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Abstract
Background: Protein-protein interactions (PPIs) dominate intracellular molecules to perform a series of tasks such as
transcriptional regulation, information transduction, and drug signalling. The traditional wet experiment method to
obtain PPIs information is costly and time-consuming.
Result: In this paper, SDNN-PPI, a PPI prediction method based on self-attention and deep learning is proposed. The
method adopts amino acid composition (AAC), conjoint triad (CT), and auto covariance (AC) to extract global and
local features of protein sequences, and leverages self-attention to enhance DNN feature extraction to more
effectively accomplish the prediction of PPIs. In order to verify the generalization ability of SDNN-PPI, a 5-fold
cross-validation on the intraspecific interactions dataset of Saccharomyces cerevisiae (core subset) and human is used
to measure our model in which the accuracy reaches 95.48% and 98.94% respectively. The accuracy of 93.15% and
88.33% are obtained in the interspecific interactions dataset of human-Bacillus Anthracis and Human-Yersinia pestis,
respectively. In the independent data set Caenorhabditis elegans, Escherichia coli, Homo sapiens, and Mus musculus,
all prediction accuracy is 100%, which is higher than the previous PPIs prediction methods. To further evaluate the
advantages and disadvantages of the model, the one-core and crossover network are conducted to predict PPIs, and
the data show that the model correctly predicts the interaction pairs in the network.
Conclusion: In this paper, AAC, CT and AC methods are used to encode the sequence, and SDNN-PPI method is
proposed to predict PPIs based on self-attention deep learning neural network. Satisfactory results are obtained on
interspecific and intraspecific data sets, and good performance is also achieved in cross-species prediction. It can also
correctly predict the protein interaction of cell and tumor information contained in one-core network and crossover
network.The SDNN-PPI proposed in this paper not only explores the mechanism of protein-protein interaction, but
also provides new ideas for drug design and disease prevention.
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Introduction
Proteins are organic macromolecules made up of amino
acids, which are essential components of cells and sus-
tain life activities. They play an important role in biology
by linking various important physiological activities of
cells to PPIs [1], enabling a range of life activities such as
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apoptosis and immune response. In recent years, a large
number of high-throughput experimental methods have
emerged to study PPIs, such as yeast two-hybrid screen-
ing [2], mass spectrometry [3], hybridization methods
[4], immunoprecipitation [5] and protein microarrays [6].
However, all of these are based on biological and chemical
experiments, which require a lot of manpower, financial
and time resources. Therefore, artificial intelligence-based
computational methods have emerged in bioinformatics
[7, 8] and become quite prevalent predicting the inter-
action of proteins with other biological macromolecules
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[9, 10]. Especially in PPIs, there are abundant amino acid
sequence information data, which is sufficient to estab-
lish PPIs prediction calculation model [11]. A growing
number of researchers have been attracted by the afore-
mentioned methods. The basic steps of PPIs prediction
based on protein sequence consist of two parts: protein
coding method and machine learning model.
With the rapid development of machine learning tech-

niques [12–14] and the refinement of neural networks
[15–18], some machine learning-based and sequence-
based models have been presented for PPIs prediction.
Shen et al.[19] first employed conjoint triad (CT) to
extract features from protein sequences and predicted
PPIs through support vector machine model incorpo-
rating kernel function with 83.9% accuracy. Guo et al.
[20] proposed auto covariance (AC) to extract informa-
tion from protein sequences and used support vector
machine model to predict PPIs in the Saccharomyces
cerevisiae dataset with 88.09% accuracy. Yang et al. [21]
proposed local descriptors (LD) to represent protein
sequences and successfully predicted potential PPIs on
Saccharomyces cerevisiae (core subset) dataset by imple-
menting K-neighbor model. You et al. [22] utilized four
categories of protein sequence information (AC, CT, LD,
MAC) to encode proteins as feature vectors focusing on
dimensionality reduction and proposed a new hierarchi-
cal PCA-EELM (principal component analysis-integrated
extreme learning machine) model to predict protein inter-
actions. In 2014, Barman et al. [23] used support vec-
tor machine, Naive Bayes and random forest based on
5-fold cross-validation to complete the host-pathogen
interaction prediction. In 2016, An et al. [24] jointly pro-
posed a new computational method called RVM-BiGP,
combining the relevance vector machine (RVM) model
and Bi-gram probabilities (BiGP), to efficiently handle
imbalanced protein interaction datasets. In 2018, Gok-
tepe et al. [25] adopted PCA to fuse PSSM, Bi-gram,
AAC, pseudo-amino acid (PseAAC) and weighted jump-
order joint triple to obtain approximate features, then
used SVM to complete PPIs prediction. Song et al. [26]
used position specific scoring matrix (PSSM) to obtain
evolutionary information and proposed a new feature
fusion algorithm, which could combine discrete cosine
transform (DCT), fast Fourier transform (FFT) and sin-
gular value decomposition (SVD). In 2019, Chen et al.
[27] extracted features from PseAAC, autocorrelation
descriptor (AD), CT and LD by elastic network, and pre-
dicted PPI in several datasets with the help of LightGBM
network. In 2020, Yu et al. [28] proposed a combina-
tion of PseAAC, pseudo-position-specific scoring Matrix
(PsePSSM), reduced sequence and index-vectors (RSIV),
and AD to encode protein sequences for potential PPIs on
Saccharomyces cerevisiae (core subset) dataset through
GTB-PPI model.

Although machine learning methods can make predic-
tions based on best fitting models, it is still open to some
limitations on effectively learning the eigenvalues at a
deep level. In recent years, deep learning architectures [8,
29–32] provide strong support for solving relevant prob-
lems in bioinformatics. In 2017, Wang et al. [33] extracted
protein sequence features from PSSM, and reconstructed
them through stacked auto-encoder. After that, predic-
tion was completed with the help of a new probabilistic
classification vector machine (PCVM). Du et al. [34] pro-
posed a deep neural network model, DeepPPI, to improve
the performance of PPIs prediction using AAC, gradient
tree boosting (DC), LD and other protein transforma-
tions where demonstrated the superiority of the model
on several datasets. Wang et al. [35] combined Deep
Neural Networks (DNNs) with a new local composition
ternary description (LCTD) feature representation, and
proposed DNN-LCTD method to predict the PPIs on
Saccharomyces cerevisiae (core subset) dataset with the
accuracy of 93.12%. In 2018, Hashemifar et al. [36] effi-
ciently combined deep Siamese-like convolutional neural
networks and randomprojection to construct DPPImodel
for predicting PPIs by associating with protein evolu-
tionary information. In 2019, Zhang et al. [37] proposed
a deep model called EnsDNN, which extracted protein
interaction information fromAC, LD andmulti-scale con-
tinuous and discontinuous local descriptors (MCD) which
achieved 95.29% accuracy in Saccharomyces cerevisiae
(core subset) dataset. You et al. [38] proposed a highly effi-
cient method to detect PPIs by integrating a new protein
sequence substitution matrix feature representation and
ensemble weighted sparse representation model classifier.
Yao et al [39] designed a new protein sequence repre-
sentation method, Res2vec, and combined effective fea-
ture embedding with deep learning techniques to develop
the DeepFE-PPI framework, which achieved good perfor-
mance in PPIs prediction. In 2020, Li et al [40] represented
proteins using AC, CT, LD, PseAAC, and built Ensemble
model to complete PPIs prediction work. In 2021, Yu et
al [41] used PseAAC, AD, multivariate mutual informa-
tion (MMI), composition-transition-distribution (CTD),
amino acid composition PSSM (AAC-PSSM), and dipep-
tide composition PSSM (DPC-PSSM) to construct the
pattern of GcForest-PPI.
Inspired by the above discussion, this paper proposes

a protein-protein interaction prediction method, SDNN-
PPI. Firstly, protein sequence information is encoded with
AAC, CT, and AC. Second of all, in order to carry out
effective feature extraction, the deep neural network com-
bined with self-attention method is conducted to adjust
the weight of the sequence and further emphasize the
key features, so as to establish a network model to fully
extract protein sequence information. Eventually, 5-fold
cross-validation approach is applied in 2 intraspecies, 2
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interspecies, and 4 independent datasets. All of which
achieved high accuracy rates. To further evaluate the mer-
its of the model, the effectiveness of the method is tested
on one-core network and crossover network. The exper-
imental results show that SDNN-PPI outperforms other
state-of-the-art methods and is highly competitive.

Materials andmethods
Data sets
In this study, multiple high-confidence PPI datasets
were used to measure the performance of SDNN-PPI,
including the intraspecific datasets Saccharomyces cere-
visiae core subset (S.cerevisiae core subset) [20] and
Human [38], the interspecific dataset Human-Bacillus
Anthracis (Human-B.Anthracis) [42] and the Human-
Yersinia pestis (Human-Y.pestis) [42]. The composition of
the four datasets is shown in Table 1. In addition, four
independent datasets [27] including Caenorhabditis ele-
gans (C.elegans), Escherichia coli (E.coli), Homo sapiens
(H.sapiens) and Mus musculus (M.musculus) are tested
for PPIs. And the predictive performance of the method
is further validated on two significant PPI networks [41].
One is the one-core CD9 network, which contains 16
PPIs, and the other is crossover network, which consists
of 96 PPIs. There is also a data set, Saccharomyces Cere-
visiae[34], for independent test experiments. In addition,
to ensure the balance of positive and negative samples in
the dataset, the same number of randomly selected neg-
ative samples is in the same amount as positive samples
meaning the ratio of positive to negative samples was 1:1.

Feature extraction techniques
Since the length of the protein sequence is different, the
input to the neural network used in the experiment is
fixed. The protein sequences of different lengths have to
be transformed into feature vectors of fixed length when
they are input into network layers. In this paper, the fea-
ture fusion strategy is used to convert protein sequences
into feature vectors based on AAC, CT and AC. AAC has
the advantage of obtaining the proportion of each amino
acid in the entire protein sequence from a global per-
spective. CT regards any continuous three amino acids
as a unit, and puts the characteristics of amino acids and

Table 1 Compositions of the four benchmark data sets

Data sets Interaction
pairs

Noninteraction
pairs

Protein
pairs

S.cerevisiae(core subset) 5594 5594 11188

Human 3899 4262 8161

Human-B.Anthracis 3094 9500 12594

Human-Y.pestis 4097 12500 16597

Saccharomyces cerevisiae 17257 48594 65551

their adjacent amino acids into consideration, but ignores
the information of amino acid discontinuous fragments.
In terms of physicochemical properties, AC extracts not
only discontinuous fragment information, but also the
interaction features of long-distance amino acids by con-
sidering the adjacent effects of amino acids. In summary,
this method extracts amino acid global features through
ACC, and then uses CT to reduce the defect of few short-
range amino acid interactions in ACC. And through the
AC, which is based on the physicochemical properties,
the local features of amino acids with adjacent effects
were extracted, and more comprehensive protein infor-
mation was obtained, which provided strong support for
the downstream feature extraction.

Amino acid composition (AAC)
The amino acid composition method [34] normalizes the
frequency of occurrence of each amino acid in the pro-
tein, which is a concise protein feature extraction method.
Specifically, the frequency of twenty amino acids in pro-
tein sequences is counted, and each protein sequence is
converted into a 1× 20-dimensional feature vector. The
feature extraction formula is as follows:

P(x) = n
N

(1)

Where n represents the number of amino acid x in
the protein sequence and N represents the number of all
amino acids in the protein.

Conjoint triad (CT)
The combined triplet method [27] takes an amino acid
and its left and right amino acids as a unit, and divides 20
amino acids into 7 different clusters [19] according to the
volume of amino acid side chains and dipoles (as shown
in Table 2). Among them, different amino acids belonging
to a certain cluster are considered to be the same. There-
fore, the obtained feature is a 343-dimensional feature
vector, which is the normalized results of triples (7*7*7).
The formula is:

P(C) = NC
N − 2

(2)

Table 2 Classification of amino acids based on amino acid side
chains and dipole volume

Cluster Amino acid

1 A, G, V

2 I, L, F, P

3 Y, M, T, S

4 H, N, Q, W

5 R, K

6 D, E

7 C
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Among them, C represents a triplet, NC represents the
number of occurrences of this triplet, N represents the
number of all amino acids in the protein, and the denom-
inator represents that a protein sequence has N − 2
triplets.

Auto covariance (AC)
The autocovariance method [37] mainly considers the
proximity effect of amino acids. The interaction between
amino acids and a fixed number of surrounding amino
acids showed hydrophobicity (H1), hydrophilicity (H2),
net charge index (NCI), Polarity (P1), polarizability (P2),
soluble surface area (SASA), and side chains. The amino
acid sequence is replaced by the initial values of the
seven physical and chemical properties, and normalized
to zero mean and unit standard deviation (SD), as shown
in Formula (3).

Fij = fi,j − fj
Si

(3)

Where fi,j represents the value of the j-th property of the
i-th amino acid, fj represents the average value of the j-th
property of 20 amino acids, and Si represents the corre-
sponding standard deviation. The formula for calculating
AC is as follows.

AClag,j = 1
N− lag

∑N−lag
i=1

(
Fij − 1

N
∑N

i=1 Fij
)

×
(
F(i+lag),j − 1

N
∑N

i=1 Fij
) (4)

Among them, lag represents the distance between the
residuals, and N represents the length of the protein
sequence. In this paper, j takes 7 to represent 7 physi-
cal and chemical properties. When the lag is taken as
30, it can not only avoid the difficulty of capturing useful

protein sequence features due to too close amino acid dis-
tance but also solve the problem of noise caused by too
much amino acid content[20].

PPIs model based on self-attention combined with deep
neural network
The simple neural network receives data at the input layer,
transforms the data through multiple hidden layers, and
finally computes the result at the output layer. Neurons in
the hidden or output layer are connected to all neurons
in the previous layers, as shown in Fig. 1A. Each neu-
ron computes a weighted sum of its inputs and applies a
nonlinear activation function to compute its output f (x)
(Fig. 1B). The most commonly used activation function
is the Rectified Linear Unit (ReLU), which sets the neg-
ative signal threshold to 0 and allows positive signals to
pass normally. The deep neural network (DNN) proposed
in recent years is an artificial neural network inspired
by the neural network of the brain, which consists of
multiple interconnected computing units (neurons) and
extracts high-level abstractions from data. DNN is widely
used in speech recognition, PPIs [34], and other fields
with its powerful feature extraction ability. DNN takes the
received data as input, then transforms it in a non-linear
way, and the last layer outputs [43, 44]. With regard to
avoid over fitting, a dropout layer is also added to drop
some neurons during training, as shown in Fig. 2.
Self-attention mechanism (Fig. 3) is a model framework

proposed by the Google team [45] in 2017, which can
reduce the dependence on external information and be
better at capturing the internal correlation of data or fea-
tures, especially long-distance dependency[46]. As shown
in Fig. 3, the weight is obtained by calculating the sim-
ilarity of Q and K after linear transformation, then the

Fig. 1 Neural network procedure
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Fig. 2 Networks with dropout

softmax function is used to normalize the weight, and
finally attention is obtained by the weight and V.Then, the
output of the self-attention module is the weighted sum of
feature vectors on all the amino acids, and its core formula
is :

Attention(Q,K ,V ) = softmax
(
QKT
√
dk

)

V (5)

Where dk square root represents the scaling factor to
control the magnitude of the dot product. Q, K and V
represent the query, key and value of the amino acid,
respectively.
Based on the excellent performance of deep neural net-

work and Attention mechanism, this paper proposes a
DNNnetwork that applies multi-layer fully connected lay-
ers and self-attention to predict PPIs, named SDNN-PPI.
Deep networks have the characteristics of synthesizing
various information, but as the number of layers increases,
the risk of overfitting will increase, and the focus on key
data will also be reduced. Therefore, this paper dynam-
ically pays attention to the key residues in the sequence
through the self-attention in the feature extraction layer,
adjusts the weights, captures the feature of single residue,
promotes the prediction process, and avoids falling into
local optimum caused by DNN overfitting. In addition,
since self-attention has a strong ability to extract internal
features, it is widely used to capture long-range depen-
dencies between tokens in sequential data. Therefore, in
the prediction stage, self-attention mechanism is used
to enhance the feature extraction of protein pairs, and
further exploits the potential relationship of residues to
obtain more accurate information. The SDNN-PPI model
is shown in Fig. 4. It mainly includes three modules,

Fig. 3Model of Self-attention

namely the feature extraction layer, the feature fusion
layer, and the PPIs prediction layer.
(1) Input layer: The model is based on two proteins (P1,

P2) as input, and converts the protein sequences into fea-
ture vectors through the three encoding methods of AAC,
CT, and AC. Finally, each protein sequence is encoded
into a vector with dimension of 573, which consists of
20 AAC features, 343 CT features, and 210 AC features
respectively.
(2) Feature extraction layer: SDNN-PPI is composed

of two channels, which extract the hidden information
of proteins respectively. Each channel is composed of
six fully connected layers (1024-512-256-128-64-32) by
adding a self-attention layer that adjusts the global weight
of the sequence. To avoid gradient vanishing and over fit-
ting, Batch Normalization and Dropout layers are added
after each dense layer. The formula is expressed as:

f = Dropout(BN(Dense(P))) (6)
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Fig. 4 SDNN-PPI for prediction of protein-protein interaction

Where P represents the feature vector of protein
sequence, and f represents the output through the full
connection layer.
(3) Feature fusion layer: The feature fusion layer con-

nects the protein information (F1’, F2’) obtained by the two
channels from the feature extraction layer. The formula is
expressed as:

F = cat
(
f 1′, f 2′) (7)

(4) Prediction layer: The prediction layer is composed of
three fully connected layers (32-16-8) and a self-attention
layer. Self-attention layer is conducive to increasing the
exploration of protein pairs, which is put after the first
dense layer. Then there is a single neuron with a Sigmoid
activation function that converts the input from the pre-
vious layer into an output score. The formula is as follows:

P(P1,P2) = s(Dens(F)) (8)
where s denotes dense layer with one unit activated by
sigmoid function.

Evaluation metrics
The following assessments are used for this article: Accu-
racy (ACC), Sensitivity (Sens), Specificity (Spec), Preci-
sion (Prec), Matthews Correlation Coefficient (MCC), and

AUC. These assessments are used to calculate accuracy
and bias to assess the feasibility and robustness of PPI
forecasting methodologies. The definition formula is as
follows:

Accuracy = TP + TN
TP + TN + FP + FN

(9)

Sensitivity = TP
TP + FN

(10)

Specificity = TN
TN + FP

(11)

Precision = TP
TP + FP

(12)

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(13)

Among them, TP (True Positive) is the number of cor-
rectly predicted protein pair interactions in the sample
data set, TN (True Negative) is the number of correctly
predicted protein pairs that do not interact, FP (False
Positive) is the number of non-interacting protein pairs
predicted as interacting, while FN (False Negative) is the
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number of interacting protein pairs predicted as non-
interacting.
In order to prove the statistical significance of SDNN-

PPI, kappa coefficient[47] is also added. Kappa coefficient
is an indicator to measure the consistency of two vari-
ables[48], which can be used to evaluate the classifica-
tion accuracy. The results of kappa coefficient are usually
between 0 and 1[49]. When the result is in the range of 0.0
to 0.20, the classification result is considered to be slight,
kappa=0.21-0.40means fair, kappa=0.41-0.60 is moderate,
kappa=0.61-0.80 describes substantial, and kappa > 0.81
represents almost perfect. Its calculation formula[47] is as
follows:

kappa = p0 − pe
1 − pe

(14)

Where p0 means accuracy,

pe = (TN + FP)(TN + FN)

(TP + FP + TN + FN)2
+ (FN + TP)(FP + TP)

(TP + FP + TN + FN)2

(15)

Results and discussion
This part mainly evaluates and discusses the performance
of the model. Firstly, the coding method used in this work
is described, which can achieve ideal results. Secondly, the
framework of the model is determined. Then, the results
for two intraspecific and interspecific datasets. Subse-
quently, SDNN-PPI and existing advanced algorithms are
compared on intraspecies and interspecific datasets to
evaluate the validity of the model. Then, four independent
data sets are used to prove the robustness of the model.
Finally, the PPI networks further prove the potential capa-
bility of the model in predicting disease development.

Encodingmethod selection
In this paper, encoding methods of ACC, CT and AC
were used to construct 573-dimensional feature vectors

to encode proteins, which can extract global and local
features. In addition, LD was also used to encode local
characteristics of proteins [27]. LD can encode each pro-
tein sequence into a 630-dimensional vector. In order to
verify the encoding scheme, LD was also originally used
in our experiments as another optional encoding method
for protein pairs, and S.cerevisiae (core subset) data set
was selected to search for best encoding combination
scheme based on the experimental results of the model.
In order to exclude the influence of the superiority of
the SDNN-PPI model on the results, the standard two-
channel self-attention model was selected to verify the
encoding scheme. The two-channel self-attention model,
which is used for encoding methods selection, is very con-
cise. The input proteins A and Bwere encoded into feature
vectors by the method in the first column of Table 3.
Then the two vectors were input to two identical feature
extraction layers, which only adopted the self-attention
mechanism. Then, feature fusion is performed on the two
protein vectors extracted from feature extraction, and the
final result is obtained under the action of fully connected
prediction layers. As shown in Table 3, compared with the
other 10 combination schemes, the ACC+CT+AC encod-
ing combination scheme achieved the optimal results on
6 evaluation indicators. However, after the addition of LD
in encoding scheme ACC+CT+AC, the results did not
improve effectively, which may be due to the fact that LD
was not accurate enough to extract the features of the
encoding of excessively long protein sequences, resulting
in poor effects.

Model ablation experiment
To verify the effect of different network structures on the
performance of SDNN-PPI, two different network struc-
tures were first designed. (a) using a dual-channel net-
work to extract protein information (DNN-PPI a),which
is the SDNN-PPI model without the self-attention part.
And (b) directly connect two proteins in a single channel

Table 3 Performance of different coding methods

Encoding methods Length ACC(%) Spec(%) Sens(%) Prec(%) MCC(%) AUC(%)

ACC+CT+LD+AC 1203 92.31± 0.66 94.37± 0.25 90.26± 1.28 94.13± 0.25 84.70± 1.27 97.00

ACC+CT+LD 993 92.00± 0.66 93.31± 1.04 90.69± 0.57 93.14± 1.01 84.03± 1.33 97.03

ACC+CT+AC 573 95.19±0.68 97.05±0.65 93.33±1.20 96.94±0.65 90.45±1.34 98.60

ACC+LD+AC 860 91.41± 0.52 93.06± 0.87 89.76± 0.64 92.83± 0.86 82.87± 1.06 96.58

CT+LD+AC 1183 89.50± 0.68 90.97± 0.58 88.02± 1.47 90.70± 0.50 79.04± 1.33 95.62

ACC+CT 363 89.79± 0.65 90.79± 0.81 88.79± 0.87 90.61± 0.76 79.61± 1.29 95.78

ACC+LD 650 88.93± 0.43 89.67± 1.37 88.20± 1.53 89.54± 1.14 77.91± 0.88 95.05

ACC+AC 230 85.74± 1.80 87.20± 1.74 84.29± 2.66 86.82± 1.74 71.54± 3.60 92.59

CT+LD 973 90.47± 0.52 92.76± 0.57 88.18± 0.93 92.42± 0.55 81.03± 1.02 95.97

CT+AC 553 89.06± 0.55 90.70± 0.87 87.43± 1.34 90.40± 0.73 78.19± 1.07 94.74

LD+AC 840 91.44± 0.44 92.72± 0.72 90.17± 0.56 92.54± 0.69 82.92± 0.89 96.60
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network (DNN-PPI b). As can be seen from the first two
lines of Table 4, the dual-channel model was superior
to the single-channel model, and the ACC, Spec, Sens,
Prec, MCC, and AUC values of DNN-PPI a were 3.12%,
2.79%, 5.84%, 2.92%, 6.22%, and 1.49% higher than those
of DNN-PPI b, respectively. Secondly, after setting up the
dual-channel model, the meaning of Self-attention was
studied. The following was the control variable method
based on SDNN-PPI. (c) self-attention was added in fea-
ture extraction layer (SDNN-PPI a), (d) self-attention was
added in prediction layer (SDNN-PPI b), (e) self-attention
was added in both feature extraction layer and prediction
layer (SDNN-PPI), (f ) dual-channel network without self-
attention (DNN-PPI a). After building different networks,
the S.cerevisiae (core subset) dataset was used to evalu-
ate the model results. As shown in Table 4, the SDNN-PPI
performed better, so this model was chosen as the final
framework.

Performance of the SDNN-PPI
When training a model with dataset, it is easy to over-
fit due to unreasonable division of the dataset. Compared
with the division technique of traditional models (divid-
ing fixed training sets and test sets), cross-validation can
avoid such problems, so this paper uses the 5-fold cross-
validation method to evaluate the model. The experimen-
tal data is randomly divided into 5 parts, samples of 4
parts are randomly taken as the training set, the other
part is used as the test set, and finally the average of the
5 test sets is calculated. Table 5, 6, 7 and 8 presented
the cross-validation results of this method. In addition,
the performance of this method was compared with sev-
eral advanced methods, and the results were shown in
Table 10, 11, 12 and 13.
As can be seen from Table 5, SDNN-PPI had an excel-

lent prediction performance for intraspecific data sets.
The average prediction results of S.cerevisiae (core sub-
set) in ACC, Spec, Sens, Prec, MCC and AUC were
95.48%, 97.23%, 93.80%, 97.13%, 91.02% and 98.63%,
respectively. Similarly, the average results of the Human
dataset were ACC 98.94%, Spec 99.10%, Sens 98.77%,
Prec 99.02%, MCC 97.57%, and AUC 99.60%, as shown
in Table 6. Meanwhile, for the interspecific data set,
as shown in Table 7–8, SDNN-PPI achieved 93.15%

Table 4 Comparison among different layer architectures for
SDNN-PPI on S.cerevisiae(core subset)

Architectures ACC(%) Spec(%) Sens(%) Prec(%) MCC(%) AUC(%)

DNN-PPI a 94.9 96.35 95.83 96.25 89.84 98.54

DNN-PPI b 91.78 93.56 89.99 93.33 83.62 97.05

SDNN-PPI a 95.16 96.96 93.37 96.86 90.4 98.53

SDNN-PPI b 95.21 96.98 93.44 96.87 90.48 98.56

SDNN-PPI 95.48 97.23 93.80 97.13 91.02 98.63

and 88.33% accuracy in Human-B.anthracis and Human-
Y.pestis, respectively. The above experimental results
show that the prediction of PPIs by SDNN-PPI is effective
and robust. Table 9 presented the statistical significance
of SDNN-PPI in four data sets. According to the above
description, kappa between 0.61-0.80 indicates that the
classification results were substantial, and when kappa
> 0.81, the classification results were almost perfect. The
kappa values of the 4 data sets in Table 9 were all greater
than 0.61 and 3 were greater than 0.81, indicating that the
results were statistically significant.

Compared with other methods
To predict protein-protein interactions, various predic-
tion methods have been continuously proposed. In order
tomore objectively evaluate the predictive performance of
the constructed model, the prediction results were com-
pared with other models in the same data set. The com-
parison results of the intraspecific datasets S.cerevisiae
(core subset) and Human were shown in Tables 10 and
11. The interspecific datasets Human-B.Anthracis and
Human-Y.pestis results were shown in Tables 12 and
13. For comparison methods, the data in the table were
extracted from the original text, and N/A means that the
data is not available in the original text. And the values in
bold indicate the optimal value for this column.
As can be seen from Table 10, ACC, Spec, Sens,

Prec, MCC, and AUC of SDNN-PPI were 95.48%,
97.23%, 93.80%, 97.13%, 91.02% and 98.63%, respec-
tively. Compared with other methods, its ACC increased
by 0.04% 2.18%. According to Table 11, ACC, Spec,
Sens, Prec, MCC, and AUC of SDNN-PPI in Human
data set were 98.94%, 99.10%, 98.77%, 99.02%, 97.57%
and 99.60%, respectively. Compared with other meth-
ods, the accuracy of this method is obviously improved.
Although SDNN-PPIs was not optimal in all indicators,
it was higher in more than half of the indicators on
S.cerevisiae (core subset) and human datasets, indicat-
ing that the method was still competitive. For this, the
predictive performance of SDNN-PPI method became
significantly better than other methods in multiple
indicators.
As can be seen from Table 12, ACC, Sens, Prec, MCC

and AUC of SDNN-PPI in Human-B.anthracis data set
are 93.15%, 96.61%, 90.44%, 86.57% and 98.23%, respec-
tively. The ACC of SDNN-PPI is 93.15%, which is signifi-
cantly higher than other methods. According to Table 13,
the ACC, Sens, Prec, MCC and AUC of SDNN-PPI in
Human-Y.pestis data set were 88.33%, 93.92%, 84.63%,
77.26% and 95.74%, respectively. In comparison to other
methods, its ACC value was 1.03% ∼ 12.23% higher
than other methods. Therefore, the SDNN-PPI method
achieves comparative results on interspecies datasets. It
was worth noting that the two tables do not display Spec
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Table 5 Prediction results of S.cerevisiae (core subset) under five-fold cross-validation

testing set ACC(%) Spec(%) Sens(%) Prec(%) MCC(%) AUC(%)

1 95.44 97.59 93.48 97.48 90.97 98.42

2 95.17 96.69 94.1 96.59 90.39 98.92

3 95.13 97.32 93.3 97.20 90.35 98.28

4 95.49 96.37 94.36 96.27 91.98 98.74

5 96.16 98.21 93.74 98.14 92.39 98.80

average 95.48± 0.37 97.23± 0.66 93.80± 0.39 97.13± 0.66 91.02± 0.74 98.63

Table 6 Prediction results of Human data set under five-fold cross-validation

Testing set ACC(%) Spec(%) Sens(%) Prec(%) MCC(%) AUC(%)

1 98.78 99.49 98.08 98.97 97.06 99.67

2 99.29 98.85 99.49 99.23 98.46 99.63

3 98.85 99.10 98.46 98.97 97.56 99.51

4 98.78 99.36 98.72 99.1 97.95 99.72

5 98.97 98.84 99.10 98.83 96.8 99.46

average 98.94± 0.19 99.10± 0.24 98.77± 0.49 99.02± 0.13 97.57± 0.60 99.60

Table 7 Prediction results of Human-B.Anthracis data set under five-fold cross-validation

Testing set ACC(%) Spec(%) Sens(%) Prec(%) MCC(%) AUC(%)

1 91.44 85.14 97.74 86.8 83.54 97.93

2 93.78 93.05 94.51 93.15 87.57 98.65

3 92.49 87.72 97.25 88.79 85.36 98.03

4 94.26 90.78 97.74 91.39 88.73 98.22

5 93.78 91.76 95.79 92.07 87.62 98.32

average 93.15± 1.03 89.69± 2.88 96.61± 1.27 90.44± 2.32 86.57± 1.87 98.23

Table 8 Prediction results of Human-Y.pestis data set under five-fold cross-validation

Testing set ACC(%) Spec(%) Sens(%) Prec(%) MCC(%) AUC(%)

1 85.91 75.98 95.85 79.94 73.28 95.73

2 88.16 83.9 92.43 85.15 76.61 95.39

3 88.16 80.83 95.49 83.3 77.16 95.73

4 91.27 89.26 93.29 89.68 82.62 96.31

5 88.16 83.76 92.55 85.07 76.61 95.55

average 88.33± 1.71 82.74± 4.34 93.92± 6.06 84.63± 1.85 77.26± 3.79 95.74

Table 9 Prediction results of four data sets in kappa coefficient

Data sets S.cerevisiae(core subset) Human Human-B.Anthracis Human-Y.pestis

kappa 0.91 0.98 0.85 0.76
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Table 10 Comparison results of different PPIs prediction methods on S.cerevisiae (core subset)

Methods ACC(%) Spec(%) Sens(%) Prec(%) MCC(%) AUC(%)

DeepPPI[34] 94.43± 0.30 N/A 92.06± 0.36 96.65± 0.59 88.97± 0.62 N/A

DeepFE-PPI[39] 94.78± 0.61 N/A 92.99± 0.66 96.45± 0.87 89.62± 1.23 N/A

LightGBM-PPI[27] 95.07 97.94 92.21 97.82 90.30 N/A

Bio2Vec[59] 93.30 N/A 92.70 93.55 87.49 97.20

StackPPI[50] 94.64 96.46 92.81 96.33 89.34 N/A

GTB-PPI[28] 95.15± 0.25 N/A 92.21± 0.36 97.97± 0.60 90.45± 0.53 N/A

AE-LGBM[60] 95.40± 0.20 98.70±0.20 92.10± 0.30 N/A 91.00± 0.40 N/A

GcForest-PPI[41] 95.44± 0.18 N/A 92.72± 0.44 98.05±0.25 91.02± 0.35 N/A

SDNN-PPI 95.48±0.37 97.23± 0.66 93.80±0.39 97.13± 0.66 91.02±0.74 98.63

Table 11 Comparison results of different PPIs prediction methods on Human

Methods ACC(%) Spec(%) Sens(%) Prec(%) MCC(%) AUC(%)

RPEC[26] 96.59 N/A 96.72 96.18 93.18 N/A

Bio2Vec[59] 97.31 N/A 96.28 98.48 94.76 99.61

GWOSVM[61] 94.56 N/A 95.55 93.08 89.51 N/A

DeepFE-PPI[34] 98.71± 0.30 N/A 98.54± 0.55 98.77± 0.53 97.43± 0.61 N/A

AE-LGBM[60] 98.70± 0.10 99.20±0.20 98.10± 0.20 N/A 97.30± 0.30 N/A

AE-AC[60] 97.19 98.06 96.34 N/A N/A N/A

SDNN-PPI 98.94±0.19 99.10± 0.24 98.77±0.49 99.02±0.13 97.57±0.60 99.60

Table 12 Comparison results of different PPIs prediction methods on Human-B.Anthracis

Methods ACC(%) Sens(%) Prec(%) MCC(%) AUC(%)

LBE-BN[61] 78.70 73.00 42.00 43.40 83.70

LBE-NB[61] 82.50 53.80 47.80 39.70 82.10

LBE-RF[61] 85.40 24.0 67.00 34.00 86.80

ACC-BN[61] 77.40 51.70 37.30 30.30 79.00

LBE-j48[61] 80.06 31.20 39.60 23.90 54.10

LD-DNN[42] 91.70 89.50 93.90 83.50 96.37

SDNN-PPI 93.15 96.61 90.44 86.57 98.23

Table 13 Comparison results of different PPIs prediction methods on Human-Y.pestis

Methods ACC(%) Sens(%) Prec(%) MCC(%) AUC(%)

LBE-BN[61] 76.10 73.50 38.60 40.10 81.30

LBE-NB[61] 80.90 45.50 43.2 32.80 78.60

LBE-RF[61] 84.6 16.00 66.30 27.30 83.50

ACC-BN[61] 80.00 52.40 42.10 34.90 75.60

LBE-j48[61] 80.10 27.90 37.10 20.80 51.70

LD-DNN[42] 87.30 84.20 90.40 74.90 94.99

SDNN-PPI 88.33 93.92 84.63 77.26 95.74
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columns because the models being compared did not have
Spec values.

Performance on independent data sets
In order to further verify the generalization ability of
SDNN-PPI, Saccharomyces cerevisiae [34] was selected
as the training set, and C.elegans, E.coli, H.sapiens and
M.musculus were selected as independent test sets. The
number of interaction pairs of the independent test set
was shown in the test pairs in the Table 14. In addition, the
results were evaluated by ACC. Saccharomyces cerevisiae
set consists of 17257 positive pairs and 48594 negative
pairs, from which the same number of positive and neg-
ative samples are randomly selected to train the model.
The prediction results were shown in Table 14. As can be
seen from Table 14, the accuracy of SDNN-PPI in these
four independent data sets was 100%. This can show that
SDNN-PPI achieved good predictive performance on four
independent test sets, indicating that the proposed model
can characterize important PPIs information and make
cross-species predictions. In other words, PPIs prediction
models generated by one species can be migrated to other
species.

Performance on PPI networks
Studying the network of PPIs [28] is also of great sig-
nificance to understanding other information about pro-
teins, and the corresponding biological topological prop-
erties can be studied. In this paper, SDNN-PPI detected
two important PPIs networks, namely the one-core net-
work and crossover network of Wnt-related pathway. The
mononuclear PPIs network is a network of PPIs com-
posed of a core protein, CD9 [41], and interacts with many
other proteins. CD9 is a tetrameric protein that plays an
important role in cell viability and tumor suppression. The
network is composed of CD9 as the core protein and 17
other genes.
The second is a typical crossover and multicore net-

work [50] constructed by 78 genes. This pathway network

Table 14 Comparison of ACC of different PPIs prediction
methods on independent test sets

Methods/Species C.elegans E.coli H.sapiens M.musculus

test pairs 4013 6984 1412 313

DeepPPI[34] 94.84 92.19 93.77 91.37

DeepFE-PPI[39] 100 100 100 100

LightGBM-PPI[27] 90.16 92.16 94.83 94.57

StackPPI[50] 97.11 98.71 97.66 98.40

GcForest-PPI[41] 96.01 96.3 98.58 99.04

GTB-PPI[28] 92.42 94.06 97.38 98.08

AE-LGBM[60] 90.10 92.10 94.80 94.50

SDNN-PPI 100 100 100 100

plays a crucial role in tumor growth and tumor forma-
tion. AAC, CT, and AC were used to encode proteins
to obtain a 573-dimensional feature vector. The Saccha-
romyces cerevisiae dataset was used as the training set,
and the one-core network and crossover network of the
wnt-related paths were used as the test set. The one-
core network prediction results of the wnt-related paths
were shown in Fig. 5, and the other in Fig. 6. Solid lines
represent true predictions and dashed lines represent
false predictions. It can be obtained from the graph that
all interacting proteins are correctly identified. Table 15
showed the prediction results of various methods on the
two network datasets. The results shown that the pro-
posed method produces comparable or better results in
comparison to existing models. After the above discus-
sion, SDNN-PPI was a model with high generalization
ability, which can obtain competitive results in multiple
data sets and effectively improve the prediction accuracy
of PPIs.

Conclusion
The study of PPIs is of great significance for under-
standing cellular regulation and signal transduction, as
well as for exploring and elucidating the mechanism
of protein interactions in cells. In this paper, we pro-
posed SDNN-PPI, a self-attention-based deep learning
neural network prediction method for PPIs. The protein
sequences were encoded by AAC, CT and AC meth-
ods, and excellent accuracy was obtained in the intraspe-
cific data sets (S.cerevisiae core subset and Human) and
interspecies data sets (Human-B.anthracis and Human-
Y.pestis). In order to further verify the universality of
SDNN-PPI, the evaluation of C.elegans, E.coli, H.sapiens
andM.musculus data sets also achieved competitive accu-
racy, indicating that the method can also achieve good
performance in cross-species prediction. The PPI net-
work prediction based on one-core and crossover net-
work correctly predicted the protein interaction contain-
ing cell and tumor information on the network. Therefore,
comprehensive evaluations demonstrated that SDNN-PPI
method could provide a new way to solve problems in
signaling pathway research, drug-target prediction and
disease pathogenesis research [51–54]. Although protein
sequences are transformed into vectors through various
encoding methods, the acquisition of comprehensive pro-
tein characteristic information is still insufficient. How
to better mine the structural information, evolutionary
information set of protein pairs and the relationship
between protein residues is leading us to the next research
direction. At the same time, DNA computing and DNA
storage [55, 56] have been applied in more fields [57,
58], and the storage of known protein information and
structure may also play a role in promoting biological
evolution.
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Fig. 5 The predicted results of PPIs networks of a one-core network for CD9

Fig. 6 The predicted results of a crossover network for the Wnt-related pathway

Table 15 Performance of different methods on PPI network

LightGBM-PPI[27] StackPPI[50] GTB-PPI[28] AE-LGBM[60] GcForest-PPI[41] SDNN-PPI

CD9 15/16 N/A 15/16 16/16 16/16 16/16

Wnt 89/96 93/96 92/96 95/96 94/96 96/96
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