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Heterogeneity: The key to failure 
forecasting
Jérémie Vasseur1, Fabian B. Wadsworth1, Yan Lavallée2, Andrew F. Bell3, Ian G. Main3 & 
Donald B. Dingwell1

Elastic waves are generated when brittle materials are subjected to increasing strain. Their number 
and energy increase non-linearly, ending in a system-sized catastrophic failure event. Accelerating 
rates of geophysical signals (e.g., seismicity and deformation) preceding large-scale dynamic failure 
can serve as proxies for damage accumulation in the Failure Forecast Method (FFM). Here we 
test the hypothesis that the style and mechanisms of deformation, and the accuracy of the FFM, 
are both tightly controlled by the degree of microstructural heterogeneity of the material under 
stress. We generate a suite of synthetic samples with variable heterogeneity, controlled by the gas 
volume fraction. We experimentally demonstrate that the accuracy of failure prediction increases 
drastically with the degree of material heterogeneity. These results have significant implications in 
a broad range of material-based disciplines for which failure forecasting is of central importance. 
In particular, the FFM has been used with only variable success to forecast failure scenarios both 
in the field (volcanic eruptions and landslides) and in the laboratory (rock and magma failure). Our 
results show that this variability may be explained, and the reliability and accuracy of forecast 
quantified significantly improved, by accounting for material heterogeneity as a first-order control on 
forecasting power.

Most Earth materials exhibit significant structural heterogeneities. Common examples are local den-
sity fluctuations, pores, cracks and crystals1. The presence of these so-called Griffith flaws in materials 
provides sites of stress concentration where isolated cracks may nucleate favourably2 and their growth 
dynamics under subcritical loading may be strongly affected3. Ultimately, sustained microcrack initia-
tion, multiplication and coalescence often results in a critical density of fractures whereby macroscopic 
rupture ensues. In this manner fracturing in heterogeneous materials is pervasive prior to failure as 
cracks propagate small distances between flaws and strain energy can be readily dissipated elastically4. 
In non-porous glasses, such elements of heterogeneity are lacking and the few crack nucleation sites 
available are typically nanoscopic in scale5. Therefore the crack propagation distance is relatively large 
and the strain energy stored must exceed the activation energy required for nucleation and propagation 
of fractures across the sample2. In such cases, little or no strain energy is released prior to rupture and 
fracturing is localised rather than pervasive. Thus more homogeneous materials possess a great pro-
pensity for highly catastrophic failure through rapid, unstable crack propagation associated with few 
precursory signals1,6.

In the Earth system, strain localisation and material failure control the timing of natural disasters. At 
volcanoes, the onset of an eruption is sometimes preceded by an acceleration in seismicity originating 
from the fracturing of rocks and formation of a conduit7,8; likewise eruptive transitions to explosions are 
also preceded by such characteristic seismic patterns9, that have been experimentally demonstrated to 
originate from magma failure10. In the case of landslides, a similar acceleration in seismicity may also be 
observed11,12. Thus empirical mechanistic models have been developed to describe the stress and strain 
rate extant upon failure of both porous rocks4 and magmatic suspensions13. Material deformation and 
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failure in amorphous natural and synthetic materials is generally accompanied by accelerating precursory 
signals3,8,10,14–19. This acceleration represents the practical basis for the application of time-to-failure fore-
casting models11,20–23. During rock deformation, microcracking releases acoustic emissions (AE)17 prior 
to macroscopic failure. Their temporal, spatial and size distribution follow power laws18,19,24, similar to 
those observed in tectonic earthquake aftershock activity25 as well as in seismic precursors to volcanic 
eruptions20,26. Nevertheless, the wide range of materials in nature and especially the degree of mate-
rial heterogeneity (at all scales) challenges our understanding of precursory signals leading to natural 
disasters23.

A great number of catastrophic events share similar characteristic accelerating trends in warning 
signals23 and are potentially describable via similar scaling laws19: rupture of engineering structures, 
natural catastrophes (such as great earthquakes, volcanic eruptions, landslides and avalanches), abrupt 
weather changes, some stock market crashes and even human parturition, amongst others. In many 
current models for precursory acceleration, the rate of seismic events Ω  can be described by the 
Time-Reversed Omori Law (TROL)25.

Ω( ) = ( − ) ( )−
 t k t t 1c

p

for which k is a scaling parameter, p parameterises the rate of acceleration, in turn dependent on the 
dominant crack mechanism7 and tc is the critical time (corresponding to the time of system-sized cata-
strophic failure). This critical point is defined by a mathematical singularity as the quantity Ω  evolves 
toward infinity, providing a well-defined failure time. Equation 1 is directly analogous to the approach 
to a critical point in a second-order phase transition for the correlation length (size of the largest cluster 
or in our case the largest growing crack) as a function of temperature rather than time (also with a crit-
ical exponent analogous to p, which depends on the microscopic physics)1. It also corresponds to a 
general solution of Voight’s original empirical relation21 in the case that α ≠ 1 for which p =  1/(α −  1). 
The TROL is of widespread interest as a forecasting tool and has been extensively applied to material 
failure phenomena7–12,21,22,26,27. The TROL can be applied as an empirical relationship relating the accel-
eration of a physical observable to its rate under steady state conditions (stress or strain rate, tempera-
ture). In this context Equation 1 can be applied to any accelerating signal. In most applications to date, 
the equation is re-parameterised into a linear form
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− / − /
 t k t t 2

p p
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Equation 2 is commonly solved by linear regression, assuming a Gaussian error structure in inverse rate, 
and this is known in the literature as the Failure Forecasting Method (FFM). In a volcanic context, the 
most-commonly used parameter is seismic event rate, mainly because physical variables such as energy 
rate are subject to much more severe fluctuation. In application of the FFM p has been shown to decrease 
toward 1 as cracks grow7, so retrospective analyses of pre-eruptive seismic activity commonly assume 
p =  1. In some cases the Gaussian error assumption has been validated28, but this approach may yield a 
biased and imprecise solution if the assumption is not true29. In general it is more common in statistical 
seismology to assume a Poisson error structure, consistent with earthquake occurrence as a point process 
based on counting whole numbers of events30. In this case one can fit the rates to Equation 1 directly, 
using a Maximum Likelihood (ML) technique. Even so, it can be difficult to obtain representative uncer-
tainties from single sequences or realisations, for example due to covariance between the error parame-
ters27. In several realisations the ML method applied to the “full point” process has been demonstrated 
to provide (a) a more reliable estimate of the precision (random error) and (b) a more accurate solution, 
which reduces the potential for residual bias (systematic error) in forecasting the failure time27. The log-
arithm of the likelihood function L for the TROL is, in an interval (t0, t1), given by27
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for p ≠ 1, and
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for p =  1.
The TROL is most commonly employed to describe the rate of pre-failure seismic events because it 

has a well-defined failure time. Other models have been proposed on theoretical or empirical grounds, 
including the exponential model k texp φΩ = ( )  with k the pre-exponential scaling parameter and φ the 
rate constant; however, the failure time is not defined by the dynamics underlying the exponential model 
and failure forecasts using this model must be based on other metrics.

Here we experimentally test the hypothesis that the accuracy of failure forecasting improves as a 
function of the material heterogeneity using samples of variable quenched disorder, generated by the gas 
volume fraction (0–0.45) available during the synthesis (Fig. 1). This style of heterogeneity also provides 
a direct analogue for porous magma fragmentation13. Specifically we investigate the failure of variably 
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porous silicate liquids undergoing the glass transition. Uniaxial compression of these porous materials 
was carried out at ~550 °C in the elastic, brittle regime by imposing a strain rate of 10−3 s−1 while mon-
itoring AEs during deformation up to bulk failure (Fig. 2a). We find that highly porous suspensions are 
mechanically softer, and require less stress and strain to undergo failure than low-porosity ones. Their 
mechanical behaviour is well-described by the pore-emanating crack model31, demonstrating that their 
strength increases non-linearly with the heterogeneity index H (defined as the degree of disorder; see 
Methods Summary) and pore radius (Fig. 2b; the data appear to cut across the model contours as denser 
samples tend to have smaller pores). Deformation and failure is accompanied by AE energy release 
(Fig.  2c and Supplementary Figure 1) that accelerates more rapidly than an exponential function. The 
AE record reveals that the failure of low-porosity suspensions takes place via large (seismically energetic) 
fracture increments. Drastic fracture propagation upon failure releases the highest rate of AE energy, and 
this rate decreases systematically with increasing heterogeneity (Fig. 2d).

We applied the TROL using the ML method to the AE dataset in order to evaluate the forecasting 
performance quantitatively as a function of the heterogeneity index H (Fig.  3). The cumulative num-
ber of AEs released by fracturing is well-modelled by the TROL at all values of H (Fig.  3a). At low H 
actual failure occurs systematically before the predicted TROL singularity is reached, with this discrep-
ancy increasing systematically as porosity decreases. We have also tested the alternate hypothesis that 
the acceleration may be exponential using a Bayesian Criterion Information (BIC; see Supplementary 
Information). The results indicate that the AEs released during the first stages of deformation generally 
follow an exponential trend. The TROL is strongly, non-linearly preferred over the exponential model 
when the entire dataset is used and importantly, as heterogeneity increases (Fig. 3b). On the other hand, 
as heterogeneity decreases we observe (1) fewer AEs (providing less advance warning), (2) a preference 
for the exponential acceleration model (making failure time harder to define) and (3) a sudden-onset 
singularity at the time of catastrophic failure. All of these elements combine to degrade the forecasting 
power significantly.

The associated forecasting error (defined as the absolute difference between the predicted failure 
time and the experimental failure time normalised by the deformation time) improves systematically 
with an increase in the degree of heterogeneity (Fig.  3c). This is most likely due to the fact that more 

Figure 1.  Structural heterogeneity in the sintered glass samples. Scanning Electron Microscopy (SEM) 
images in binary false-colour of thick sections of synthetic samples sintered at 650 °C for incremental times. 
These porous glasses feature a wide range of total porosity – from high (a) to low (d) – estimated by the gas 
volume fraction φg. Black represents the pores and white the glass matrix.
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heterogeneous materials act to inhibit dynamic fracture by crack arrest3 and/or by introducing a more 
heterogeneous stress field6 (consistent with the quasi-static theories used to derive Equation  1). In the 
more homogeneous materials failure results in an abrupt run-away instability that occurs before the fore-
cast singularity is reached. As a consequence our systematic forecast error is smaller (the predicted failure 
time is more accurate) when applied to more heterogeneous materials containing gas volume fractions 
> 0.2, whereas at gas volume fractions < 0.2, the error in the predicted failure time can be >100% of the 
deformation time. In operational terms this would present a serious challenge, for example in forecasting 
the probability of an eruption during a period of unrest.

Complementary statistical analysis of the AE signals following the seismic Gutenberg-Richter (G-R) 
b-value (i.e., the slope of the log-linear frequency-magnitude relationship) indicates that cracking occurs 
on a broad range of scales as deformation proceeds. The AE b-value is strongly controlled by the degree 
of heterogeneity, confirming early observation15 (Supplementary Figure 3). The temporal evolution of the 
b-value with stress is harder to examine, due to the small number of events. In Supplementary Figure 3  
this is examined in a coarse way by splitting the data set into two halves, one early and one later. In 
general the b-value for materials with large heterogeneity tends to decrease dramatically from > 2 to ~1, 
well above the level expected from the estimated random error (plotted as error bars). This is interpreted 
as initially pervasive microscopic fractures coalescing into macroscopic ones32 and the deformation local-
ising on the eventual fracture plane. In contrast, the b-value of less porous material remains around 
low values of 0.5–1 throughout, suggesting a high degree of localisation throughout32. This is consistent 
with there being fewer nucleation sites for the low-porosity material. The data presented here is not 
sufficient to distinguish between models with (a) simple G-R behaviour with variable b-value and (b) an 
exponentially-truncated G-R model with constant b-value and variable correlation length (i.e., the size 
of the largest fracture). The latter model and a smooth acceleration in event rate for the heterogeneous 

Figure 2.  Acoustic-mechanic response of porous glasses deformation. (a) Uniaxial elastic loading and 
the resultant stress-strain build-up leading to bulk failure (stress drop) at ~550 °C and 10−3 s−1. (b) Uniaxial 
Compressive Strength (UCS), as measured by the peak stress at failure, against the heterogeneity index H. 
Displayed are the predicted isopore lines for different radii (dashed grey lines) from which crack initiate in 
the pore-emanating crack model31 (see text). (c) Cumulative AE energy released during deformation until 
sample failure (d) Heterogeneity-dependence of the AE energy rate upon failure of the specimens. (a,c) are 
colour-coded from low to high heterogeneity samples.
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samples are however both consistent with the behaviour expected of a second-order phase transition at 
the critical point1. On the other hand, the sudden-onset instability for the more homogeneous samples is 
more reminiscent of a first-order phase transition. Numerical simulations should be employed in future 
to explore this transition from first- to second-order more formally.

Understanding the potential drawbacks and limitations of the FFM is an essential aspect of their 
responsible application to hazard assessment and risk mitigation. Previous studies have evaluated its sta-
tistical performance applied to natural, experimental and synthetic datasets27,29 but to date no study (to 
the best of our knowledge) has assessed its efficacy as a function of material properties and the trade-off 
between quasi-static and dynamic effects at the system size. At volcanoes, successful forecasting is as yet 
sporadic and requires the sometimes laborious classification of volcano-seismic signals. While the onset 
of magma extrusion due to continued fracturing towards the Earth surface has been retrospectively 
successfully forecast or ‘hind-casted’7,26, this is a necessary but not sufficient criterion for operational or 
real-time forecasting. In the case of fracturing during magma ascent, seismicity is most likely triggered 
by fracture propagation in the weakest, most porous parts of the magmatic column. In cases where 
low-porosity, fine-grained rock or glassy obsidian undergoes fracturing initiated from fewer flaws, we 
expect to encounter a poor resolution of failure. Such a variable failure forecasting power should equally 
well apply to the prediction of explosive eruptions for magmas erupting with different porosities.

These results shed new light onto the basic physical mechanisms responsible for inaccuracy of 
time-to-failure forecasting laws, especially in the context of volcanic eruptions. In scenarios where 
magma ascent timescale is very brief and shorter than that of the seismic unrest, strong deviations 
from the ideal preparatory fracturing behaviour must be expected. Nevertheless, our results suggest that 
adaptation of material failure forecasting methods with heterogeneity-based mechanistic constraints, in 
particular accounting for the bias revealed in Fig.  3c, could in principle improve the predictability of 
volcanic events even in cases when little warning is available.

Methods Summary
Sample preparation.  The suite of samples was fabricated by viscous sintering under no external 
applied stress13. We used industrial soda-lime silica beads (Spheriglass® A-glass microspheres 1922, 2024 
and 2530, Potters Industries Inc.) with well-constrained chemical and physical properties such as the 
calorimetric glass transition interval and the viscosity-temperature dependence. This material is also 
chemically stable and does not crystallise or degas at the experimental conditions. We systematically 
packed glass beads in alumina ceramic crucibles (44 mm diameter and 75 mm height) and heated them 
at 10 °C min−1 to an isotherm above the glass transition at which the melt viscosity is 108.32 Pa.s. Viscous 
sintering took place during dwells of 1 to 32 hours and the samples were cooled down at a slower rate 
of ~5 °C min−1 to avoid induced thermal cracks. The densified products were finally drilled out from the 
crucibles to sample cores of 25 mm diameter by 50 mm height. The gas volume fraction in the suite of 
cores was calculated from the density of the bulk sample and the powdered glass density as measured 
after sintering.

Heterogeneity quantification.  Structural heterogeneity or disorder is evaluated from the normal-
ised difference between the volumes of both phases (i.e., glass Vglass and gas Vpores). These volumes can be 
calculated from the measured total porosities and, hence, a heterogeneity index H being directly linearly 
proportional to gas volume fraction φg. We define the order parameter Q as

Figure 3.  Heterogeneity influences on material failure forecast. (a) Cumulative AE events (solid lines) 
and their ML best-fit curves (dashed lines). (b) Δ BIC (BICTROL −  BICExp) displays a marked preference of the 
TROL over the exponential model as heterogeneity increases. (c) Heterogeneity-dependence of the forecast 
error, defined as the absolute difference between the predicted failure time and the experimental failure time 
normalised by the deformation time.
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where Vtotal is the bulk volume of the sample. It follows that at φg =  0 (pore-free) or φg =  1 (no solid 
phase), Q =  1 (i.e., perfect order), and that at φg =  0.5, Q =  0 (i.e., maximum disorder). The heterogeneity 
index (or disorder index) is thus calculated following H =  1 −  Q.

Mechanical testing.  A series of uniaxial compression tests was performed using a < 300 kN press, 
which is equipped with a split furnace (≤ 1100 °C) surrounding the pistons (in order to simulate magma 
deformation in the upper volcanic conduit). The porous glasses were loaded to failure at a constant strain 
rate of 10−3 s−1 and ~550 °C in order to recover purely elastic behaviour. The cooler ends of the pistons 
were equipped with AE broadband transducers (of 125 kHz central frequency), thus used as waveguides 
for AEs released during fracturing events and catastrophic sample failure. The AE signal was trans-
ferred using buffered 40 dB preamplifier to a data acquisition system (Richter system, Applied Seismology 
Consultants), which recorded AE voltage data continuously at a sampling rate of 20 MHz.

Microseismic processing.  AE event onsets were triggered and automatically picked from continu-
ous acoustic streams using an adaptation of the standard autoregressive-Akaike-Information-Criterion 
(AR-AIC) picker. The multi-step algorithm consists of (1) detection of the P-phase using a standard STA/
LTA detector, (2) de-noising of the acoustic signal and (3) AIC computation (the minimum indicates 
the first arrival time). The STA and LTA windows were set to 1 and 20 ms respectively and the STA/LTA 
threshold to 2. The amplitude in dB and energy in nJ of each single event was also computed (based on 
a resistance reference standard value of 10 kΩ ). These pre-failure catalogues of acoustic events were used 
as the basis for failure forecasting.

Failure forecasting.  Following the procedure described in detail in reference  27, we applied the 
TROL to catalogues of acoustic events in order to retrospectively forecast failure. This law has three free 
parameters (k, p and tc) to adjust since they are not known a priori. The ML method has been shown 
to provide statistically stable and repeatable estimates of these parameters27. Additionally this method 
uses the timings of individual AE events rather than event rates determined in equally spaced bins (as is 
commonly the case when applying the standard FFM). The ML solution is found by minimizing the neg-
ative log-likelihood function using a downhill simplex algorithm. The forecasting window was restricted 
to 90% of the known failure time. Uncertainties on the fitted parameters require prior constraint to be 
reliably computed such that this precludes the estimation of meaningful error bars on the forecasted 
failure times.
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