for two different neurons with
typical responses. First, we observed that spike-triggered
averages (STAs) were either negligible (Figure 3A, neuron i)
or small in amplitude compared to the stimulus standard
deviation (Figure 3A, neuron ii), and therefore could not
account for the neurons’ responses. This may happen if the
features driving the neuron have symmetries such that their
mean is zero (Figure S1, panels A3 and C2; explained in
Protocol S1). Use of the STC method uncovered the relevant
stimulus features. Meaningful structure in the stimulus
distribution that evoked responses was captured by a
covariance difference matrix € (see Materials and Methods,
Protocol S1, and Figure S1). € matrices had clear “hot spots”
marking the times when the spike-triggered stimulus distri-
bution differed from the overall “prior” stimulus distribu-
tion. These structures included a positive diagonal (variance)
band extending back —30 or —40 ms relative to spike time,
weaker negative side bands, and sometimes a weak negative
diagonal “tail” extending from the end of the positive band
back to approximately —80 ms (Figure 3B; note the similarity
to the model covariance matrix in Figure S1, panel D3). The
duration of these structures defines the timescales over which
neurons were sensitive to individual stimulus fluctuations (see
above). Apart from the change in the distribution’s overall
scale, C matrices had the same structure for both stimulus
distributions (Figure 3B): when ¢ was given in units
normalized to the corresponding stimulus distribution’s
standard deviation, changes in stimulus scale did not
appreciably change matrix structure. Neurons were selective
to between one and six (usually two or more) stimulus
features, of which the most significant were usually stimulus
velocity and acceleration smoothed over tens of milliseconds
(see Figure S1). Similar results have been observed in other

February 2007 | Volume 5 | Issue 2 | e19



Adaptive Encoding in Barrel Cortex

Time into switching cycle (s)

high iow

Normalized rate

Spike rate (Hz)

8 9 10

6 1 2 3 4 5 6 7
Time into switching cycle (s)

912 3 4567 8 91 .

Time into switching cycle (s)

9]
FY

3 4

)

g .
N1 2

© =

E 2 06
o =

= <<

e ORI -

0.4

0.z

Figure 2. Adaptive Modulation of Spike Rate

(A) Representation of stimulus distributions and switches during a cycle.

(B and C) Behavior of the neuron shown in Figure 1B. Bin size, 100 ms. Dashed lines at 0 and 10 s show correspondence with start and end times of
cycle. (B) Absolute spike rate averaged over switching cycles (1,080 repetitions). (C) Spike rates normalized by the total number of spikes in each 10-s
cycle and then averaged over cycles, eliminating variations in absolute rate (spike count). Finally, the averaged rate was normalized by the spike rate
standard deviation over the cycle, and its mean over the cycle was subtracted, giving a specific measurement of rate modulation.

(D) Rate modulation in the normalized units of (C), pooled over all adapting single neurons (n = 9). Black, population average; gray, plus/minus
population standard deviation. Rate modulation was robust and occurred over a similar timescale across the population.

(E) Adaptation ratios. The firing rate at steady state (binned 4-5 s after each upwards switch in stimulus variance) was divided by the rate immediately
after switching to high variance (binned 0-100 ms after the switch). Left: data points. Filled gray square, nonadapting neuron (n = 1); filled black circles,
adapting single neurons (n = 13); open circles, adapting multineuron clusters (n = 20). Right: histogram of adaptation ratios for all recordings shown on
the left side. Only a single cortical neuron showed nonadapting behavior. The asterisk denotes that this neuron’s adaptation ratio was significantly

different from that of the rest of the population (p < 0.001) (after Lilliefors test for normality on the rest of the population’s distribution).

doi:10.1371/journal.pbio.0050019.9g002

studies (R. S. P. and M. A. Montemurro, unpublished data). As
implied by the results for C, switching the stimulus
distribution caused no qualitative changes in the features:
independently of the ongoing statistical “context,” neurons
were sensitive to the same kind of physical events.

The next step was to estimate the input-output relation-
ships that describe how the neurons were driven by the
presence of each physical feature. If a neuron is responsive to
a given feature, its response to a stimulus segment depends on
the magnitude of the stimulus projection onto that feature
(i.e., how much the stimulus resembles the feature) (see Figure
S1). For instance, if a neuron is sensitive purely to
instantaneous velocity, its response is determined by the
difference in position at successive time points. The more
similar the stimulus is to this “derivative” waveform, the
greater the response will be. The input-output function
captures the neuron’s sensitivity to the feature. We estimated
each neuron’s input-output function by plotting modulations
in firing probability as a function of the stimulus projected
onto each of the features constituting the neuron’s receptive
field (Figure 3C and 3D; see Materials and Methods). The
input-output functions’ symmetry with respect to the sign of
the projection implies that neurons were sensitive to features’
absolute value (e.g., absolute velocity [equivalent to speed]).

iB). PLoS Biology | www.plosbiology.org
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We plotted input-output functions against stimulus projec-
tions measured in units proportional to true whisker displace-
ments. Figure 3C shows the result for the same two neurons
represented in Figure 3A and 3B. In the absolute units of Figure
3C, the scales of input-output functions depended on the
distribution’s scale. During high-variance periods (red curves),
curves were more stretched along the input (stimulus) axis: a
larger change in input was required to cause a given propor-
tional change in firing probability than during low-variance
periods (blue curves). This suggested that neurons rescaled
their sensitivity, or gain, according to the input distribution. To
determine the amount of rescaling, we replotted the curves,
normalizing the input scale by its standard deviation [16,22].
Now, the difference between the input-output functions
disappeared (Figure 3D). This result applied not just to the
input-output curve computed for the most important feature
in each neuron’s receptive field (usually the velocity), but to
input-output curves computed for all features.

The central result of this analysis is that the input-output
curves for high- and low-variance periods (Figure 3C) scaled
with the stimulus standard deviation. Normalized for stimulus
standard deviation, input-output curves conserved their shape
across changes in input distribution. Therefore, adaptation
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Figure 3. STC Analysis

Columns (i) and (ii) show results for two single neurons recorded in different animals. All results were computed for 2-5 s after stimulus switches.
(A) STA and random averages normalized by the corresponding stimulus standard deviation. Cyan, random (prior distribution) average over low-
variance periods; blue, STA over low-variance periods; magenta, random average over high-variance periods; red, STA over high-variance periods.
Neuron (i) was typical in having an STA without significant structure; neuron (ii) had the largest STA among adapting neurons, although still small.
Neither neuron showed adaptive changes in STA shape.

(B) Covariance difference matrices, showing the difference between the spike-triggered and prior covariance matrices, for low- and high-variance
periods, shown in units of the corresponding standard deviation (color bar).

(C) Nonlinear input-output relationships for low-variance (blue) and high-variance (red) periods. Modulations of spike rate were normalized by average
rate and plotted against the stimulus projection onto a significant feature extracted from the covariance difference matrix. Stimulus projections were
plotted in absolute units proportional to real wafer displacement (equal in value to the low standard deviation). Error bars are the standard deviation
from 30 repetitions of the estimation procedure.

(D) Replotted input-output relationships with inputs normalized by their corresponding standard deviation. Error bars as in (C). For both neurons
adaptation involved a rescaling of input-output relationships according to input range.

doi:10.1371/journal.pbio.0050019.g003

rescaled neuronal input-output relationships exactly in
proportion to the stimulus distribution’s standard deviation.

Absence of Rate Adaptation and Corresponding Absence
of Input-Output Rescaling

For one neuron in the dataset, firing rate changed
dramatically at each switch in stimulus variance but did not
adapt within the variance epochs (Figure 4A-4C). This
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neuron was unique by other criteria. First, it had a high
average firing rate across both stimulus conditions (7.5 spikes/
s) compared to other neurons (1.2%0.3 spikes/s). Second, it
had a large, sharp (<20 ms) STA (Figure 4D), while its C
matrix showed little structure (Figure 4E); the STA was,
therefore, the stimulus feature that contributed most
significantly to its receptive field (Figure S2). In ongoing
work (M. M. and R. S. P, unpublished data), we have found
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that thalamic neurons often have a significant STA and lack
adaptation; therefore, the nonadapting neuron described
here may have been a thalamic fiber or a fast-spiking cortical
neuron (thalamic inputs can dominate the responses of fast-
spiking neurons [43-45]). STC analysis showed that the
neuron’s input-output relationship did not rescale (Figure
4F and 4G). These data demonstrate that nonadapting
sensory responses, albeit rare, can be present in BC. Although
rate adaptation and input-output rescaling could occur
through separate processes [16,24], the absence of both of
them in the same neuron is consistent with the idea that they
are associated.

Adaptation and the Maintenance of Stimulus Information

One way to quantify the effects of adaptation is to estimate
the information carried by a neuron’s responses about the
stimulus. Because a nonadapting neuron does not change its
coding properties, one would expect it to be better tuned to
the dynamic range of one particular stimulus distribution,
and convey more information about that distribution than
about distributions with a mismatched range. Conversely, if a
neuron remains sensitive to the same features following
adaptation, but rescales its input-output relationships so that
they preserve their shape, an intriguing possibility is that the
amount of rescaling may be of precisely the amount necessary
to conserve information transmission under different con-
ditions [22].

We therefore estimated the information conveyed by
individual spikes about stimulus features [38,46] in both
high- and low-variance conditions, once responses had
reached a steady state 2-5 s after stimulus switches. The first
step was to estimate information about the stimulus feature
that contributed most significantly to each neuron’s receptive
field. To compare neurons, information per spike was
normalized by its high-variance value. For the nonadapting
neuron, information about the STA in the low-variance
periods decreased to 0.53 times its value in the high-variance
periods (Figure 5A). In contrast, for adapting neurons,
information conveyed about the most significant feature
was maintained: in low-variance periods its value was 1.05 *
0.06 relative to that in high-variance periods (n = 8) (Figure
5A). The next step was to analyze the summed information
about all significant stimulus features (between one and six
features per neuron, usually two or more). This is equal to the
total information per spike conveyed about the full receptive
field provided that all features contribute independently (see
Materials and Methods). For the nonadapting neuron, the
summed information again decreased strongly during low-
variance periods, to 0.54 times that for high-variance periods.
In contrast, adapting neurons maintained the summed
information: the low-variance to high-variance ratio was
1.01 = 0.09 (n = 8) (Figure 5B). Adaptive coding thus caused
neurons to conserve the information per spike conveyed
about stimulus features, in the face of changes in stimulus
statistics.

Slow Adaptation and Gain Rescaling as a Reflection of
Changes in Coding Parameters

Several mechanisms can produce the appearance of
adaptive changes in coding without true changes in input-
output functions [47]. One possibility derives from the fact
that neurons can be sensitive to two types of stimulus
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features, “excitatory” and “suppressive” [48]. For an excita-
tory feature, the firing probability increases with stimulus
similarity to the feature (i.e., as a function of the magnitude
of the stimulus projection onto the feature); for a suppressive
feature, firing probability decreases with stimulus similarity
to the feature [48]. Thus when an ongoing stimulus matches a
suppressive feature, the firing rate can decrease even without
concomitant changes in input—output function. We con-
structed and analyzed a model neuron to see whether slow
firing rate adaptation and gain rescaling like that observed in
BC neurons could occur even without real changes in the
neuronal tuning curve, simply via the presence of suppressive
features. The simulated neuron was sensitive to one excita-
tory feature and one (orthogonal) suppressive feature (Figure
6A). As in our linear—nonlinear representation of experi-
mental neurons, firing probability depended on the amount
of overlap, k, between the stimulus and each feature
comprising the neuron’s receptive field. Spikes were gener-
ated through a nonlinear threshold function that gave the
dependence of firing probability, p, on k: p(k) = a + bk* with
free parameters a, b, and ¢, a generic functional dependence
that fits BC neurons (the specific choice of 4, b, and ¢ did not
affect the conclusions below) (Figures 3C and 4F) (R. S. P. and
M. A. Montemurro, unpublished data). In simulations run
with a range of values for the free parameters, firing rates
decreased less after upwards switches in white-noise stimulus
variance than after the onset of a maintained square step
(Figure 6B), just as for real neurons. However, rate adaptation
in the model never occurred over a time course longer than
the suppressive feature’s duration. Other simple models using
a single excitatory filter sensitive only to the stimulus
“velocity” showed the same behavior, in that the adaptation
timescale equaled that of the longest-duration feature. This
contrasted with the real neurons, where the timescale of rate
adaptation was much longer than that of feature encoding.

We also used the model to analyze whether the rescaling of
neuronal sensitivity observed in our experiments could arise
as an artifact, without genuine changes in the input-output
function’s gain. After running each simulation, we recovered
the model’s filters (Figure 6A) and the input-output relation-
ship for the excitatory feature and compared them across
high- and low-variance stimulation periods just as we did for
real neurons (Figure 3C). Over a range of stimulus variances
and of functional dependences of p(k), there was never
rescaling of the derived input-output function (Figure 6C).
Gain rescaling with full overlap of input-output functions
(i.e., the disappearance of the difference between input-
output functions [Figure 6D]) occurred only when input
rescaling was explicitly incorporated into the model (i.e.,
when the spike generator’s input was not the raw stimulus but
the stimulus normalized by its standard deviation).

In conclusion, these simulations argue against the possi-
bility that the adaptive rescaling of neuronal sensitivity seen
in our experiments could be accounted for without true shifts
in coding. Taken together, our results suggest that, for BC
neurons well captured by STC analysis, gain rescaling
probably arises from modulation of neuronal coding mech-
anisms. The modulation is dependent on stimulus distribu-
tion and has the effect of maintaining information
transmission about the stimulus features represented by the
neuron.
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Figure 4. Firing Rate and STC of a Neuron That Lacked Adaptation

(A) Responses to ten successive stimulus cycles (bottom plot, variance mask).

(B) Absolute rate modulation during switching cycles. Spiking rate remained high throughout high-variance periods and low throughout low-variance
periods. Bin size, 100 ms; responses averaged over 1,040 repetitions.

(C) Normalized rate modulation computed as for Figure 2B.

(D-F) Covariance analysis computed 2-5 s after variance switches. (D) Spike-triggered and random averages. Cyan, random average, low-variance
periods; blue, STA, low-variance periods; magenta, random average, high-variance periods; red, STA, high-variance periods. There was no change in STA
shape. (E) Covariance difference matrices for low- and high-variance periods, normalized by the local standard deviation (color bar). There was very little
structure in the covariance difference matrices, and no visible change after variance switches. (F) Nonlinear input-output functions plotted against the
stimulus projection onto the STA measured in absolute units as in Figure 3C: low-variance (blue) and high-variance (red) periods. Error bars as in Figure
3C. The neuron was more sensitive during high-variance stimulation.

(G) Nonlinear input-output functions normalized by the local standard deviation as in Figure 3D. Input-output relationships did not fully rescale.
doi:10.1371/journal.pbio.0050019.g004

Discussion nology, is a movement applied to the whisker, not a
Th . d I d . n BC movement originating in muscle contraction. However, it is
involj(se: :Xcrl)lear;;erilrtls neir::r?asltri:zintga(fujveip;?:?erlvr;s t(; importa.nt to recognize that the. samf nfeuf’onal.processing
maintain the information carried about stimulus features in properties Pncovered by randomized ("noisy )whlsk.erA fmoves
the face of changes in input statistics. Adaptation to stimulus ments are likely to operate under more natural conditions. In

.. . . earlier work in BC, neuronal firing probabilities to velocit
statistics can enhance the information content of responses ’ &P ¥

in the central auditory and visual pathways [23,27]. Because events during a Gaussian noise stimulus accurately predicted

neuronal spiking in primary somatosensory cortex may
directly influence sensory decisions [49,50], our findings
support the idea that adaptation plays the role of enhancing
stimulus discriminability.

unlike the
“active” stimulation achieved by muscle-contraction-induced

The whiskers received the stimulus “passively,’
whisker sweeping [51,52]. Whisker “motion,” in our termi-

i), PLoS Biology | www.plosbiology.org

the response of the same neurons to the highly structured
velocity profiles associated with whisker movement across
textures [33]. In the present work, input-output functions
and their adaptation to stimulus statistics were derived from
noise stimuli. Because adaptation of input-output functions
is the outcome of fundamental processing properties of

neurons and the circuits in which they reside, it is reasonable
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Figure 5. Mutual Information per Spike between Responses and
Stimulus Features during Adaptation

Black, average over adapting neurons (n =8); green, nonadapting neuron
from Figure 4. Error bars show standard error of mean.

(A) Information conveyed about the most significant feature. During
high-variance periods, absolute information was 0.12 * 0.02 bits per
spike; computed over adapting and nonadapting neurons, n = 9.

(B) Estimate of summed information about all significant features. During
high-variance periods, absolute summed information was 0.29 = 0.07
bits per spike, n = 9. Neurons with adaptive responses transmitted
constant quantities of information per spike in the face of changes in
stimulus distribution, but for the neuron with no adaptation, mutual
information decreased when the stimulus distribution changed.
doi:10.1371/journal.pbio.0050019.g005

to expect that similar forms of adaptation hold for natural
stimuli as for noise stimuli.

STC Analysis of Changes in Input-Output Functions

The present work characterizes BC sensory coding by STC
analysis, a generalization of reverse correlation [53,54]. We
selected the STC method to study adaptation for two reasons.
First, the negligible structure in the STA (Figure 3A) meant
that a higher-order method was necessary to capture
response properties. Second, the method provided a direct
quantification of neuronal input-output functions, a coding

Adaptive Encoding in Barrel Cortex

property that we expected would be affected by changes in
stimulus statistics. Recent applications of STC include the fly
H1 motion-sensitive neuron [22,40,42], retinal ganglion cells
[55,56], cat V1 complex cells [57,58], primate V1 simple and
complex cells [48,59], and nucleus magnocellularis cells in the
avian auditory brainstem [39], as well as models of spiking
neurons [38,60,61].

Changes in input-output gain can arise even in simple,
general neuronal models because of interactions between the
stimulus distribution scale and the nonlinearities inherent to
spike generation [47,60-63]. Although it is not possible to rule
out a contribution of those generic nonlinear effects to the
adaptation we observed, we do not believe they account for
our findings. Any input-output gain rescaling resulting from
the generic nonlinear threshold nature of spike generation
should be similar across spiking neurons. But the response to
stimulus switching was not uniform in our dataset: one
neuron did not show firing rate adaptation, and it also lacked
input-output gain rescaling; nine other neurons adapted and
underwent rescaling of input-output functions. In addition,
in simulated neurons, nonlinear threshold effects did not
produce slow adaptation on the timescale of that observed in
the nine studied adapting neurons. The simulated neurons
also did not show rescaling of input-output functions: the
absence of a slow timescale for rate adaptation was associated
with the absence of adaptive changes in coding (see [47,64]).

Adaptation to Stimulus Statistics: Mean Versus Variance
All neurons but one were sensitive primarily to whisker
speed (absolute value of velocity). Since the mean absolute
velocity was proportional to the velocity standard deviation,
it is possible that neurons adapted to the absolute velocity
mean rather than to the velocity standard deviation. A likely
substrate for responsiveness to absolute velocity is rectifica-
tion through the whisker synaptic pathway: neurons may
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Figure 6. Simulations of Adaptive Responses Using Fixed Features
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(A) Stimulus segments were projected onto two orthogonal features (black): a sharper excitatory filter (top) and a longer suppressive filter (bottom). The
projected stimulus was fed into a nonlinear function used to compute the probability of spiking at time t = 0. In red, filters recovered by STC analysis

conducted on responses collected over a simulated 800 s.

(B) Spike rate modulation upon onset of a square pulse stimulus (top) and upon an increase in white-noise stimulus variance (bottom). Responses
averaged over 300 repetitions. Black and green curves show responses for simulations performed with different sets of parameters for the spiking
nonlinearity. In all cases tested, adaptation to white noise was less pronounced than adaptation to the square pulse, but the timescale of adaptation

was never longer than the duration of the longest (suppressive) filter.

(C) Estimated normalized input-output functions from the STC analysis for low- (blue) and high-variance (red) periods: stimulus-dependent modulations of
spike probability plotted as in Figure 3D. Note that the functions’ zero-crossing level did change. This is expected because the way in which firing probability
is modulated by the stimulus projection onto the feature of interest will differ across high- and low-variance periods, even for a nonadapting model.

(D) Estimated normalized input-output functions represented as in (C), for stimuli divided by their distributions’ standard deviations. The true function

appears in black.
doi:10.1371/journal.pbio.0050019.g006
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receive net depolarizing inputs whatever the sign of the
vibrissa deflection. If so, the net synaptic input onto BC
neurons could be greater during high-variance periods,
effectively increasing the stimulus distribution’s mean. With
the broadband Gaussian stimuli necessary for STC analysis
these stimulus properties cannot be disambiguated, since
both vary in proportion to the scale of the distribution of
whisker displacements (see Protocol S1). Neuronal adaptation
to one feature may constitute simultaneous adaptation to the
other.

Maintenance Versus Maximization of Information in BC

An important effect of adaptation on coding in the sensory
periphery can be to optimize information transmission by
rescaling input-output relationships to match the input
distribution. Adaptation is clearly necessary when the full
dynamic range of inputs is orders of magnitude larger than
that of the receptor neurons (e.g., the natural distribution of
light intensities): the absence of adaptation would seriously
constrain the ability to represent the environment. The
present experiments involve a more subtle form of adapta-
tion inasmuch as the stimulus input range did not span the
neuronal output dynamic range: the measured input-output
curves did not saturate at steady state (Figure 3C and 3D).
Even so, adaptation enabled neurons to maintain informa-
tion transmission during changes in the stimulus distribution.

Indeed, while visual stimuli are generated by external
sources whose luminance variations extend over many orders
of magnitude, natural whisker stimuli are constrained by the
limits of the vibrissa muscle contractions that generate the
stimuli. Thus, neuronal input-output modulation in BC
probably does not reflect constraints on neuronal dynamic
range. Rather, adaptation might reflect a balance between
information maintenance, the ability to accommodate inter-
nal brain-state modulations, and homeostatic regulation
caused partly by the energy cost of spiking.

Adaptation and Texture Discrimination

Could adaptation help BC neurons encode texture iden-
tity? As vibrissae sweep across a texture, the firing rates of BC
neurons over periods of tens of milliseconds encode the
whisker vibration’s equivalent noise level, a generalization of
time-averaged velocity [33]. However, different textures can
induce similar equivalent noise levels or mean speeds: their
identity is then transmitted by the vibration’s detailed
temporal structure [35]. In this case, texture discrimination
depends on neurons’ reporting the temporal sequence of
individual events (bumps or ridges) within a whisk. An
efficient encoding scheme could therefore comprise a signal
based on firing rate to discriminate strongly differing
textures (e.g., very rough versus very smooth), together with
a signal based on temporal firing patterns to discriminate the
finer details of textures within a single category of coarseness.
We propose that the adaptive responses presented here could
underlie this scheme by permitting clear changes in firing
rate to distinguish between high- and low-variance motion
signals, while enhancing the representation of local features
within the context of each variance.

Adaptive gain rescaling may also aid texture discrimination
by making responses to a given texture invariant to the
overall magnitude of whisking. The whisking motion used to
analyze objects is actively controlled by primary motor
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cortex, and whisking bouts can vary in amplitude and speed
(reviewed in [65]). Ideally object perception would be
invariant to changes in whisking scale. Adaptive gain
rescaling might allow neurons to adjust their tuning not only
in response to the statistical context of external events, but
also in response to the whisking-related sensory signals
generated by the rat itself. For example, if the sensory system
adapts to high-magnitude whisking signals before object
contact, the high-velocity events induced by subsequent
object contact would be efficiently encoded.

Materials and Methods

All experimental procedures were performed in accordance with
animal care and use requirements of the National Institutes of
Health, the European Commission, and the institution (Scuola
Internazionale Superiore di Studi Avanzati). After performing pilot
studies on 18 rats for selection of stimulus parameters, we collected
data from six adult (~350 g) male Wistar rats.

Surgical methods and data collection. Animals were anesthetized
with urethane (1.5 glkg body weight i.p.) and stabilized in a stereotaxic
frame.

The technique for Utah array experiments has been described
[37,66,67]. Briefly, a craniotomy was centered 2 mm posterior and 6
mm lateral to bregma. The dura was left intact. A “Utah” array
consisting of a 10 X 10 grid of 1.5-mm-long electrodes with 400-pm
tip-to-tip spacing (Cyberkinetics Neurotechnology Systems, http:/
www.cyberkineticsinc.com) was inserted into the left BC using a
pneumatic impulse inserter (Cyberkinetics Neurotechnology Sys-
tems), and a reference wire was positioned. Electrode penetration
depths were approximately 700-1,000 pum. Signals from all 100
electrodes were simultaneously amplified and filtered (gain, 5,000;
band-pass 250-7,500 Hz [Cyberkinetics Neurotechnology Systems]).
Event thresholds were set equal to 2.5-3.5 times root mean square
voltage: 1-ms-duration event waveforms were extracted at 30 kHz
(Cyberkinetics Neurotechnology Systems).

For Michigan probe experiments, a craniotomy of size 3-4 mm on
the side, centered 2.5 mm posterior and 5.5 mm lateral to bregma,
was performed. A durectomy was performed over the BC area and a
four-shank, 16-channel silicon-substrate probe (University of Mich-
igan Center for Neural Communication Technology, http:/flwww.cnct.
engin.umich.edu) was inserted using a motorized microdrive (Nar-
ishige, http:/lwww.narishige.co.jp). Electrode depths on each shank
spanned 150 pm and inter-shank spacing was 125 um. Electrodes were
advanced until the lowest was at a depth of 780-820 um. Signals were
amplified and filtered at 2,000-10,000 gain and 600-9,000 Hz band-
pass (Neuralynx, http://www.neuralynx.com). Event voltage thresholds
were set manually and monitored throughout the experiment. For
each event, 32 data points were extracted at a 38.1-kHz sampling rate.

Stimulus design and presentation. During stimulation, whiskers
were deflected in one dimension with a random sequence of positions
whose instantaneous values were distributed according to a Gaussian
[15,16]. Stimulus waveforms were generated in MATLAB (The
MathWorks, http://www.mathworks.com) at a sampling rate of either
2 kHz or 4 kHz (10-20X stimulus roll-off frequency, see below). The
sequence had approximately constant power over the frequency
range for which BC neurons are responsive (up to 200-250 Hz), but
was low-pass filtered above that range to eliminate wafer resonance
effects (see below); the stimulus autocorrelation full width at half
maximum was approximately 5 ms. The stimulus variance switched
between two values every 5 s, so that a full stimulus cycle lasted 10 s.
The low standard deviation equaled 0.7 times the high standard
deviation. Since each variance defined an entire separate stimulus
distribution, we used only two variance values, to ensure that
neuronal spiking responses to both distributions could be well
sampled within an experiment’s duration. The variance was imposed
on the Gaussian stimulus waveform using a mask that switched
smoothly between high and low values (Figure 1A). Stimulus
frequency filtering was identical for both conditions, so that both
had the same frequency spectrum.

Piezoelectric wafers can have resonant frequencies in the hundreds
of hertz and a transfer function dependent on mechanical config-
uration. To prevent distortions in wafer motion, stimuli were first
low-pass filtered (~210 Hz; see above). To verify the wafer’s linearity
within the remaining stimulus frequency range, we optically
monitored [33,37] wafer displacements over the frequency range
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used in our experiments. Any small deviations from linearity were
compensated for by convolving the desired stimulus with the wafer’s
inverse transfer function, generating the final signal fed to the
amplifier. Finally, stimuli were checked with the optical sensor to
ensure that wafer motion followed the desired stimulus waveform.

During the recording session, the stimulus signal was transmitted
to a digital to analog board (NI 6713, National Instruments, http://
www.ni.com) and from there to a custom-made amplifier (Erik
Zorzin), which fed the voltage signal to a piezoelectric wafer (Morgan
ElectroCeramics, http://lwww.morganelectroceramics.com). Several
whiskers on the right side of the snout were introduced, up to a
distance 2-3 mm from their base, into a glass pipette (inside diameter
~0.8 mm) glued to the wafer. Whiskers followed pipette displace-
ments faithfully (see Protocol S1 for a detailed description). For the
high-variance stimuli, maximum displacement range was 52 pm;
angular range was approximately 1.5°. Standard deviation was 4.1 pm
in position and 2.5 mm/s in velocity. Maximum speed was 39 mm/s.
These parameters were kept constant across all neurons: their choice
did not depend on each neuron’s specific tuning properties. In
general, at these stimulation levels BC neurons were responsive but
well under saturation.

Neuronal waveform classification and selection. Recording sessions
lasted over 3 h, the time necessary to collect the minimum of ~5,000
spikes required for STC analysis. Cortical activity in anesthetized rats
can be nonstationary over such long periods [28]. Channels were
selected for spike sorting if the unsorted, multineuron activity was
stable through the over 3-h experiment and showed responses to
Gaussian noise stimulation.

All data processing was carried out in MATLAB. Cluster cutting
was performed automatically using either SAC software [68] (for Utah
array experiments) (http://www.cyberkineticsinc.com/content/
researchproducts) or the Klustakwik program by K. D. Harris
(http://qneuro.rutgers.edu) executed from the MClust toolbox written
by A. D. Redish [69] (for Michigan probe experiments) (http:/lwww.
cbc.umn.edu/~redish/mclust). Clusters were manually checked and
corrected if necessary, using SAC or MClust. A spike cluster was
accepted as a single neuron only if its waveform shape remained
consistent and stable throughout, its average firing rate was high
enough for adequate sampling (>0.5 Hz), and its inter-spike interval
distribution increased smoothly from a refractory period >1 ms.
Responsiveness and selectivity to noise stimuli were checked by
estimating covariance difference matrices (see below) and testing
whether they had eigenvalues significantly different than zero. In this
way, only single neurons sensitive to features of our chosen stimuli
were included in the analysis. Neurons that did not meet these
criteria might have been either not responsive to stimulation or else
not sensitive to the chosen (vertical) direction of whisker motion [43].
Activity from a total of 37 channels underwent this selection process.
A total of 34 recordings were responsive and stable and allowed
measurement of rate adaptation. Ten well-isolated single neurons
passed all criteria for STC analysis.

Estimation of adaptive time courses. We estimated a time course
for each rate curve by finding the first time bin where the firing rate
was less than 1/e times its peak. For rate curves well fit by a single
exponential, this number is equivalent to the fit's decay time
constant, while for other curves it provides a well-defined criterion
for time course definition.

Covariance analysis of stimulus-response relationships. STC and
STA analyses characterize a neuron’s stimulus-response relationship
by correlating the neuron’s spike times with variations in the stimulus
(i.e., comparing the stimuli that evoked spikes to those drawn from the
random “prior” distribution of stimuli uncorrelated with spikes) (see
Protocol S1 and Figure S1) [41,53]. The simplest characterization of
the spike-triggered distribution is its mean, given by the STA, but if
the mean of the spike-triggered distribution does not differ from that
of the prior, the STA will not capture the stimulus dependence of the
neuron’s spike probability (Figures S1B and 3A). This situation may
occur when the neuron is sensitive to features that have a symmetry or
an invariance such that the mean spike-triggering stimulus is zero.
However, in this case, the spike-triggered and prior distributions will
nonetheless have a different structure (Figure S1) (also see [22,40]).
This structure can be estimated by considering the next order statistic
of the distribution, the covariance. STC analysis characterizes neuro-
nal selectivity by picking out the directions in stimulus space along
which the spike-triggered and prior distributions’ variances have
maximal difference. This is done by estimating the STC matrix, G, and
the prior covariance matrix, C*"*", and then subtracting one from the
other to obtain € = C — CP™. Covariance differences between the
spike-triggered and prior distributions appear as visible structure in
this matrix (Figures S1D and 3B). Diagonalization of C determines an

i), PLoS Biology | www.plosbiology.org

Adaptive Encoding in Barrel Cortex

orthonormal coordinate frame in stimulus space defined by the
directions of maximal change in variance [22]. Each eigenvalue
indicates the change in variance between the prior and spike-
triggered distributions along the particular direction in stimulus
space given by the corresponding eigenvector. The stimulus dimen-
sions or features most relevant to the neuron’s response correspond
to the eigenvalues with largest absolute magnitudes. For Gaussian
white-noise stimuli, the eigenvectors of C provide a coordinate system
spanning the stimulus subspace of interest; for colored noise stimuli,
eigenvectors are convolved with the stimulus autocorrelation, which
did not qualitatively affect our results [42].

We conducted STC analyses separately for responses in the high-
and low-variance periods. First, we assembled spike-triggered
stimulus distributions by collecting stimulus segments extending
from a time T}, prior to the spike to the time of the spike. Only
spikes evoked during the final, steady-state part of each variance
period (the interval 2-5 s after each variance switch) were considered.
We then constructed and diagonalized C: most of its eigenvalues were
near zero. To estimate the noise level due to finite sampling, and to
establish which eigenvalues were significantly different than zero, we
computed a confidence interval on the eigenvalue magnitudes for a
neuron firing n spikes at random, where n was the actual number of
spikes collected [48,57,59]. We first generated the covariance matrix
Cehance by taking n random samples from the prior distribution, then
computed the difference matrix Cepance = Cehance = CP" for | nces and
finally diagonalized Cehance to obtain the 2.5th and 97.5th percentiles
of its eigenvalue distribution; this was repeated 100 times, and
thresholds for significance were set at the median 2.5th and 97.5th
percentiles.

The next stage in the analysis was to determine the dependence of
the neuron’s spiking probability on a stimulus, P(spike|stim). Within
the linear-nonlinear representation’s framework, this dependence is
completely described by the nonlinear input-output function stating
how firing is modulated by the linear projections {k;}; — ;.. , between
the stimulus and the » significant features constituting the neuron’s
receptive field: f(k;, ko .. . k,) = P(spike|ky, ko . ..k,)/P(spike). For sim-
plicity we limited our analysis to the one-dimensional functions
describing how the stimulus projection onto each significant stimulus
feature modulated the neuron’s firing probability:
f(k;) = P(spikelk;)/P(spike), where k; denotes the stimulus segment’s
projection onto the feature of interest. Using Bayes’s theorem, this
equation can be rewritten as f(k) = P(ki|spike)/P(k;), where
P(k;|spike) and P(k;) are the spike-triggered and prior distributions
of stimuli projected onto the feature. We estimated each input-
output function by first computing the projection k; of each stimulus
segment in the spike-triggered ensemble onto the relevant feature
and projecting the feature onto the entire stimulus sequence to
estimate the prior. We then built histograms for each distribution
and divided the results bin by bin. We applied kernel smoothing to
the P(k;|spike) histogram; the prior formed a smooth Gaussian.
Estimates were repeated for 30 different random bootstrap samples
of the spike-triggered projections: error bars in the plots show the
procedure’s standard deviation. Estimated input-output functions
had a characteristic symmetric U-shaped dependence on projection
(Figure 3C and 3D), implying that neurons encoded the absolute
value of the stimulus feature.

Information carried in spike times about stimulus features was
computed using the method of [38] and [46]. Two quantities were
computed: first, the information about the most significant feature
obtained as the first eigenmode of C; and second, the information
summed over all significant features, equivalent to the total
information captured by the model assuming that all features
contribute independently.

Finite sampling can lead to errors in the estimation of information
[70]. We computed the histograms P(k;|spike) and P(k;) for a range of
discretizations 8k of k. An almost constant information plateau was
generally reached for ranges of 6k from 0.75 to 1.5 stimulus standard
deviations. Discretizing k; into 20 bins for a fixed 6k equal to 0.4-0.5,
we also estimated the information for a series of subsamples of
different sizes, I(n), where n equals the number of spikes in the
sample. Solving for the expected behavior I, = I(n) - Aln [71,72]
produced an information estimate /;,¢ that was equal to the plateau
information to within our procedure’s error.

Sensitivity to parameter choices was tested as follows. We usually
built the spike-triggered and prior stimulus ensembles using 7}, =
—150 ms, but analyses repeated for 7}, =—100 ms or —80 ms did not
change final results, while T}, shorter than —60 ms or —70 ms did
alter the results for some neurons, consistent with visual inspection of
C matrices (Figure 3B). This implies that the generation of a spike at
time ¢ depended on stimulus features defined over the 100 ms
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preceding ¢. The brief stimulus integration time (approximately 100
ms) compared to the average inter-spike interval (approximately 1 s
for a typical neuron responding at ~1 spikels) suggests that
information was carried by single spikes independently rather than
by spike ensembles, so that information calculations based on single
spikes were a good approximation to the spike train information.
We also repeated our analyses using features and stimulus
segments binned at a range of times spanning 1-4 ms; changes in
temporal resolution did not drastically alter the structure of C.
However, the smallest time bins led to inadequate sampling of C.
Conversely, overly large time bins smoothed over the features’
temporal structure. Evaluating the information, we found a stable
regime around 2 ms, which we then used for all our results.
Simulations. Simulations were run in MATLAB. The model
consisted of an idealized neuron that, upon presentation of a
stimulus segment, generated a spike with probability
(Gexe + bexckes) (@inn + binnkit), where kexe and ki, represent the
stimulus projections onto an excitatory and an orthogonal suppres-
sive filter, respectively (Figure 6A shows an example): @, b, and ¢ were
free parameters that were chosen independently for the excitatory
and inhibitory filters (with b;,, negative). In simulations, parameters
were varied to verify the generality of the conclusions drawn from the
model. When incorporated into the model, input rescaling was
implemented by dividing the stimulus by its standard deviation.

Supporting Information

Protocol S1. Notes on Stimulus Design and Application, and Full
Legend for Figure S1

Found at doi:10.1371/journal.pbio.0050019.sd001 (54 KB DOC).
Figure S1. STA and STC Applied to a Model Neuron

A full explanation is given in Protocol S1.

(A) A model neuron was stimulated with a sequence of whisker
displacements (Al). Responses were analyzed in two conditions.
Condition 1: the neuron fired when a large change in displacement
across successive time steps was positive (A2). Condition 2: the
neuron fired for absolute changes in displacement (A3).

(B) Geometrical representation of STA and STC. (B1) A sample of the
overall, or “prior,” stimulus distribution. (B2) Overall stimulus
sample as in B1 overlaid with spike-triggering events under condition
1. (B3) Overall stimulus sample overlaid with spike-triggering events
under condition 2.

(C) STA on stimulus waveforms. (C1) STA waveforms for condition 1.
(C1A) STA plotted in terms of position. (C1B) STA computed in
“velocity space.” (C2) STA for condition 2. (C2A) STA computed in
“position space”; positive and negative changes in displacement
cancel out (see A3). (C2B) STA in “velocity space.” (C2C) STA in
“absolute velocity,” or “speed,” space. Taking the absolute value of
the velocity waveform gives only positive values, resulting in a
positive STA.

(D) Covariance matrices for prior and spike-triggered distributions in
“position space.” Color bar applies to all panels. (D1) Covariance
matrix of the prior distribution sampled at arbitrary pairs of points.
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(D2) Covariance difference matrix for condition 1. (D3) Covariance
difference matrix for condition 2.

Found at doi:10.1371/journal.pbio.0050019.sg001 (5.3 MB TIF).

Figure S2. Uniqueness of the Nonadapting Neuron

The plot shows information captured by neurons’ STA character-
ization divided by information captured by their STC character-
ization. Values of this “information ratio” greater than one signify a
“simple” receptive field well captured by the STA; values less than
one signify a “complex” receptive field for which STC character-
ization is necessary. Information calculations are described in the
main text. Left: information ratio for every recorded single neuron.
Each point corresponds to a neuron. Filled gray square, nonadapting
neuron (n= 1); filled black circles, adapting neurons from our dataset
(n = 8) (main text); open diamonds, neurons from a separate cortical
dataset acquired under the same experimental conditions (n=11) (R.
S. P. and M. A. Montemurro, unpublished data). Right: histogram of
information ratio values for all neurons shown in the left panel. The
nonadapting neuron’s value was the only one above one, denoting
that it was unique in that its receptive field was well captured by an
STA description. Other neurons had a qualitatively different and
more complex receptive field structure.

Found at doi:10.1371/journal.pbio.0050019.sg002 (231 KB TIF).
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