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Response to perturbation 
during quiet standing resembles 
delayed state feedback optimized 
for performance and robustness
Ambrus Zelei1,4, John Milton2, Gabor Stepan1,3 & Tamas Insperger3,4*

Postural sway is a result of a complex action–reaction feedback mechanism generated by the interplay 
between the environment, the sensory perception, the neural system and the musculation. Postural 
oscillations are complex, possibly even chaotic. Therefore fitting deterministic models on measured 
time signals is ambiguous. Here we analyse the response to large enough perturbations during 
quiet standing such that the resulting responses can clearly be distinguished from the local postural 
sway. Measurements show that typical responses very closely resemble those of a critically damped 
oscillator. The recovery dynamics are modelled by an inverted pendulum subject to delayed state 
feedback and is described in the space of the control parameters. We hypothesize that the control 
gains are tuned such that (H1) the response is at the border of oscillatory and nonoscillatory motion 
similarly to the critically damped oscillator; (H2) the response is the fastest possible; (H3) the response 
is a result of a combined optimization of fast response and robustness to sensory perturbations. 
Parameter fitting shows that H1 and H3 are accepted while H2 is rejected. Thus, the responses of 
human postural balance to “large” perturbations matches a delayed feedback mechanism that is 
optimized for a combination of performance and robustness.

For over 50 years, responses to perturbations have been used to investigate the feedback control of human 
balance1–3. These studies established that human balance is not maintained by stereotyped reflexes. Instead, with 
development, balance control emerges as the nervous system learns to apply generalized rules for maintaining 
balance4. In healthy individuals this ability to adapt and improve balance in a feedback-driven manner does 
not appear to decline with age5. This observation underscores the current development of perturbation-based 
balance training protocols to improve reactive balance in the elderly as a way to reduce their risk of falling3,6.

A large variety of perturbations have been used to disturb human standing balance including sudden platform 
translations, pulls and tugs1,2,7–10. The nervous system responds with a continuum of “ankle” and ”hip” strate-
gies, the exact combination depending on the trade-offs between the required effort and the degree of postural 
instability to be overcome11–14. Despite these observations, theoretically-motivated investigations suggest that 
common underlying principles may be at work8,14–17. Thus, the challenge has become to identify the nature of 
the governing principles7,18,19.

The dynamics of human postural sway during quiet standing with eyes closed is very complex and has been 
described in terms of stochastic and even chaotic motions20,21. The underlying mathematical model can be 
either an inherently stochastic process22,23 or a deterministic nonlinear feedback mechanism governed by some 
kind of intermittent control24–27 or their combinations28–30. One of the simplest physiological mechanisms for 
generating a chaotic motion is the interplay between a time-delayed, sampled data system and a sensory dead 
zone, i.e., corrective actions take place only when the sensory inputs exceed some threshold values21. Model 
based analysis of postural sway is therefore a difficult task since the governing deterministic dynamics may be 
hidden in the seemingly noisy/chaotic response. Here we employ perturbations in the anteroposterior (AP) and 
the posteroanterior (PA) directions during quiet standing that are large enough to produce excursions that are 
significantly larger than the magnitude of the fluctuations in postural sway and the size of sensory dead zones. In 
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this way, the response to the perturbation is not affected by the local noisy/chaotic dynamics and the underlying 
feedback mechanisms can be identified distinctly by numerical fitting techniques.

Inverted pendulum models are widely used to investigate human balance19,31–35 and are currently thought 
to be “functionally correct”34,36. Reactive balance control, that is maintaining balance in the response to a per-
turbation, is inherently a feedback sensorimotor process in which muscles are activated in direct response to 
task-level error14,37–39. However, the time delayed nature of the feedback control has important implications for 
the feedback controlled response of balance to perturbations. Our concept is illustrated in Fig. 1. This figure 
shows the stability diagram for an inverted pendulum stabilized by a time-delayed proportional-derivative (PD) 
feedback controller. The stable region in the plane (p, d) of the control gains is characteristically D-shaped31,40. 
For every choice of the control gains located within this D-shaped region, the upright position recovers from 
a perturbation; however, not all control gains exhibit the same dynamical response to the perturbation. The 
perturbed responses range from a monotonic exponential recovery to the upright position to recoveries which 
exhibit an oscillatory component.

The boundary between the monotonic and oscillatory responses is formed by the node-spiral separation line 
(black-green dashed line). The exponential decay of the response is shown by solid contour lines: the smaller the 
value of γ1 , the faster the response. Namely, |θ(t)| � θ0e

γ1t where θ0 is the initial angle. γ1 < 0 is called exponen-
tial decay rate41. The fastest responses to perturbations are for choices of the gains in the lower left quadrant of 
the stability diagram. The optimal point with respect to the response’s settling time is (p∗, d∗) (black × marker), 
which is associated with the maximal achievable decay rate γ1 = γ ∗ . This parameter point lies on the node-spiral 
separation line and divides it into two sections indicated by black and green color. Small changes in p or in d in 
the lower (black) branch of the separation line results in significantly larger changes in the decay rate γ1 than the 
same changes do in the upper (green) branch. Hence, the system is more robust to changes in the control gains 
when operating at a parameter point on the upper (green) branch rather than on the lower (black) one. Note that 
perturbation of the gains can directly be linked to perturbations in sensory perception since the actual control 
force is determined as the product of the control gains p and d and the corresponding sensory inputs, the angle 
θ and the angular velocity θ̇ . This suggests that the control gains should be selected based on a goal function 
which takes into account both fast response and robustness. This would give an operation point (p̂, d̂ ) on the 
upper branch indicated by green  marker.

The main goal of this paper is to compare the dynamics of the time-delayed PD feedback model to measured 
responses to perturbations during quiet standing. Control gains and feedback delays are estimated by fitting the 
response of the mechanical model to the measured time histories. The fitted parameter point is indicated by 
(p̄, d̄) in Fig. 1b (black � marker). We pose three hypotheses related to the location of the fitted control gains. 

H1	 The fitted control gains are tuned towards the node-spiral separation line, which would indicate that reduc-
ing oscillatory response is one of the main goal of the feedback mechanism. This concept can be linked to 
a critically damped oscillator in the sense that when the proportional gain p (which operates as a kind of 
artificial active stiffness) is fixed, then the derivative gain d (a kind of artificial damping) is tuned towards 
the node-spiral separation line and the resulted motion resembles that of a critically damped oscillator.

Figure 1.   Main concept: dynamic behaviour of balancing by delayed feedback. (a) Inverted pendulum model 
for human standing balance. (b) Stability diagram for delayed PD feedback Q(t) = Pθ(t − τ)+ Dθ̇ (t − τ) . 
Light and dark grey shading indicates oscillatory (spiral type) and nonoscillatory (node type) stable responses, 
respectively. The two types of responses are separated by the node-spiral separation line indicated by (black-
green) dashed line. Contour lines γ1 = const are associated with different settling time of the response. Black 
× marker shows the parameter point (p∗, d∗) associated with fastest settling time. Green  marker shows the 
parameter point (p̂, d̂) on the node-spiral separation line that is closest to the experimentally fitted parameter 
point (p̄, d̄) . (c–e) Responses for different control gains (p, d). Fastest response is shown in panel (e).
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H2	 The fitted control gains are close to the parameter point (p∗, d∗) associated with the fastest possible recovery 
of balance to perturbations.

H3	 The fitted control gains are located close to a parameter point (p̂, d̂) on the upper (green) branch of the node-
spiral separation line (i.e., p̂ > p∗ and d̂ > d∗ ) that assures fast recovery even upon small uncertainties in 
the control gains.

We base our hypotheses on three observations: (1) PD controllers with gains located in the lower left quadrant 
of the stability diagram are most robust to the effects of random perturbations42; (2) expert pole balancers 
increase maneuverability while minimizing energetic costs for balance control by adapting gains in the lower 
left quadrant of the stability diagram43; and (3) the control gains for subjects who do ball-and-beam balancing 
are progressively tuned towards the node-spiral separation line as their skill improves44. Statistical analysis show 
that H1 and H3 are accepted and H2 is rejected.

Results
Experiments and responses to perturbation.  The measurement setup, a typical response and meas-
ured responses for AP and PA perturbations are shown in Fig. 2. After the abrupt release of the weight at time 
instant t0 , the tilt angle θ first reaches a maximum then recovers to the angle that corresponds to normal posture. 
The oscillations before the perturbation ( t < t0 ) and after recovery ( t > t2 ) were significantly smaller (std 0.15◦ 
in average) than the maximum excursion caused by the perturbation ( 3.87◦ in average). Since the force was 
released at an unexpected instant45, the subject corrective action was delayed by the reaction time τ , which, 
in theory, is the difference between the initial time t0 and the time instant where the response has inflection 
point, i.e., the angular acceleration θ̈ changes sign. Responses were typically free of overshoot and resemble the 
responses of a critically damped oscillator46,47. Recorded time signals were used to fit parameters p, d and τ in 
the mechanical model.

Identified control parameters.  The control gains p and d and the time delay τ were estimated for all the 
20 trials (10 PA and 10 AP) for all the 10 subjects. The stability charts together with the identified control gain 
parameters are shown in Fig. 3 for each subject. The stable region (thick black solid curve) and the node-spiral 
separation line (dashed black-green curve) correspond to the average delay of the overall 20 trials per subject 
(the average delay is indicated in each panel). The larger the average delay, the smaller the stable region. All the 
identified control gains are within the stable region and are distributed close to the node-spiral separation line. 
Parameter points (p∗, d∗) (fastest decay) and (p̂, d̂ ) (closest point on node-spiral separation line) are indicated by 
black × and green  markers for each subject. The basic statistical results of the fitted control parameters τ , p and 
d are collected in Table 1. The best fitting time delays were found to be in the range of 100 ∼ 200 ms, which is in 
agreement with different estimates in the literature47–50. The identified control gain values also resemble those in 
the literature that assumes the same delayed PD feedback models of human quiet standing49,50.

Settling time versus robustness to parameter changes.  Experiments showed that the fitted control 
gains are slightly larger than the gains (p∗, d∗) corresponding to the fastest decay. An explanation for this is that 
the sensitivity of the exponential decay rate γ1 to parameter changes is different at different sections of the node-
spiral separation line. Note that the response is bounded by |θ(t)| � θ0e

γ1t , therefore changes in γ1 are amplified 
through an exponential function. The change of γ1 along the node-spiral separation line is shown in Fig. 4 for the 
parameters of Subject 9. Panel a shows the stability diagram with some sample values of γ1 . It can be seen that γ1 
changes faster in the lower (black) section of the node-spiral separation line than in the upper (green) one. Pan-
els b and c show the change of γ1 as function of p and d, respectively. The system with control gains selected from 
the lower branch is more sensitive to changes in p and d than the system corresponding to the upper (green) 

Figure 2.   Experimental setup and responses. (a,b) Setup for posteroanterior (PA) and anteroposterior (AP) 
direction. (c) Typical time response and some characteristic time instants, t0 : onset of perturbation, t1 : maximum 
excursion, t2 : recovery to normal posture, t3 : end of the trial. (d) Sample time signals measured during PA (red) 
and AP (blue) setups.
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Figure 3.   Stability diagrams for the 10 individual subjects and the fitted control parameters. Stability 
boundary ( γ1 = 0 ) is indicated by thick black line, while thin black lines denote contour curves of γ1 = 1

3
γ ∗ 

and γ1 = 2
3
γ ∗ . The node-spiral separation line is shown by black-green dashed line, and the parameter point 

associated with the fastest decay ( γ1 = γ ∗ ) by black × marker. Red  markers indicate PA trials, blue  markers 
indicate AP trials. Means and standard deviations for the PA and the AP trials are shown by red and blue lines, 
respectively. Green lines indicate the mean and standard deviation for all the 20 trials. The point on the node-
spiral separation line that is closest to the mean of the 20 trials is indicated by green  marker.
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branch. Actually, the parameter point (p∗, d∗) is infinitely sensitive to negative changes in p and d, which can 
be seen from the vertical slope of its tangent in panels b and c. When applying ±10 % perturbation in the gains 
(p∗, d∗) , then, in the worst case, γ1 changes from γ ∗ = −2.98 to −1.84 . The same ±10 % perturbation on the gains 
(p̂, d̂) , in the worst case, results in changes of γ1 from −2.59 to −2.38 . Hence, when perturbations/uncertainties 
are present in the sensory perception, then it is more beneficial to select the control gains form the upper (green) 
branch of the node-spiral separation line than from the lower (black) one.

Based on this observation, three measures are introduced to describe the response in terms of the control 
gains. Let the mean of the fitted control gains be denoted by (p̄, d̄) . First, the oscillatory nature of the response 
related to hypothesis H1 can be described as the distance between the point (p̄, d̄) and closest point (p̂, d̂) of the 

node-spiral separation line (see Fig. 1). Point (p̂, d̂) is defined such that 
√

(p̄− p̂)2 + (d̄ − d̂)2 has to be minimal 
(for this, the control gains have to be normalized by introducing the dimensionless time t̃ = t/τ ). Second, the 
decay of the response (i.e., settling time) related to hypothesis H2 can be characterized by the distance between 
the fitted parameter point (p̄, d̄) and the parameter point (p∗, d∗) associated with the fastest decay. Third, the 
combined concept of fast decay and robustness to uncertainties in the control gains related to hypothesis H3 can 
be characterized by the relations p̂ > p∗ and d̂ > d∗.

The above discussion implies that the goal function might not be to achieve (p, d) = (p∗, d∗) but to tune 
the control gains to (p, d) = (p̂, d̂) , which guaranties a lower limit to γ1 even in the case of perturbations of the 
control gains. This concept minimizes the settling time (e.g., maximizes the magnitude of γ1 ) while at the same 
time preserves robustness to static perturbations in the control gains (p, d).

Hypothesis H1: node‑spiral separation line—accepted.  Control gains associated with oscillatory 
and non-oscillatory responses are separated by the node-spiral separation line. Hypothesis H1 can be tested 
using the distance between the identified mean control gains (p̄, d̄) and the closest point (p̂, d̂) on the node-spiral 
separation line. First, the normality of the data was checked by the Anderson-Darling test and it was found that 
the data are not normally distributed. Therefore, Hypothesis H1 was tested by the non-parametric Wilcoxon 
signed-rank test ( signrank(p̄, p̂) and signrank(d̄, d̂) in Matlab 2017b), see Table 2. Results show that Hypothesis 
H1 related to the location of the proportional gain p is accepted for most of the subjects (8 out of the 10) and 
also for the overall data. H1 related to the location of the differential gains d is accepted for all the subjects. This 
observation confirms that the control gains are tuned to be close to the node-spiral separation line.

Table 1.   Statistics of the estimated reaction time delay τ and the estimated control gains p = P/JA and 
d = D/JA : Mean, Standard Deviation (SD), Median (Med.), Interquartile Range (IQR). Parameters are listed 
for the trials in the PA and the AP directions separately and together (both).

No.

Mean SD Med. IQR

PA AP Both PA AP Both PA AP Both PA AP Both

τ  (ms) 169 146 157 93 65 81 165 148 155 140 95 120

p = P/JA (s−2) 5.39 5.36 5.37 3.16 2.51 2.85 4.95 4.70 4.78 3.21 3.52 3.28

d = D/JA (s−1) 3.42 3.69 3.55 1.54 1.19 1.38 3.07 3.62 3.43 1.61 1.62 1.83

Figure 4.   (a) Change of the exponential decay rate γ1 along the node-spiral separation line. Parameters 
corresponds to Subject 9. (b,c) Dependence of γ1 as function of p and d along the node-spiral separation line. 
±10 % perturbation of the gains (p∗, d∗) and (p̂, d̂) and the resulted change in γ1 is shown by grey and green 
shading, respectively.
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Hypothesis H2: fastest decay of the response—rejected.  Statistical analysis was performed in order 
to check whether the fitted control gain pairs (p̄, d̄) correspond to the point (p∗, d∗) associated with the fastest 
decay. The results of Wilcoxon signed-rank test ( signrank(p̄, p∗) and signrank(d̄, d∗) ) are shown in Table 2. In 
case of most of the subjects and also in case of the overall data, Hypothesis H2 was rejected. Note that this is 
a weak rejection, since 7 out of the 10 subjects was rejected for p and only 4 out of the 10 for d. This analysis 
shows that although the fitted control gain pairs seem to be distributed close to the control gain pairs that yields 
the fastest decay (i.e., close to the by black × markers in Fig. 3), this hypothesis is not verified statistically. An 
explanation to this observation is that the parameter point (p∗, d∗) is infinitely sensitive to small changes in the 
control gains, hence to the small changes in the perceived sensory feedback.

Hypothesis H3: fast decay of the response with robustness—accepted.  The fitted control gains 
was shown to be close to the point (p̂, d̂) on the node-spiral separation line in H1. Now it is to be checked whether 
(p̂, d̂) lies on the upper or on the lower branch of the separation line. For 9 out of the 10 subjects, it was observed 
that p̂ > p∗ and d̂ > d∗ , hence (p̂, d̂) lies on the upper (green) branch. This confirms that the control gains are 
indeed tuned to the more robust section of the node-spiral separation line, hence H3 is accepted. Therefore, it 
is a plausible assumption that the control gains are tuned to achieve fast decay ( γ-stability) but at the same time 
allow some variations in the gains or in the sensory feedback.

No difference between PA and AP parameters.  The difference between the fitted control gains 
obtained for the PA and the AP trials was analyzed using Wilcoxon signed-rank test. No significant differ-
ence was found (the p-value for gain p was vp = 0.922 , for gain d it was vp = 0.557 and for the delay τ it was 
vp = 0.334 ). Hence, both AP and PA balancing process can be modeled by delayed feedback with control gains 
tuned close to (p̂, d̂).

Variation of the fitted gains over the trials—no learning.  The variation of the fitted control gains 
over the 10-trial series is shown in Fig.  5 in order to check whether the control gains are coherently tuned 
towards certain region of the plane (p, d). There is no clear trend in the change of the fitted parameters (either 
in the mean or in the variations), which suggests that learning process was not present during the trials. Hence, 
reacting to perturbation during standing still can be considered as an already learned and acquired feedback 
mechanism.

Effect of passive stiffness.  The above results have been obtained for the mechanical model where the 
passive ankle stiffness was kt = 0.91mgh58. In order to check the validity of the results, the same calculations 
and the same parameter estimations were performed for kt = 0.67mgh too, which is in the lower region of the 
physiologically plausible stiffness values59. Wilcoxon signed-rank test shows that Hypothesis H1 is accepted for 
the overall data for both the proportional control gains p ( h = 0 , vp = 0.478 ) and the derivative gain d ( h = 0 , 
vp = 0.970 ), while Hypothesis H2 is rejected for p ( h = 1 , vp = 0.008 ) and is weakly accepted for d ( h = 0 , 
vp = 0.067 ). Thus, the main results regarding the location of the fitted control gains does not change significantly 
with the value of the passive ankle stiffness.

Discussion
The results confirm that recovery of quiet standing after a sudden perturbation can well be described by a delayed 
state feedback mechanism described by three parameters: the reaction delay τ , the proportional and the derivative 
control gains p and d, respectively (see Methods for validation). While the reaction delay is an inherent feature of 
the control process, the control gains can be tuned to improve performance, namely, to reduce oscillations and 

Table 2.   Comparison of the experimentally fitted control gains (p̄, d̄) to (p̂, d̂) (H1) and to (p∗, d∗) (H2) by 
means of Wilcoxon signed-rank test: rejection of H1 and H2 is indicated by h ( h = 0 means that significant 
difference is not proven statistically, h = 1 means that there is statistical difference), p-value ( vp).

No.

H1: p̄ vs. p̂ H1: d̄ vs. d̂ H2: p̄ vs. p∗ H2: d̄ vs. d∗

h vp h vp h vp h vp

1. 1 0.002 0 0.911 1 0.004 0 0.823

2. 0 0.881 0 0.765 1 0.005 0 0.126

3. 0 0.681 0 0.502 0 0.681 0 0.940

4. 0 0.062 0 0.911 1 0.030 0 0.073

5. 0 0.765 0 0.940 1 0.000 1 0.000

6. 1 0.011 0 0.940 0 0.086 1 0.000

7. 0 0.940 0 0.823 1 0.000 1 0.000

8. 0 0.093 0 0.654 0 0.263 0 0.108

9. 0 0.117 0 0.765 1 0.000 1 0.002

10. 0 0.062 0 0.156 1 0.001 0 0.627

all 0 0.391 0 0.852 1 0.003 1 0.030
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settling time. Parameter fitting shows that the control gains are tuned such that the response is non-oscillatory 
(H1) and result in fast recovery even in case of parameter uncertainties related to the perception of the angular 
position and the angular velocity (H3). Hence, the typical response is fast and non-oscillatory that resembles 
the dynamics of a critically damped nondelayed mechanical system46,51. This feature of the response is also in 
agreement with delayed models of human standing in the sense that the control gains are located in the lower 
left regions of the stability region42,47,52.

No significant changes were observed on the parameters over the trials implying that the identified feed-
back mechanism has been already learned and practiced before during the activities of daily living. The effect 
of learning process is more pronounced when a new and unknown task is to be performed, e.g, ball-and-beam 
balancing44, balancing on balance board53, beam walking54 or combined quiet standing and stick balancing27. 
A question arises whether practice or other techniques can be developed to further improve the performance 
against sudden perturbations.

It shall be mentioned that other than delayed PD feedback is also a possible concept to describe the stabiliza-
tion process. Several ideas are available in the literature, such as intermittent feedback where intermittency can 
be either a control logic utilizing the structure of stable and unstable manifolds in the phase plane of the inverted 
pendulum24–27,55 or an inherent consequence of the uncertainties in the operation of the sensory system, e.g., 
sensory dead zones19,29. Further possible control concepts are acceleration feedback32,56, predictor feedback39,43 
or an event-driven combination of ankle and ankle–hip strategies25, just to mention a few. An advantage of the 
delayed PD feedback model is that while it is widely used in the literature26,31,33,47,50, it accounts with the two most 
important features of neural motor control: (1) actuation is performed based on perceived sensory signals; and 
(2) there is a reaction time delay between sensory perception and action.

The postural responses to anterior (AP) and posterior (PA) perturbations are very complex1,4,61,62. For AP 
perturbations the force generated by contraction of the calf muscles is resisted by the reactant force generated by 
the standing surface. Presumably this may help to offset the decrease in passive ankle stiffness as the dorsiflexion 
angle increases58–61. In contrast, for PA perturbations the contraction of the calf muscles is not opposed by the 

Figure 5.   Statistics of the relative variation of the fitted control gains and the reaction delay during the trials 
compared to the first trial. Square marker and errorbar: mean ± SD for the 10 subjects; boxplot: median and 
IQR.
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surface reactant force. Thus in order to maintain balance coactivation of the anterior and posterior shank muscles 
becomes important and the restoration of balance depends more on the movements of the trunk62. This may 
explain why the angle θ is slightly larger for PA than AP responses (see the peaks in Fig. 2d).

We have shown that when the tilt angle ( ≈ 3◦ ) is much larger that the proprioceptive sensory dead zone 
( ≈ 0.05◦ − 0.08◦ ), the feedback control of the responses to AP and PA perturbations are well described by a 
simple PD feedback control mechanism for the stabilization of an inverted pendulum. The surprising observa-
tion is that the values of the feedback gains are the same for both responses. Thus, as pointed out previously in 
a different context34, modeling human balance using an inverted pendulum works quite well. It may be possible 
to understand the basis for this observation by using more complicated models for balance control24,25. However, 
it is more likely that the responses to larger perturbations are more relevant for understanding the etiology of 
falls than investigations into the subtle nature of the fluctuations in balance that occur during quiet standing. 
Thus, we anticipate that the observation that human balance control responses to large perturbations resembles 
that of a delayed state feedback optimized for performance and robustness will greatly simplify investigations 
into the nature of human falls.

Methods
Mathematical model.  An inverted pendulum model for human standing balance is shown in Fig.  1a. 
Briefly the human body is modeled as a homogeneous rod of mass, m, pivoted on a joint A30,32. The equation of 
motion takes the form

where h denotes the distance between the center of gravity and the ankle joint A, g is the acceleration due to 
gravity, JA is the moment of inertia with respect to point A, and θ is the general coordinate which describes the 
angular position of the body with respect to vertical. There are two types of torques which interact to stabilize 
the upright position. First, there is the passive stiffness of the ankle related to the mechanical properties of the 
foot, Achilles tendon and aponeurosis. The contribution of these forces to balance is modeled by a torsional 
spring of stiffness kt19,21,30.

The intrinsic mechanical stiffness of the ankle is not sufficient to maintain stability during quiet standing and 
contractions of parallel connected calf muscles are required. Thus active muscle contractions produce feedback-
driven torques, Q(t), which act across the ankle joints. The proportional-derivative feedback control had the form

where τ is the reaction time delay, and P and D are, respectively, the proportional and derivative gains. Substi-
tution into (1) and linearization about the θ = 0 upright vertical position gives the delay-differential equation

where

is a system parameter and

are normalized control gains.
The stability of (3) can be determined using the D-subdvision method40. Substitution of the exponential trial 

solution θ(t) = Be�t into (3) gives the characteristic function

The characteristic equation D(�) = 0 has infinitely many complex roots, �i ( i = 1, 2, . . . ,∞ ), which are called 
characteristic exponents. The system is stable, i.e, the solution θ(t) converges to 0, if Re(�i) < 0 for all i. Taking 
� = γ ± iω and setting γ = 0 , the equation D(�) = 0 gives the transition curves

These parametric curves delimit the D-shaped stability region shown in Fig. 1b.
In order to characterize the response associated with different parameter pairs (p, d), the general solution

has to be analysed, where Bi is the complex amplitude corresponding to �i . The values of Bi ’s are determined by the 
initial functions (initial perturbations) during t ∈ [−τ , 0] , but the stability is independent of these parameters. It 

(1)JAθ̈ (t)+ ktθ(t)−mgh sin θ(t) = −Q(t)

(2)Q(t) = Pθ(t − τ)+ Dθ̇ (t − τ),

(3)θ̈ (t)− aθ(t) = −pθ(t − τ)− dθ̇ (t − τ)

(4)a =
(mgh− kt)

JA
> 0

(5)p =
P

JA
, d =

D

JA

(6)D(�) = �
2 − a+ pe−�τ + d�e−�τ .

if ω = 0 : p = a, d ∈ R,

if ω �= 0 : p(ω) = (ω2 + a) cos(ωτ), d(ω) =
ω2 + a

ω
sin(ωτ)

(7)θ(t) =

∞
∑

i=1

Bi e
�i t =

∞
∑

i=1

Bi e
Re(�i t)

(

cos(Im(�it))+ i sin(Im(�it))
)
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is assumed that the characteristic exponents are ordered such that Re(�1) ≥ Re(�2) ≥ Re(�3) ≥ . . . . The dynam-
ics of the response is determined by the dominant (rightmost) characteristic exponent �1 . While the real part 
Re(�1) corresponds to the decay of the response (settling time), the imaginary part Im(�1) gives the oscillation 
frequency. In mathematical terminology, γ1 = Re(�1) < 0 is called exponential decay rate and the system is said 
to be γ-stable if γ1 ≤ γ < 041.

Figure 1 shows the dynamic behaviour of (3). The stable parameter region (where γ1 < 0 ) is bounded by 
black thick curve. Control gains out of the stable region results in either increasing oscillations or exponential 
growth, hence, in both cases, falling. Within the stable region, thin curves represent different contour lines of 
γ-stability. The larger the magnitude of γ1 the shorter the settling time. The fastest response is obtained when 
(p, d) = (p∗, d∗) . Thus, p∗ and d∗ can be considered as optimal gains with respect to settling time. This concept 
can be associated to the terminology of critical damping of nondelayed models, which plays an important role 
in modelling the response to sudden perturbations during standing still46,47,51.

The stable region can be separated into two parts based on the imaginary part of the dominant root �1 . 
Darker shaded region to the left from the black-green dashed line is associated with Im(�1) = 0 . In this case, 
the dominant solution component B1e�1t is non-oscillatory. Lighter shaded region to the right of the dashed line 
is associated with Im(�1) > 0 and the corresponding solution component reads B1e�1t + B̄1e

�̄1t , which is oscil-
latory with angular frequency Im(�1) (here �̄1 and B̄1 are the complex conjugate of �1 and B1 , respectively). The 
black-green dashed line is called node-spiral separation line since it separates node type and spiral type solutions44. 
Note that the point (p∗, d∗) corresponding to the fastest response lies on the node-spiral separation line. The 
node-spiral separation line can be divided into two parts based on the location of the dominant (rightmost) roots. 
In the lower branch (black dashed line) in Fig. 1b, the rightmost characteristic root is real and has a multiplicity 
of 2. In the upper branch (green dashed section), a real and a complex pair of characteristic roots coexists with 
the same real part. At parameter point (p∗, d∗) , the rightmost root is real ( �1 = γ ∗

1  ) and has a multiplicity of 3.
Besides the actual values of the exponential decay rate γ1 , its robustness to changes in the control parameters 

is also an important feature of the control process. εp relative error in p and εd relative error in d alter the control 
force as

hence this perturbation can also be implemented as perturbation in the sensory perception of θ and θ̇ with the 
same relative error εp and εd , while the gains p and d are constant. This suggest a sensitivity analysis of γ1 to 
changes in p and d.

Participants.  We carried out the experiments with 10 subjects (8 males, 2 females) whose parameters and 
related statistical data are shown in Table 3. The subjects had no self-reported medical conditions which could 
affect their ability to perform the required tasks. The research was carried out in accordance with relevant 
guidelines and regulations following the principles of the Declaration of Helsinki. All subjects provided writ-
ten informed consent for the procedures, signed a General Data Protection Regulation (GDPR) form and were 
given the opportunity to withdraw from the study at any time. The research project and the study protocol was 
approved by the Faculty of Mechanical Engineering, Budapest University of Technology and Economics.

Procedure.  The concept of the measurements is shown in Fig.  2. We perturbed standing balance by the 
unexpected release of a resisting force7. While standing comfortably the subject resists a horizontal force, FH 
provided by hanging a weight via a rope that was connected to the subject by a body harness. A constant force FH 
was applied either in the PA or in the AP direction (Fig. 2a,b, respectively). Under these conditions the subject’s 

(8)Qperturbed(t) = JA p(1+ εp)θ(t − τ)+ JA d(1+ εd)θ̇ (t − τ),

Table 3.   Parameters of the subjects.

No. Body mass [kg] Body height [cm] Age [years] Applied force PA [N] Applied force AP [N]

1. 77 176 33 52 56

2. 57 165 25 33 42

3. 62 184 22 42 42

4. 78 187 21 42 42

5. 50 161 22 27 27

6. 70 173 35 56 56

7. 76 176 42 42 42

8. 83 178 25 42 42

9. 95 192 36 56 56

10. 60 180 22 27 42

min 50 161 21 27 27

max 95 192 42 56 56

Mean 70.8 177 28.3 41.9 44.7

SD 13.6 9.44 7.51 10.6 9.1

Med 73 184 25 42 42
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preferred standing position was slightly tilted in order to resist the applied force. The force was released manu-
ally using a bolt mechanism at an unexpected moment. This causes an initial sway in the direction opposite to 
the released force as shown by the peaks in Fig. 2c, d. After some transients, subjects found their new vertical 
equilibrium (normal posture) and they kept on standing in this position for ts = 15 s. Subjects were instructed 
to keep their hip and knee joints in a constant extended position and to recover their balance without flexing 
their knees or hips or moving their arms. The applied force FH shown in Table 3 was the largest one that the sub-
ject was able to resist without any difficulties. Each subject performed 10 trials with FH applied in one direction 
(either PA or AP) followed by 10 trials in which FH was applied in the other direction. In order to prevent carry 
order effects, the direction of FH for the first 10 trials was chosen randomly.

The time instant when the weight was released is t0 . Maximum excursion was reached at time instant t = t1 , 
normal posture was recovered at t = t2 , after that subjects kept on standing quietly for ts = t3 − t2 = 15 s and 
the balancing trial was terminated after time instant t = t3 . Response was evaluated and parameter fitting was 
performed over the period t ∈ [t1, t1 + tp] with tp = 10 s. The time signal over the period t ∈ [t2, t3] was used to 
calibrate the normal posture such that the mean value of the tilt angle θ(t) during this period was zero.

Data collection.  A high-speed motion capture system (8 synchronized OptiTrack Prime13 cameras, 
120 Hz) was used to measure the three dimensional position (xi(t), yi(t), zi(t)) of spherical reflective markers 
(diameter 16mm ) where the subscript i refers to the location of the markers: i = 0, 1, 2, 3, 4 respectively stand 
for the ankle, knee, hip, shoulder, and head. Projecting all movements to the anterior-posterior plane (x, z), the 
absolute tilt angles can be calculated as

where i = 1, 2, 3, 4 respectively indicate ankle–knee, ankle–hip, ankle–shoulder and ankle–head angles.

Validity of the single inverted pendulum model.  Tilt angles θi ( i = 1, 2, 3, 4 , ankle–knee, ankle–hip, 
ankle–shoulder and ankle–head angles) were calculated based on the marker positions located on the ankle, 
knee, hip, shoulder and head, respectively. Measurements show that most of the corrective motion happen at the 
ankle joint as the participants were instructed to keep the knee and hip joints fixed. The angle across the knee 
joint was found to be small, i.e., θ1 − θ2 ≈ 0 , and was further reduced at perturbation onset by contraction of the 
rectus femoris muscle45. Hence, θ2 ≈ θ1 provides a good measure of the ankle across the ankle joint. The distri-
bution of ankle–hip angle θ2 and the difference between the ankle–shoulder and the ankle–hip angles ( θ3 − θ1 ) 

(9)θi = arctan

(

xi(t)− x0(t)

zi(t)− z0(t)

)

,

Figure 6.   Measured tilt angles. (a) Absolute tilt angles: ankle–knee ( θ1 ), ankle–hip ( θ2 ), ankle–shoulder ( θ3 ) and 
ankle–head ( θ4 ) angles. (b) Average tilt angle of the body used for the single inverted pendulum model. (c,d) 
Average and variations of the RMS values of the angles across the ankle ( ∼ θ2 ) and the hip ( ∼ θ3 − θ2 ) for the 
individual trials per subjects for PA (c) and AP (d) perturbations.
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are shown in Fig. 6. In average, about 75% of the corrective motion takes place at the ankle joint and only ∼ 25% 
at the hip joint. Correlation between the angle across the ankle joint ( θ2 ) and the ankle–hip angle ( θ3 ) for all 
subjects were above 0.9, which reflects that corrections at the ankle and hip joints are performed in phase. These 
observations suggest that a single inverted pendulum model can be used to capture the main characteristics of 
postural sway30,33,34,50. The tilt angle associated with the single pendulum model of the body was calculated as the 
average of the ankle–hip, ankle–shoulder and ankle–head angles:

Parameters for the mechanical model.  The dynamic parameters for the mechanical model was esti-
mated using anthropometric data based on the mass and the height of the subjects. The mass moment of inertia 
with respect to the ankle joint was calculated as JA = JG +mh2 where JG = 1

12νmℓ2 , ℓ is the total body height 
and ν = 0.657.

Estimations for the passive ankle stiffness ratio kt/mgh ranges between 0.44 and 0.91 and it is typically smaller 
for larger rotations58–61. For the calculations, we set an upper estimate kt = 0.91mgh58 and the validity of the 
results is also checked for a lower estimate kt = 0.67mgh59.

Parameter estimation.  The control parameters p, d and the reaction delay τ were estimated using a cost 
function constructed as the integral of the residual of the model equation (3)  namely,

The estimated control parameters were assessed by minimizing the residual R. First, R was calculated for a series 
of fixed τ values over the interval τ ∈ [0, 0.4] s with resolution �τ1 = 0.025 s and the best fitting parameters p and 
d were determined as a result of a linear algebraic problem. Then τ was swept on a refined grid with �τ2 = 0.005 s 
in the vicinity of the previously best fitting τ value. The reason for such a two-step parameter estimation was that 
minimization of R with respect to p, d and τ at the same time requires a nonlinear searching algorithm, while 
minimization with respect to p and d for a fixed delay τ gives a linear problem. Furthermore, the value of the 
reaction delay is bounded between ∼ 100 and ∼ 200 ms47–50, while the values of the control gains may vary to a 
larger extent. The result of the fitted control gains and the average reaction delay are shown in Fig. 3.
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