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Background: Ground-glass nodule (GGN) is the most common manifestation of lung adenocarcinoma 
on computed tomography (CT). Clinically, the success rate of preoperative diagnosis of GGN by puncture 
biopsy and other means is still low. The aim of this study is to investigate the clinical and radiomics 
characteristics of lung adenocarcinoma presenting as GGN on CT images using radiomics analysis methods, 
establish a radiomics model, and predict the classification of pathological tissue and instability of GGN type 
lung adenocarcinoma.
Methods: This study retrospectively collected 249 patients with 298 GGN lesions who were 
pathologically confirmed of having lung adenocarcinoma. The images were imported into the Siemens 
scientific research prototype software to outline the region of interest and extract the radiomics features. 
Logistic model A (a radiomics model to identify the infiltration of lung adenocarcinoma manifesting 
as GGNs) was established using features after the dimensionality reduction process. The receiver 
operating characteristic (ROC) curve of the model on training set and the verification set was drawn, and 
the area under the curve (AUC) was calculated. Second, a total of 112 lesions were selected from 298 
lesions originating from CT images of at least two occasions, and the time between the first CT and the 
preoperative CT was defined as not less than 90 days. The mass doubling time (MDT) of all lesions was 
calculated. According to the different MDT diagnostic thresholds instability was predicted. Finally, their 
AUCs were calculated and compared.
Results: There were statistically significant differences in age and lesion location distribution between the 
“noninvasive” lesion group and the invasive lesion group (P<0.05), but there were no statistically significant 
differences in sex (P>0.05). Model A had an AUC of 0.89, sensitivity of 0.75, and specificity of 0.86 in the 
training set and an AUC of 0.87, sensitivity of 0.63, and specificity of 0.90 in the validation set. There was no 
significant difference statistically in MDT between “noninvasive” lesions and invasive lesions (P>0.05). The 
AUCs of radiomics models B1, B2 and B3 were 0.89, 0.80, and 0.81, respectively; the sensitivities were 0.71, 
0.54, and 0.76, respectively; the specificities were 0.83, 0.77, and 0.60, respectively; and the accuracies were 
0.78, 0.65, and 0.69, respectively.
Conclusions: There were statistically significant differences in age and location of lesions between 
the “noninvasive” lesion group and the invasive lesion group. The radiomics model can predict the 
invasiveness of lung adenocarcinoma manifesting as GGNs. There was no significant difference in MDT 
between “noninvasive” lesions and invasive lesions. The radiomics model can predict the instability of lung 
adenocarcinoma manifesting as GGN. When the threshold of MDT was set at 813 days, the model had 
higher specificity, accuracy, and diagnostic efficiency.
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Introduction

Lung cancer is the malignant tumor with the highest 
incidence rate and mortality in the world, and lung 
adenocarcinoma is the most common histological subtype 
of lung cancer (1). Computed tomography (CT) is the most 
commonly used method to detect lung cancer. Ground-
glass nodule (GGN) is the most common manifestation of 
lung adenocarcinoma on CT. GGN refers to the nodular 
shadow with slightly higher cloud-like density on the CT 
image, with clear or blurred boundary. The bronchial and 
vascular edges can be seen in the focus. GGN usually does 
not appear on the mediastinal window or only shows the 
solid components of the focus (2).

Lung adenocarcinoma is divided into atypical adenomatous 
hyperplasia (AAH), adenocarcinoma in situ (AIS), minimally 
invasive adenocarcinoma (MIA) and invasive adenocarcinoma 
(IAC) (3). Clinically, the success rate of preoperative diagnosis 
of GGN by puncture biopsy and other means is still low (4).

Radiomics is a new concept proposed in recent years. 
It converts traditional images to analyzable data, extracts 
feature data that are difficult to observe and distinguish with 
the naked eye, and performs quantitative and comprehensive 
analysis of radiological images (5). It has opened up a new 

perspective for the noninvasive diagnosis of tumors (6). 
In recent years, radiomics has been widely used in various 

clinical stages. Many studies have confirmed that radiomics 
has unique advantages for cancer in the differentiation of 
benign and malignant tumors, pathological classification, 
evaluation of curative effects after adjuvant treatment and 
the risk of recurrence in cancer (7-10). In 2015, the World 
Health Organization (WHO) classification published by the 
International Agency for Cancer Research classified AAH 
and AIS as noninvasive lesions and MIA and IAC as invasive 
lesions (11). In 2021, the 5th edition of the latest WHO 
Classification of Thoracic Tumors classifies AAH and AIS 
as glandular prodromal lesions and precancerous lesions, 
and lung adenocarcinoma as MIA and IAC (12). Although 
MIA is classified as an invasive disease, due to its lack of 
blood vessels, tumor necrosis or pleural invasion, several 
reports have noted that the 5-year tumor-free survival 
rate of MIA, AAH and AIS surgical resection patients is 
close to 100%, while the 5-year tumor-free survival rate 
of IAC after surgery is reduced to approximately 90%, of 
which the highest malignant degree of IAC with nipple 
components can be reduced to 79% (13). Therefore, GGNs 
with a pathological tissue type of IAC should be removed as 
soon as possible. Since the dynamic development of tumor 
histology is irreversible, the dynamic follow-up of lesions is 
particularly important, especially the need to be alert to the 
transformation of MIA to IAC (14). At present, regular CT 
follow-up is the main means to observe the development 
of GGN lesions. The way to determine the interval and 
follow-up period is more based on experience, which causes 
uncertainty in the timing of clinical treatment. Moreover, 
CT follow-up without scientific guidance would also cause 
the continuous accumulation of radiation damage, as well as 
a certain burden on the psychological and social economy 
aspects of patients. If surgical resection is selected for all 
GGNs, it will lead to excessive medical treatment, waste 
of medical resources and unnecessary iatrogenic injury to 
patients. At present, the progress of the lesions is determined 
by calculating the volume doubling time (VDT) of GGN. 
However, the volume of GGN may not change significantly 
over a period of time, but their density has changed. This 
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change is manifested as the presence of solid components on 
CT. Solid components have been shown to be closely related 
to infiltrative segmentation in pathological sections (15). 
So, the mass doubling time (MDT) has been proposed (16).  
However, the follow-up of GGN is only evaluated by 
doubling time (DT), and further research is needed.

The objective of this study is to establish a model to predict 
the invasiveness and instability of nodules using the clinical 
and radiographic features of lung adenocarcinoma presented 
as GGN on CT images. The prediction results obtained by 
the models can be used as the basis for individual follow-up 
strategy decision-making. We present this article in accordance 
with the TRIPOD reporting checklist (available at https://jtd.
amegroups.com/article/view/10.21037/jtd-24-27/rc).

Methods

Population

Patients with lung adenocarcinoma confirmed by surgery 
and pathology in our hospital from January 2014 to 
August 2022 were retrospectively enrolled. The study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). The study received approval from the 
Institutional Ethics Committee of West China Hospital of 
Sichuan University (approval No. 2022-564). Due to the 
retrospective nature of the study, the need for informed 
consent was waived by the ethics committee of West China 
Hospital of Sichuan University.

Inclusion criteria: (I) the patient had CT images within 
1 week before surgery; (II) after surgical resection in our 
hospital, the pathological results were all from the official 
report of gross specimen; (III) for multiple lesions, there 
is corresponding relationships between the postoperative 

pathological results and lesions on CT images; (IV) CT 
slice thickness is 1 mm; (V) no puncture, radiotherapy and 
chemotherapy were performed before operation.

Exclusion criteria: (I) unqualified image delineation: the 
basic condition of the patients’ lung field is poor; large area 
of infection showed in the lung field; or vague boundary 
between the lung field and the nodule; (II) inconsistent 
slices for an image due to data lost or incomplete 
reconstruction process; (III) inadequate image quality with 
artefacts or noise, that impede diagnosis; (IV) patients were 
with other malignant tumors combined.

After screening with both the inclusion and exclusion 
criteria, a total of 249 patients were included in the study, 
with a total of 298 cases of GGN lesions. Among them, 81 
lesions belonged to male patients and 217 lesions belonged 
to female patients, aged 53.8±10.6 years. A total of 298 
GGN lesions were selected. Among them, 25 were AAH, 20 
were AIS, 132 were MIA and 121 were IAC. In this study, 
AAH, AIS and MIA were defined as non-invasive lesions, 
and IAC were defined as invasive lesions. A total of 298 
lesions were divided into two groups (Table 1).

Subsequently, cases with qualified time-series CT 
information from the GGN lesions included were picked up, 
and the criterion of time difference between the first CT and 
the last CT before the operation was ≥90 days. A total of 112 
lesions were found; 34 lesions were in male patients, 78 lesions 
were in female patients, and the age of the first diagnosis was 
52.4±11.3 years (range, 28–79 years). The computational 
MDT method was used to represent the DT of tumors (16). 
MDT can be calculated by the following formula:

( ) ( )M mg V H 1000 0.001= × + × 	 [1]

( )i 0MDT log 2 T log M M= × 	 [2]

M: mass; mg: milligram (the unit of mass); V: the 
volume of nodules (mm3) was automatically obtained by 
computer software; H: the average CT value of nodules was 
automatically obtained by computer software; Mi: quality of 
the last (preoperative) GGN; M0: quality of the first GGN; 
T: follow-up interval (days).

Scanning technology and inspection parameters

All patients were scanned by second-generation dual-source 
CT (Somatom Definition Flash, Siemens Healthcare, 
Germany). Scanning method: supine position was used 
during scanning, with head first and hand raised. Deep 
inspiration with breath holding was instructed to ensure 

Table 1 Summary of the pathological classification of 298 GGNs

Classification Number of GGN (%)

Non-invasive lesion 177 (59.4)

AAH 25 (8.4)

AIS 20 (6.7)

MIA 132 (44.3)

Invasive lesion 121 (40.6)

IAC 121 (40.6)

GGN, ground glass nodule; AAH, atypical adenomatous 
hyperplasia; AIS, adenocarcinoma in situ; MIA, minimally 
invasive adenocarcinoma; IAC, invasive adenocarcinoma.

https://jtd.amegroups.com/article/view/10.21037/jtd-24-27/rc
https://jtd.amegroups.com/article/view/10.21037/jtd-24-27/rc
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the adequate lung field depiction. The scanning range 
was from the level of the thoracic entrance to the bilateral 
costophrenic angle (including the bilateral adrenal glands). 
Image parameters, routinely used by the hospital, were 
as follows: tube voltage of 120 kVp with automatic tube 
current regulation technology (CARE DOSE 4D), the 
pitch value of 0.85, and the collimator width of 0.6 mm. 
Images were then reconstructed with 1 mm slice thickness 
by kernel B36f and D70f for soft and lung tissue depiction, 
respectively. Suitable window viewing with width and level 
was set accordingly by radiologist with respect to diagnostic 
tasks. All the images were stored as DICOM format.

Image postprocessing and data analysis

All DICOM images were imported into the Siemens 
scientific research prototype software (Radiomics) 
on Frontier platform. First, the software’s automatic 
segmentation algorithm (random walker-based) was used 
to roughly identify the respective nodules of interest. Then 
the software’s sketching tool (nudging and brushing) allows 
for manual edge modification of the segmented nodules, 
to ensure no normal lung tissue in the regions such as the 
cord, blood vessels or pleura. As Pyradiomic feature were 
embedded in the software, after segmentation, voxel-wise 
analysis could be applied by the software. Extracted image 
features included the first-order, morphological and texture 
features [gray level difference method (GLDM), gray level 
co-occurrence matrix (GLCM), gray level emphasis level 
matrix (GLELM), gray level size zone matrix (GLSZM), 
neighborhood gray tone difference matrix (NGTDM)].

The final model retained only the most pertinent features. 
Initially, the feature selection process targeted invasiveness 
discrimination, employing the least absolute shrinkage and 
selection operator (LASSO) method via the glmnet package 
in R to eliminate collinearity. Subsequently, the minimum 
redundancy maximum relevance (mRMR) algorithm was 
implemented to pinpoint a subset of these features that 
maximized relevance while minimizing redundancy. The 
subset was limited to a maximum size of 5 selected features. 
Further refinement involved testing the coefficients of the 
final regression model against invasive labels, whereby a P 
value exceeding 0.05 indicated the presence of a confounding 
factor, prompting its removal. For instability prediction, 
feature selection began with a random forest approach, 
ranking features by their Genetic Inheritance Index (GINI). 
The top five features were then combined using a support 
vector model for predictive analysis. 

Both the LASSO and Random Forest algorithms had 
parameter tuning within predetermined ranges. Optimal 
configurations were trained based on 5 repetitions of 10-fold  
cross-validation, aimed at maximizing the area under 
the curve (AUC) value, which serves as the benchmark 
for optimal performance. To achieve a balance between 
computational complexity and predictive accuracy, logistic 
regression (for invasiveness prediction) and support vector 
machines (for instability prediction) were employed, utilizing 
an optimal number of features selected based on their AUC 
values that closely approximate the optimal performance.

The logistic models underwent three types of testing: 
using the training data, averaging results from 50 resampled 
training datasets, and validation with independent data. 
However, due to the limited sample size for instability, its 
model was tested solely on the training data and through 
averaging results from 50 resampled training datasets to 
demonstrate its generalization ability.

Statistical analysis

Qualitative variables (gender and location distribution) were 
assessed by Chi-squared test or Fisher’s exact test between 
groups. The distribution of the quantitative parameters (age, 
follow-up interval and MDT) and histological characteristics 
were checked, and were summarized as the mean ± standard 
deviation if they were normally distributed. Otherwise, median 
and range were used for the summarization. Independent 
sample t-test or the nonparametric Mann-Whitney U test was 
selected for group comparison accordingly with respective to 
their distribution. The diagnostic performance of the model 
was assessed by the receiver operating characteristic (ROC) 
curve, with the AUC and its 95% confidence interval by 
the bootstrap repeated sampling technique calculated. The 
differences in the performance of two models were checked 
by the Delong test. The calibration curve was drawn to show 
the accordance between the model output and actual class 
probability. P<0.05 indicated statistically significant difference. 
All statistical analysesd were performed on SPSS 21.0 software.

Results

The relationship between radiomics characteristics and 
GGN infiltration in GGN-type lung adenocarcinoma

A total of 298 cases of GGN lesions were included in this 
study, of which 81 (27.2%) were male patients and 217 
(72.8%) were female patients, aged 53.8±10.6 years; 177 
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(59.4%) were noninvasive lesions (25 AAH, 20 AIS, 132 
MIA), and 121 (40.6%) were invasive lesions (IAC). Slice 
CT images of the chest are shown in Figures 1,2.

Clinical characteristics comparison between 
noninvasive lesions and invasive lesions
The statistical results of the differences between groups 
about gender, age, and lesion distribution are shown in 
Table 2. Age and lesion location were found to be different 
between groups with P<0.05, while the difference of 
sexuality distribution was found to be insignificant (P>0.05).

Calculated radiomic features selection with association 
to the histological subtype of the GGN-type nodules
Data extraction, histological feature screening, and model 
establishment
In this study, we used a stratified random sampling method 

to split our data (n=298) into training (n=180) and validation 
cohorts (n=118) with a ratio of 6:4. The distribution of the 
non-invasive and invasive nodules, the two classes under 
study, was the same in both the training and validation 
cohorts. In the training cohort, there were 107 non-invasive 
and 73 invasive nodules, while in the validation cohort, the 
distribution was 70 non-invasive and 48 invasive nodules. A 
total number of 854 features were calculated after the 3D 
segmentation of each nodule using the Siemens scientific 
research prototype software. After feature selection by 
LASSO regression model, a total of 80 features were 
kept. Final model A for non-invasive and invasive nodule 
differentiation enrolled four features, including wavelet, 
was ultimately built. HLH_glcm_MCC, wavelet.HLH_
firstorder_Maximum, original_glcm_Correlation and 
origin_shape_Compactness1. The formula for this model is 
expressed as:

A B

C D

Figure 1 A 47-year-old male with mGGN in the left upper lobe of the lung is shown on thin slice CT of the chest in cross section 
(A,B), sagittal plane (C), and coronal plane (D). Vascular passage shadows are visible within the lesion. Postoperative pathological 
diagnosis indicated that the nodule was MIA. mGGN, mixed ground-glass nodule; CT, computed tomography; MIA, minimally invasive 
adenocarcinoma.
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D

Figure 2 Thin-layer CT images of “non” invasive lesions and invasive lesions. (A) Female, 60 years old, with mGGN in the left upper lobe 
of the lung. The postoperative pathological diagnosis of this nodule was AAH. (B) Male, 45 years old, with pGGN in the right lower lobe of 
the lung. Postoperative pathological diagnosis showed that the nodule was AIS. (C) Female, 50 years old, with pGGN in the left upper lobe 
of the lung. Postoperative pathological diagnosis showed that the nodule was MIA. (D) Female, 35 years old, with mGGN in the left lower 
lobe of the lung. Postoperative pathological diagnosis showed that the nodule was IAC. CT, computed tomography; mGGN, mixed ground-
glass nodule; AAH, atypical adenomatous hyperplasia; pGGN, pure ground-glass nodule; AIS, adenocarcinoma in situ; MIA, minimally 
invasive adenocarcinoma; IAC, invasive adenocarcinoma.

Table 2 Comparison of basic clinical characteristics between noninvasive lesions and invasive lesions

Feature Noninvasive lesions (n=177) Infiltrating lesion (n=121) Statistical value P value

Gender (example), n (%) 0.056† 0.81

Male 49 (27.7) 32 (26.4)

Female 128 (72.3) 89 (73.6)

Age (years), mean ± SD 51.6±10.4 56.9±10.1 −4.419‡ <0.001

Location of the lesion, n (%) 12.707§ 0.01

Left superior lobe of lung 50 (28.2) 31 (25.6)

Left inferior pulmonary lobe 23 (13.0) 17 (14.0)

Right superior lobe of lung 61 (34.5) 44 (36.4)

Middle lobe of right lung 13 (7.3) 0 (0.0)

Right lower lobe of lung 30 (17.0) 29 (24.0)
†, Chi-squared test; ‡, independent sample t-test; §, Fisher’s exact test. SD, standard deviation. 
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Figure 3 Nomogram of radiomics model A established from the training set data.

Figure 4 Analysis of ROC curves for the differentiation of noninvasive lesions from invasive lesions using radiographic model A in the 
training set (A) and the validation set (B). ROC, receiver operating characteristic.

  0.9709 1.3788 wavelet.HLH_glcm_MCC
0.6684 wavelet.HLH_firstorder_Maximum
0.74168 original_glcm_Correlation
0.6415 original_shape_Compactness

R= − − ×
+ ×
+ ×
− ×

	 [3]

If R≥0.5, the lesion is invasive; otherwise, it  is 
noninvasive. This model A for predicting infiltration could 
also be presented as a nomogram (Figure 3).
Evaluation and effectiveness of radiomics model A in the 
training and validation sets
The averaged AUC value was 0.89 [95% confidence interval 

(CI): 0.84–0.94], and the model exhibited a sensitivity of 
0.75, a specificity of 0.86, and accuracy of 0.82 (Figure 4).  
In the validation set, the ROC evaluation of model A 
yielded an AUC value of 0.87 (95% CI: 0.81–0.93), with a 
sensitivity of 0.63, specificity of 0.90, and an accuracy of 0.79 
(Figure 4).

Both calibration curves, tested in training and validation 
cohorts, showed good to perfect accordance between 
the predicted probability with the actual incidence. This 
indicates that the output of the formula can be interpreted 
as the probability of the studied class (Figure 5).
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Figure 5 The relationship between the predicted results of the nomograms in the training set (A) and the validation set (B) and the actual 
occurrence of invasive lesions. ROC, receiver operating characteristic.

Figure 6 Male, 37 years old at first diagnosis, left upper lobe mGGN, postoperative pathological diagnosis of this nodule as MIA. (A) The 
baseline volume measured by Radiomics software was 284 mm3, and the mass was 177 mg. (B) Radiomics software measured a volume of  
306 mm3 and a mass of 200 mg after 189 days of follow-up. The MDT of this nodule was calculated to be 1,067 days. mGGN, mixed 
ground-glass nodule; MIA, minimally invasive adenocarcinoma; MDT, mass doubling time.

A B

The relationship between radiomics characteristics and 
GGN instability in GGN-type lung adenocarcinoma

The study included a total of 112 GGN lesions, with 34 lesions 
belonging to male patients and 78 lesions belonging to female 
patients. The age at initial diagnosis was 52.4±11.3 years, 
ranging from 28 to 79 years. Of the total lesions, 75 were non-
invasive lesions and 37 invasive. The follow-up interval ranged 
from 90 to 2,190 days, with a median of 235 days, and the 
median MDT was 1,047 days (156.3, +∞ days). Thin slice CT 
images of the chest are shown in Figures 6-8.

Comparison of basic clinical characteristics between 
noninvasive lesions and invasive lesions
The statistical results for the follow-up interval and MDT 

are presented in Table 3, with both measures reported as 
median and interquartile range. There was no statistically 
significant difference observed between the noninvasive 
lesion and invasive lesion groups (P>0.05).

We used diagnostic thresholds of MDT >813, 1,026, and 
1,170 days for stable and unstable nodules, respectively, as 
suggested by previous studies (17), to classify the nodules. 
The statistical results are shown in Table 4.

Extraction and selection of radiomic features and 
establishment of radiomics labels
Using the diagnostic threshold for unstable nodules at 
MDT value of 813, 1,026, and 1,170 days, the importance 
ranking based on GINI index of random forest models is 
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Figure 7 Male, initial diagnosis age: 45 years old, left upper lobe pGGN, postoperative pathological diagnosis: MIA. (A) The baseline 
volume measured by Radiomics software was 140 mm3, and the mass was 60 mg. (B) Radiomics software measured a volume of 488 mm3 and 
a mass of 165 mg after 654 days of follow-up. The MDT of this nodule was calculated to be 450 days. pGGN, pure ground-glass nodule; 
MIA, minimally invasive adenocarcinoma; MDT, mass doubling time.

A B

Figure 8 Male, initially diagnosed at 54 years old, has pGGN in the right upper lobe of the lung. Postoperative pathological diagnosis 
showed that the nodule was MIA. (A,B) The baseline volume measured by Radiomics software was 262 mm3, with a mass of 83 mg. (C,D) 
Radiomics software measured a volume of 422 mm3 and a mass of 138 mg after 326 days of follow-up. The MDT of this nodule was 
calculated to be 441 days. pGGN, pure ground-glass nodule; MIA, minimally invasive adenocarcinoma; MDT, mass doubling time. 
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Table 3 Comparison of follow-up intervals and MDT between noninvasive lesions and invasive lesions

Feature Noninvasive lesions (n=75) Infiltrating lesion (n=37) Statistical value P value

Follow-up interval (days) 235 (150, 433.5) 216 (125, 645) – 0.75

MDT (days) 1,047 (156.3, +∞) 925 (172.0, +∞) – 0.92

Data are presented as median (25th, 75th percentile). –, Mann-Whitney U test; +∞, indicates that the quality has not increased during the 
follow-up process, and the MDT is infinite. MDT, mass doubling time.

presented in Figure 9. The top six features were selected 
and are presented in Table 5. Support vector machines were 
then used to establish radiomics models B1, B2, and B3 for 
predicting instability.

The ROC curve analysis between different models (model 
B1, B2 and B3) is shown in Table 6 (Figure 10). The highest 
accuracy and AUC values were observed for the model 
using images to predict instability (model B1) when the 
MDT threshold was set at 813 days. The output of model 
B1 showed good to perfect accordance with the actual 
incidence of the data, as demonstrated in Figure 11.

Discussion

Currently, with the widespread application of low-dose 
multislice spiral computed tomography (LDCT) and 
the gradual enhancement of general public’s awareness 
of physical examination, an increasing number of small 
intrapulmonary nodules have been found. However, the 
traditional imaging modalities for judging benign and 
malignant nodules are greatly influenced by the subjective 
impact of the diagnostic physician, and when the nodules 
are too small or the imaging characteristics are not obvious, 
the diagnostic accuracy will significantly decrease. Several 

studies have shown that compared to traditional CT signs, 
radiomics has a higher accuracy in differentiating benign 
and malignant GGNs and predicting the pathological 
classification of GGN-type lung adenocarcinoma (7,9). 
In this study, a computer-based model was established to 
analyze GGNs to predict the invasion and instability of 
GGN-type lung adenocarcinoma.

A total of 249 patients with 298 GGN lesions were 
included in this study, all of whom were pathologically 
confirmed of having lung adenocarcinoma, including 
177 noninvasive lesions (25 AAH, 20 AIS, 132 MIA) and 
121 invasive lesions (IAC). The research results showed 
that the ages of patients with noninvasive lesions and 
invasive lesions were 51.6±10.4 and 56.9±10.1 years, 
respectively, with significant differences. The age of 
patients with invasive lesions was greater than that of 
patients with noninvasive lesions, which is the same as 
previous scholars’ research results (18). In this study, 
although the number of female patients were significantly 
higher overall than male patients, the results showed that 
there was no statistically significant difference between 
the groups, and there was no correlation between the 
invasive nature of the lesions and the sex of the patients. 
In addition, in this study, a total of 62.4% (186/298) of 
the lesions were located in the upper lobe, which may 
be because this site is more prone to inhaling more 
carcinogens (19).

This study was based on a single factor analysis, 
removing information redundancy, and selecting “wavelet. 
HLH_glcm_MCC”, “wavelet.HLH_firstorder_maximum”, 
“or ig inal_glcm_correlat ion”  and “or ig in_shape_
compactness1”, these four imaging features include a first 
order (maximum histogram value of the image after wavelet 
smoothing filtering), a morphology (compactness of the 
original image 1), and two texture [maximum correlation 
coefficient (MCC) of the gray level co-occurrence matrix 
of the image after wavelet smoothing filtering and 
autocorrelation of the gray level co-occurrence matrix of 
the original image] features, which constitute a logistic 

Table 4 Statistics of cases of stable and unstable nodules

Group
Group

B1 B2 B3

Diagnostic threshold MDT (days) 813 1,026 1,170

Stable nodules (cases) 63 (56.3) 56 (50.0) 53 (47.3)

Unstable nodules (cases) 49 (43.7) 56 (50.0) 59 (52.7)

Total (example) 112 112 112

Data are presented as n or n (%). B1 contains three first-order 
and three texture features; B2 contains three first-order and three 
texture features; B3 contains 2 first-order and 4 texture features. 
MDT, mass doubling time.
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Figure 9 Feature importance ranking of groups B1 (A), B2 (B), and B3 (C) sorted by the magnitude of GINI index based on random forest 
modelling. B1 contains three first-order and three texture features; B2 contains three first-order and three texture features; B3 contains 2 first-
order and 4 texture features. GINI, Genetic Inheritance Index. 

model to distinguish “non” invasive lesions from invasive 
lesions in GGN. The results show that radiomics model 
A, composed of the above features, has excellent diagnostic 
effectiveness in both the training and validation sets (AUC 
>0.85), with a maximum sensitivity of 0.75 and a maximum 
specificity of 0.90. This also confirms that compared to 
traditional imaging diagnosis, which mainly relies on radial 
measurement to evaluate pulmonary nodules, the imaging 
omics model performs three-dimensional measurements by 
involving the number of voxels in the axial region of interest 

(ROI) region layer by layer to obtain data that are more 
consistent with the actual volume of the nodules and is also 
more reliable in the calculation of solid components (20).

With the increase in the detection rate of pulmonary 
nodules, the general accepted treatment for GGN with a 
low risk of malignancy is to conduct regular CT follow-
up observations to assess the growth characteristics. DT 
refers to the time required for tumor volume or cell number 
to double, representing the activity and invasiveness of 
tumor cells, and is an important indicator of tumor growth 
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characteristics (21). The literature reports that volume and 
mass are quantifiable indicators that reflect more sensitive 
and repeatable growth of pulmonary nodules (22,23). 

( )i 0VDT log 2 T log V V= ×
	

[4]

Vi, and V0 refer to the volume of the last (preoperative) 
and first GGN, respectively, and T refers to the follow-up 
interval. The traditional method of measuring volume by 
two-dimensional diameter is first to measure the diameter 
of a nodule and then calculate the volume of the nodule 

using a sphere or ellipsoid formula. However, both accuracy 
and repeatability are poor, and the error of the calculated 
results is greater when the nodule shape is irregular. In this 
study, based on the difference in CT values between nodules 
and surrounding lung tissue, threshold segmentation and 
manual modification were used to identify nodules, and 
the pixels within the nodules were statistically analyzed. 
By converting the size and number of pixels within the 
pulmonary nodules into volumes, the results obtained were 
more consistent with the actual volume of the nodules, 
reducing bias caused by different observers and having 
better clinical application value. This result was also 
confirmed in the study by Yankelevitz et al. (24). 

Through research, it has been found that the MDT 
calculated during follow-up varies with the density of 
the first diagnosis of pulmonary nodules. Yuan et al. (17) 
conducted 3-year follow-up imaging statistics on 82 cases 
of small lung cancer screened by LDCT and found that the 
VDT of solid nodule, mixed ground-glass nodule (mGGN), 
and pure ground-glass nodule (pGGN) were 149±125, 
457±260, and 813±375 days, respectively. Research by Oda 
et al. (22) showed that the average VDT for mGGN and 
pGGN based on 3D volume measurements was 276.9±155.9 
and 628.5±404.2 days, respectively. However, for a large 
number of GGNs screened from physical examinations, 
multiple research results have shown that the growth of 
nonsolid nodules is manifested not only in volume growth 
but also in changes in density (25,26). Among them, the 
initial growth pattern of some GGNs only shows an 
increase in the density within the lesion, while the volume 
does not change. Kakinuma et al. (27) found that even 
though the volume of mGGN was stable, the increase in the 
solid portion often suggested the possibility of malignancy. 
Moreover, the growth of some tumors may be accompanied 
by the collapse of the alveolar cavity, and some GGNs may 
instead show a slight reduction in volume (5). Therefore, 
in recent years, attention has been given to MDT as a new 
reliable indicator (16,28). This calculation method of the 
MDT combines the changes in the internal density of the 

Table 5 Statistics of the histological characteristics included in 
imaging radiomics model B for predicting instability

Radiomics models The most relevant feature

Radiomics model B1 wavelet.LHH-glcm-ClusterShade

wavelet.LLH-glcm-ClusterShade

wavelet.HLH-firstorder-Median

original-gldm-DependenceVariance

wavelet.HHH-firstorder-Skewness

wavelet.LHL-firstorder-10Percentile

Radiomics model B2 wavelet.HHH-firstorder-Median

wavelet.LLH-glszm-
SizeZoneNonUniformityNormalized

wavelet.HHL-firstorder-Median

wavelet.LHH-glcm-ClusterShade

wavelet.HLH-glcm-ClusterShade

wavelet.LHL-firstorder-Kurtosis

Radiomics model B3 wavelet.LLH-glcm-ClusterShade

wavelet.LHH-glcm-ClusterShade

wavelet.LHH-glszm-ZoneVariance

wavelet.HLH-firstorder-Median

wavelet.HLH-glcm-MCC

wavelet.LLH-firstorder-Skewness

Model B1 contains three first-order and three texture features; 
model B2 contains three first-order and three texture features; 
model B3 contains 2 first-order and 4 texture features.

Table 6 Analysis of ROC curves for different radiomics models predicting instability

Histological model Sensitivity Specificity Accuracy rate Kappa AUC (95% CI) Averaged AUC (95% CI)

B1 0.71 0.83 0.78 0.54 0.89 (0.83–0.94) 0.72 (0.62–0.81)

B2 0.54 0.77 0.65 0.30 0.80 (0.72–0.88) 0.62 (0.51–0.72)

B3 0.76 0.60 0.69 0.37 0.81 (0.73–0.89) 0.67 (0.57–0.78)

Model B1 contains three first-order and three texture features; model B2 contains three first-order and three texture features; model B3 
contains 2 first-order and 4 texture features. ROC, receiver operating characteristic; AUC, area under the curve; CI, confidence interval. 
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Figure 10 The analysis of ROC curves for identifying stable and unstable nodules using radiomics models (A,B) B1 (A1 tested on training, 
A2 using 50 resamples), (C,D) B2 (B1 tested on training, B2 using 50 resamples), and (E,F) B3 (C1 tested on training, C2 using 50 resamples). 
ROC, receiver operating characteristic.

Figure 11 The relationship between the predicted results of imaging group model B1 and the calculated occurrence of unstable nodules. 
The X-axis represents the incidence of instability predicted by the histological model, and the Y-axis represents the actual calculated 
incidence of unstable nodules. The gray solid line represents the ideal prediction line of the model, and the black solid line represents the 
actual prediction results of the model. ROC, receiver operating characteristic. 
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GGN and the increase or decrease in the infiltration range, 
which is more sensitive than the VDT. The subjects in this 
study all had nonsolid lesions (pGGN and mGGN), so the 
MDT index was ultimately chosen to observe the changes 
in the lesions over the time in this study.

This study screened 112 samples from 298 GGN lesions 
that met the requirements, with a median MDT of 539 days.  
Comparing noninvasive lesions with invasive lesions, the 
results showed that there was no significant difference in 
follow-up interval or MDT. Previous studies have shown 
that DT is of certain value in differentiating pathologic 
subtypes of invasive lung adenocarcinoma (16). However, 
this study did not find a statistically significant difference 
in MDT between noninvasive lesions and invasive lesions. 
Currently, there are relatively few reports of DT studies on 
the pathological subtypes of invasive lung adenocarcinoma, 
and it is expected to increase the sample size in future 
studies to explore the correlation between the pathological 
subtypes of invasive lung adenocarcinoma and MDT.

To explore the relationship between MDT and the 
prognosis of patients with lung cancer after surgery, this 
study extracted and reduced the dimensions of 78 relevant 
features from the first diagnosis image. According to the 
different MDT diagnostic thresholds for unstable nodules 
(813, 1,026, and 1,170 days), the six features with the 
highest correlation were selected, and the imaging group 
models B1, B2, and B3 were constructed using support vector 
machines. Model B1 contains three first-order and three 
texture features; model B2 contains three first-order and 
three texture features; model B3 contains 2 first-order and 4 
texture features; and three of the models contain first-order 
median features and texture ClusterShade features. The 
ROC curves of the three histological models were analyzed 
and compared. The results showed that the three models in 
imaging histological model B had good diagnostic efficacy 
in predicting the instability of nodules (AUC ≥0.80), and 
imaging histological model B1 had the highest diagnostic 
efficacy (AUC =0.89) and higher specificity (0.83), accuracy 
(0.78), and sensitivity (0.71). This study concluded that when 
the diagnostic threshold for MDT was set to 813 days, the 
effectiveness of identifying instability in GGNs was higher.

Limitations

There are certain limitations in this study: This study 
is a retrospective study, and there is a certain bias in 
the inclusion of research data. This study adopts a 
semiautomatic segmentation method. The subjective bias 

of the operator has a certain impact on the segmentation 
of the lesion. Multiple tests were conducted to minimize 
such bias. In this study, some nodules located at the edge of 
the pleura did not include the surrounding pleura when the 
ROI boundary of the nodules was delineated. Therefore, 
characteristic information related to the pleura may not 
be recognized by imaging features, requiring further 
exploration. The radiomics model A obtained in this study 
for predicting GGN infiltration, which does not incorporate 
clinical and CT morphological features, is expected to be 
completed in further research, and further testing of its 
effectiveness in multicenter studies is also needed.

Conclusions

This study retrospectively analyzed the basic clinical and 
CT texture characteristics of patients with GGN-type lung 
adenocarcinoma using an imaging group analysis method to 
establish an imaging group model and predict the possibility 
of pathological invasion and instability of GGNs. There was 
a statistically significant difference in age and distribution 
of lesions in the lung between the noninvasive lesion and 
invasive lesion groups. The radiomics model can predict the 
invasion of GGN-type lung adenocarcinoma. There was no 
significant difference in MDT between noninvasive lesions 
and invasive lesions. The radiomics model can predict the 
instability of GGN-type lung adenocarcinoma. When the 
MDT threshold was set to 813 days, the model had higher 
specificity, accuracy, and diagnostic efficiency.

For pulmonary nodules with an initial diagnosis of GGN, 
without the assistance of follow-up CT data, this study 
constructed a histologic model B1 to predict the probability 
of instability of the nodules and to predict whether their 
MDT is less than our set threshold of 813 days. The purpose 
of this study is to provide MDT-related information for 
GGNs that do not exhibit significant malignant signs (such as 
noninvasive lesions predicted using imaging group model A) 
through group model B1 and to guide clinicians and imaging 
diagnostic physicians in formulating more reasonable follow-
up CT time schedule and personalized treatment plans.
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