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Abstract

Antibodies that recognize commensal microbial antigens may be cross reactive with a part

of the human immunodeficiency virus (HIV) envelope glycoprotein gp41. To improve under-

standing of the role of the microbiota in modulating the immune response to HIV vaccines,

we studied the associations of the gut microbiota composition of participants in the HIV Vac-

cine Trials Network 096 clinical trial with their HIV-specific immune responses in response

to vaccination with a DNA-prime, pox virus boost strategy designed to recapitulate the only

efficacious HIV-vaccine trial (RV144). We observed that both levels of IgG antibodies to

gp41 at baseline and post-vaccination levels of IgG antibodies to the Con.6.gp120.B, ZM96.

gp140 and gp70 B.CaseA V1-V2 antigens were associated with three co-occurring clusters

of family level microbial taxa. One cluster contained several families positively associated

with gp41-specific IgG and negatively associated with vaccine-matched gp120, gp140 and

V1-V2-specific IgG responses. A second cluster contained families that negatively associ-

ated with gp41 and positively associated with gp120, gp140 and V1-V2-specific IgG

responses. A third cluster contained microbial groups that did not correlate with any immune

responses. Baseline and post-vaccination levels of gp41 IgG were not significantly corre-

lated, suggesting that factors beyond the microbiome that contribute to immune response

heterogeneity. Sequence variant richness was positively associated with gp41, p24,

pg140 and V1-V2 specific IgG responses, gp41 and p24 IgA responses, and CD4+ T cell

responses to HIV-1 proteins. Our findings provide preliminary evidence that the gut micro-

biota may be an important predictor of vaccine response.
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Introduction

The gut microbiota modulates the immune system and its response to pathogens and vaccines

[1–3]. The (HIV-1) envelope glycoprotein 41 (gp41) is a target recognized by B cell epitopes

during natural infection and specific GP41 antibodies are capable of neutralizing the virus,

representing a natural vaccine target [4]. It has been repeatedly observed that many uninfected

persons have gp41-reactive IgA and IgG before vaccination or infection [5] and emerging evi-

dence suggests that antibodies recognizing gp41 can cross-react with commensal bacteria in

the gut [6,7]. A recent HIV-1 vaccine efficacy trial of a multiclade gp140 DNA-prime and

recombinant adenovirus type 5 (rAd5) boost elicited a dominant gp41-reactive antibody

response that was non-neutralizing and cross-reactive with the intestinal microbiota [7]. In

these studies the taxonomy of the bacteria eliciting the response were not identified as bacteria

from stool were grown under anaerobic and aerobic conditions, proteins were extracted and

pooled, and antibody binding to this pool was tested [7,8]. Antibodies recognizing gp41 have

been shown to cross react with RNA polymerase from E. Coli, but may bind other proteins

from other bacteria [6]. It remains an open question whether pre-existing gp41-reactive and or

other pre-existing HIV-1-crossreactive immune responses mediated by the microbiota directly

influence the vaccine-induced response. The gut microbiota has been shown to associate with

vaccine responses targeting several pathogens [9–11], though not, to our knowledge, HIV.

The RV144 vaccine efficacy trial showed that an HIV-1 Env containing pox-vector prime

and bivalent recombinant Env gp120 boost provided partial efficacy against HIV-1 infection

[12]. Numerous follow-up studies now support the hypothesis that Env V1-V2-specific IgG

were associated with decreased risk of infection among vaccine recipients [13–15]. Follow-up

analyses suggest that efficacy was >60% from 3–6 months after the first vaccination, but

waned over the subsequent 6–12 months [16], suggesting that improved antibody durability

may improve vaccine efficacy.

The HIV Vaccine Trials Network (HVTN) 096 study [17,18] evaluated several pox prime,

gp120 boost regimens with the objective of improving the immune responses elicited by the

RV144 vaccine. Co-administration of AIDSVAX1 B/E a gp120 protein, with either a DNA

plasmid or vaccinia virus containing DNA (NYVAC) encoding Env, Pol, Gag and Nef HIV-1

proteins elicited V1-V2-specific and gp120-specific IgG responses, but there was substantial

heterogeneity in the response magnitude and durability among vaccine recipients. An issue

with the HVTN 096 study was that the NYVAC immunogen was contaminated with myco-

plasma [19], however the vaccine elicited robust Env-specific antibody responses and the

study generated high quality immunogenicity data.

A critical goal of ongoing HIV-1 vaccine research is to identify factors that influence the

heterogeneity in intersubject vaccine response, and the microbiota is one factor that may be

involved. Vaccine induced changes in the microbiome have recently been associated with

HIV/SIV (SHIV) protection in a non-human primate challenge study, and protection from

SHIV infection was notably independent of the measured vaccine-induced immune responses

[20]. As part of HVTN 096, the microbiota was sampled from the rectal wecks of a subset

(n = 21) of the participants. Here, we examined the association between the composition and

richness of the gut microbiota and the HIV-1 immune responses of these participants. We

hypothesized that the levels of Env gp41-reactive antibody at baseline and the levels of vaccine-

induced antibody would be associated with the bacterial composition of the gut. A principal

challenge with a large multivariate dataset is to identify significant patterns without identifying

spurious correlations. To mitigate against this possibility, we applied several different compu-

tational methods providing complimentary perspectives on the data, and constrained testing
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pre-specified classes of immune response. Using these methods, we observed correlates of vac-

cine protection that associated with the participants microbiota.

Materials and methods

Study design

HVTN 096 (ClinicalTrials.gov NCT01799954) was designed to test the safety and priming abil-

ity of either NYVAC-HIV-PT-1/NYVAC-HIV-PT-4 (hereafter NYVAC); or DNA-HIV-

PT124, a trivalent bare DNA plasmid either alone or in combination with a bivalent recombi-

nant Env gp120 protein boost (AIDSVAX1 B/E) [17,18]. The study contained four experi-

mental groups each with primes administered at months 0 and 1, and boosts administered at

months 3 and 6. Primes for each of the four experimental groups were (T1) NYVAC, (T2)

NYVAC + AIDSVAX, (T3) DNA plasmid, (T4) DNA plasmid + AIDSVAX. In all treatments,

the boost was a combination of NYVAC and AIDSVAX. An additional subset of control par-

ticipants were administered placebo (Sodium chloride 0.9% solution for NYVAC placebos and

600mcg alum/mL for AIDSVAX) [17,18]. Of these treatments, T2 and T4 appeared to have the

strongest immunogenicity effect [17], though immunogenicity effects of the other treatments

were evident as well.

We focused on immunological measurements using samples provided at three time points:

Day 0 (baseline) Month 6.5, the protocol-specified Primary Immunological endpoint (two

weeks after the final boost), and Month 12 (a durability time point). While in the original

experiment, there were 20 participants in each experimental group and 16 in the control

group, analysis of the gut microbiota and immunological measures was limited to participants

for whom both data types were available (n = 21; 7 participants in T1, 3 in T2, 6 in T3, 5 in T4;

S1 Table). We analyzed all of the rectal secretion samples that were provided and available for

microbiome analysis. Missing samples are assumed to be missing completely at random, thus

a complete case analysis, as was performed, is unbiased. Due to the limited number of samples,

data were pooled across the vaccine groups in this analysis.

Data collection

Immune response data were generated as described by Pantaleo et al. [17]. Briefly, antibody

binding was measured using the binding antibody multiplex assay (BAMA [4]). Analysis was

focused on IgG and IgA levels for a subset of BAMA antigens: gp41, gag p24, CON6 gp120 B,

ZM96 gp140 (encoded by the DNA and/or the NYVAC immunogen), and gp70-scaffolded

clade B CaseA V1-V2 protein. Intracellular cytokine staining was performed on cryopreserved

peripheral blood mononuclear cells to measure CD4+ T cell responses to vaccine-matched

peptide pools for each HIV-1 protein. The proportion of cells expressing interferon gamma

(IFNγ) and/or interleukin 2 (IL-2) was used as the magnitude of the response. Analysis was

limited to Env-specific responses summed across three pools containing Env peptides repre-

sentative of globally circulating viruses (PTE-Global[21]). Primary analysis was performed on

binarized immunogenicity data, using the median to split participants into high and low cate-

gories, in order to allow for better detection of non-linear relationships between the micro-

biota and vaccine response. Secondary analysis was applied to Box-Cox transformed data,

which was used to normalize the data and decrease sensitivity to outliers while allowing for

analysis of linear trends.

DNA was extracted from wecks that were used to sample the rectal mucosa of participants

to determine the gut bacterial composition (Supplement). Samples from the earliest available

sample (day 0 for 3 participants, month 6.5 for 11 participants and month 12 for 7 participants;

S1 Table) were amplified with barcoded primers that targeted the hypervariable sequence
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containing V3-V4 region of the 16S rRNA gene and sequenced on a Roche 454 [22]. Bacterial

sequence data were demultiplexed, binned into sequence variants, given putative taxonomic

identities, phylogenetic relationships between the sequences were ascertained and taxonomic

clustering was carried out on those identities (Supplement).

Analysis of bacterial community structure and its relationship to vaccine-

induced antibody production

A two-tiered approach was used to investigate the relationship between bacterial community

structure and immune responses. We employed “global” tests that identified whether overall

community structure related to each immunological measurement and “local” tests, condi-

tional on a significant global effect, to identify individual bacterial taxa underlying the effect.

We focused the analysis on immunological responses that were detectable at baseline as well as

post-vaccination responses that were representative of the vaccine-matched humoral or cellu-

lar response, including Env V1-V2-specific responses that previously correlated with reduced

risk of infection in the RV144 HIV vaccine trial. We tested three classes of immune response:

1. Antibody binding (BAMA assay) to vaccine-matched Env gp120 (Con.6.gp120.B) and

gp140 (ZM96.gp140) antigens as well as to the Env V1-V2 antigen that was a correlate of

risk in the RV144 study (gp70 B. CaseA V1-V2) [13].

2. Antibody binding to two HIV-1 proteins, gp41 and p24, which, in the HVTN 096 study

[17] were detectable at baseline the absence of known HIV-1 or vaccine exposure.

3. CD4+ T cell response to stimulation with pools of HIV-1 Env peptides (PTE-global). Env-

specific CD4+ T cell responses were associated with reduced risk of infection in the RV144

study [23].

To describe bacterial community variability, weighted UniFrac distance was calculated

between all pairs of participants. Metric multidimensional scaling (MDS), also known as prin-

cipal coordinates analysis, was conducted on these weighted UniFrac distances and site scores

for each axis thereof were extracted. We refer to the first ten of these weighted UniFrac MDS

axes as MDS1-10 and use MDS1 in much of our subsequent analysis. Global patterns were

identified with kernel regression [24] which detected community-level associations between

the microbiota and immune measurements (Supplement). We also quantified each partici-

pants microbial richness and identified cases in which richness was statistically associated with

each measurement, using the breakaway package [25] (Supplement).

For those immunological variables that associated with microbial community structure,

local tests were applied to identify which taxa were related to each component (Supplement).

Analysis of proportionality [26] was applied to identify co-occurring bacterial family level tax-

onomic groups, as well as to identify which of these family level groups associated with each

immunologic variable found to relate to community structure in the global tests (Supplement).

To adjust for multiple comparisons we computed false discovery rates FDR [27] from the p-

values associated with each immunogenicity measurement. FDR were thus calculated sepa-

rately for median split and box-cox transformed data. For the “global” tests, where we investi-

gated whether overall community structure associated with immune variables, statistics with

p< 0.05 and FDR< 0.2 were considered significant.

We also computed FDR for the “local” tests to control for the many species examined. At

each antigen and taxonomic agglomeration level we calculated FDR from the p-values of the

association between that antigen and each taxon of interest. With these “local” FDR calcula-

tions, our goal was to control for the many species considered, but to treat each antigen and
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taxonomic agglomeration level separately. While we do identify taxa with p<0.05 and

FDR< 0.2, due to the multiple taxonomic levels that were investigated and post-hoc nature of

these tests and the small sample size, we do not consider any specific taxa to be significantly

associated and conclude rather that they are hypotheses that require validation in future

studies.

Results

Heterogeneous immune responses before and after vaccination

As was seen by Pantaleo et al. [17], Con 6 gp120, ZM96 V1-V2 and gp140 binding IgG anti-

bodies were undetectable among all participants before vaccination (day 0). Relative to base-

line, responses to each antigen were increased at month 6.5, two weeks after the final

vaccination (Fig 1, S1A Fig), then decreased to an intermediate level at month 12. There was

substantial inter-subject variability between vaccine recipients’ 6.5-month and 12-month time

point antigen responses. In contrast to the other binding antibodies, gp41 and p24 binding

IgG antibodies were detectable at baseline with binding increased post-vaccination. Compared

to IgG, the IgA binding to gp41 and p24 varied substantially between participants at baseline

Fig 1. Concentration of antibodies among study participants whose gut microbiota was characterized through the

BAMA assay. Participants were vaccinated at four time-points, indicated by blue tick marks along x axis, following the

regimen described in the methods.

https://doi.org/10.1371/journal.pone.0225622.g001
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increased little in response to vaccination (S1B Fig). The Env-specific CD4+ T cell response

was undetectable at baseline with an increase after vaccination that attenuated by month 12,

and was variable between subjects (S1B Fig). Logistic regression analysis indicated that there

was no statistically detectable difference between participants that donated microbiome sam-

ples and those that did not for any immunogenicity parameter.

Heterogeneity in gut microbiota community structure

Sequencing of the V3-V4 region of the bacterial 16S rRNA gene yielded 2,100 to 10,843 reads

per sample. Quality filtering, denoising and chimera removal decreased the number of reads

to a final range of 2070–9688 sequences per sample. DADA2 identified 960 unique sequence

variants (SVs). We removed 31 SVs that were unidentified at the Phylum level, 7 SVs from

phyla that were found in the data set fewer than 20 times each (Verrumicrobia, Tenericutes,

Elusimicrobia and Synergistetes), and 386 SVs that were present in fewer than 10% of the sam-

ples (as suggested by Callahan et al. [28]) yielding 536 SVs for analysis. Richness varied

between participants from 151 to 441 sequence variants per sample. Confidence intervals for

the richness estimates exceeded variability between participants. These sequence variants com-

prised 5 Phyla, 12 Classes, 17 Orders, 36 Families and 92 Genus level taxonomic groups. The

participants in our dataset had microbiota broadly typical of the human gut, with most partici-

pants’ microbiota dominated by members of the Bacteroidetes and Firmicutes phyla, and

some members having strong representation from the Actinobacteria and Fusobacteria phyla

and the Proteobacteria Superphylum. Samples collected within the same participant at differ-

ent time-points were on average more similar than samples collected from different partici-

pants (p = 0.02), however there was substantial variability in the weighted UniFrac distances

both within and between participants (S2 Fig). Principal coordinates analysis of weighted Uni-

Frac distances indicated that 29.1% and 16.9% of the community structure variability was cap-

tured by the first and second (MDS1 and MDS2) principal coordinate axes (Fig 2).

Fig 2. Dissimilarities between participants’ microbiota are related to dissimilarities in gp41 antibody magnitude at baseline, and gp120 magnitude at the

final time-point. In this principal coordinates analysis, circles indicate participants. More distant circles indicate more dissimilar microbiota, as measured by

weighted UniFrac. The first axis, MDS1 represents most of the variance, and later axes, MDS2 represents less variance. The first two axes are shown here and

account for 29.1% and 17.2% of variance between participants. Positions of points in subplots are identical. Points in A are color coded by whether gp41 IgG

concentration at day 0 is greater than or equal to (high—yellow) or lower than the median (low—blue). B is color coded by the Con 6 gp120 IgG concentration.

https://doi.org/10.1371/journal.pone.0225622.g002
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Sequence variant richness did not appear to associate with weighed unifrac distance, or

with MDS1 (Fig 3A).

Bacterial community structure associated with Env-reactive IgG

To identify global associations of bacterial community structure with immunological

responses we used kernel regression, which tests if weighted UniFrac distances between par-

ticipants are associated with the differences in their immunological responses. Each test con-

sidered “binarized” data where values lower than the median were treated as zeros and those

higher than the median were treated as ones. We limited our analysis of baseline immune

responses to gp41- and p24-reactive IgG and IgA since those were the only baseline responses

with detectable levels. We found that baseline levels of gp41-reactive IgG were significantly

associated with microbial community structure (p = 0.046; FDR = 0.158, Table 1, Fig 2). As a

descriptive follow-up analysis, we also evaluated the association between baseline gp41 bind-

ing and MDS1, the first principal coordinate axis of community variability. We found that

participants with a high MDS1 score tended to have higher gp41 binding (p = 0.015,

FDR = 0.022; Table 1, Fig 2). Post-vaccine levels of gp41-reactive IgG at month 6.5 were also

associated with community structure (p = 0.047, FDR = 0.158). However, compared to base-

line gp41, the association of month 6.5 gp41 binding with MDS1 was in the opposite direc-

tion, with participants having high MDS1 scores tending to have lower gp41 binding

(p = 0.032, FDR = 0.041). At the post-vaccination time points, we also assessed the associa-

tions of antibody responses to several additional HIV-1 Env antigens. We found that month

6.5 levels of Con6.gp120 and ZM96.gp140 IgG were significantly associated with community

structure (gp120: p = 0.004, FDR = 0.073; gp140: p = 0.013, FDR = 0.135). IgG binding to

Con6.gp120 and gp70 B.CaseA V1-V2 antigens was also associated with community struc-

ture at the month 12.5 durability time-point. For each association of a post-vaccination Env-

reactive IgG we found that participants with higher MDS1 scores tended to have lower Env-

specific IgG while those with lower MDS1 scores had higher Env-specific IgG. We found no

association between the Env-specific CD4+ T cell response or any IgA measurements with

community structure.

Treating immune data as a continuous, box-cox transformed, rather than binarized vari-

ables showed similar though generally weaker correlation patterns. One notable exception was

IgG antibodies to Con.6.gp120B which showed a much stronger association (p<0.001,

FDR< 0.01) when treated as a continuous, rather than binary variable (S2 Table).

We used samples’ locations along MDS1 to aid visualization of community structure (Fig

4). Participants with low MDS1 scores had Clostridiales communities dominated by the Rumi-

nococcaceae and Peptoniphilaceae families, while participants with high MDS1 scores had

higher levels of Clostridiales Incertae Sedis XI (Fig 4B). Surprisingly, while variability along

MDS1 was evident at the family level, this variability did not extend to the genera within fami-

lies. For instance, the Clostridiales Incertae Sedis XI were primarily composed of six genera

and the relative contributions of these genera to Clostridiales Incertae Sedis XI were not associ-

ated with MDS1 score (Fig 4C).

Of the Bacteroidetes seen in this dataset, most were from Class Bacteroidia and all of those

Bacteroidia were from order Bacteroidales. The remainder of Bacteroidetes were from a small

subset of otherwise unidentified organisms. Within these Bacteroidetes, variability was also

evident along MDS1. When sorted by weighted MDS1 score, it was evident that participants

with low MDS1 scores generally had higher levels of the Family Bacteroidaceae, while partici-

pants with higher MDS1 scores tended to have higher concentrations of the family Prevotella-

ceae (Fig 4D).
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Fig 3. Visualization of the relationship between weighted unifrac distance, estimated richness and immunogenicity. A. The

relationship between weighted unifrac distance and richness shown with principal coordinates axes. Positions of points are the

same as in Fig 2, but color coding reflects species richness estimates. B. Relationship between MDS1 (x-axis), species richness, y-

axis, and median split gp41 immunogenicity at the primary 6.5 month timepoint point. Error bars indicate standard errors of the

richness estimates.

https://doi.org/10.1371/journal.pone.0225622.g003
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As a secondary analysis we used kernel regression to assess the association of the immune

responses with community structure using a Jensen-Shannon distance, which does not incor-

porate phylogenetic relationships among SVs. We noted that this analysis did not identify any

associations, however when we repeated the analysis, agglomerating SVs at the phylum, class,

order, family and genus levels some notable correlations emerged, with the strongest correla-

tions at the family level. Omnibus p-values providing a summary p-value across taxonomic lev-

els generally provided p-values that were close to, but slightly higher than, the results of the

weighted UniFrac based kernel regression (S4 Fig).

We observed a positive relationship between the richness of sequence variants and the mag-

nitude of immunogenicity responses (Table 2, S4 Table, Fig 3B).

Individual taxonomic groups were associated with gp41 and gp120-reactive

IgG binding

We assessed the association of each species-level SV with each of the IgG responses that were

found to significantly covary with the community. No species-level SVs were associated with

an IgG immune response after multiplicity adjustment. In contrast, with taxonomic agglomer-

ation, it was evident that each IgG variable was associated with multiple taxa at each of several

taxonomic levels (S5 Fig). All IgG antigen-time point combinations that were statistically

Table 1. Significance values of kernel regression tests, and McFadden’s R2 values, slope coefficients and significance values of logistic regression models show that

magnitude of response for several IgG antibodies solicited by vaccines appear to relate to the structure of the microbiota. In these tests, antibody levels were treated

as binary, median split variables. Kernel regression asked whether participants that both have high or low concentrations of the antibody or T cell pool of interest have sim-

ilar microbiota (as measured by weighted UniFrac) than participants with dissimilar concentrations of that variable of interest. Logistic regression GLMs ask whether the

weighted UniFrac axis 1 (MDS1) scores (Fig 1) of the participants are statistically related the variables of interest. The logistic regression GLM coefficients tell us of the

direction and strength of the association. R22 indicates Nagelkerke pseudo R2, p-values are calculated by permutation (Kernel regression) and directly (weighted Unifrac

Regression), and Benjamini and Holchberg FDR values [27] are calculated using the bioconductor q-value package [29]. Bold text and yellow shading indicate statistically

significant p (<0.05) and FDR (<0.20) values. Regression coefficients corresponding kernel p< 0.05 and FDR< 0.2, values are color-coded according to their sign;

blue = positive, red = negative.

Kernel MDS

Type Antigen Month P FDR P FDR R2 Coef

CD4+ Any ENV PTEG 6.5 0.251 0.493 0.218 0.125 0.093 -0.937

12 0.246 0.493 0.228 0.125 0.094 -0.920

IgA gp41 0 0.957 0.957 0.651 0.219 0.013 0.333

6.5 0.207 0.493 0.143 0.109 0.129 -1.133

12 0.746 0.933 0.855 0.259 0.002 -0.136

p24 0 0.895 0.951 0.320 0.161 0.061 0.752

6.5 0.903 0.951 0.650 0.219 0.013 -0.333

12 0.386 0.593 0.387 0.172 0.049 -0.657

IgG Con.6.gp120.B 6.5 0.004 0.078 0.002 0.011 0.497 -3.104
12 0.036 0.157 0.010 0.017 0.361 -2.289

gp41 0 0.047 0.157 0.014 0.017 0.331 2.185

6.5 0.047 0.157 0.030 0.031 0.267 -1.809
12 0.648 0.864 0.779 0.248 0.005 -0.205

gp70 B.CaseA V1-V2 6.5 0.904 0.951 0.619 0.219 0.016 -0.365

12 0.035 0.157 0.014 0.017 0.332 -2.135
p24 0 0.215 0.493 0.444 0.179 0.037 -0.567

6.5 0.418 0.597 0.397 0.172 0.047 -0.749

12 0.286 0.493 0.159 0.109 0.120 -1.085

ZM96.gp140 6.5 0.017 0.157 0.009 0.017 0.370 -2.338
12 0.296 0.493 0.162 0.109 0.118 -1.076

https://doi.org/10.1371/journal.pone.0225622.t001
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associated with the overall community, according to global tests, were also associated with

some family level taxa (p< 0.05, FDR< 0.2). Thus, subsequent analyses, were focused on fam-

ily level patterns.

We used an analysis of proportionality to better understand the community structure. In

this analysis, we determined which family level groups were positively associated with each

other according to a “proportionality” metric that is robust to compositional effects [26]. At

the family level there were three main co-occurring clusters in the data (Fig 5). One cluster

contained families that were positively associated with gp41 day 0 responses. This same cluster

also contained family level groups that were negatively associated with gp41 at the 6.5-month

time point, and groups that were positively associated with Con.6.gp120.B, ZM96.gp140 and

gp70 B.CaseA V1-V2 levels. In contrast, families in the other clusters were negatively associ-

ated with gp41 and positively associated with the other immune variables. A third cluster

appeared to be independent of the measured immune responses.

Discussion

The statistical association between the microbiome and gp41 specific IgG levels at the base-

line visit in our study supports previous indications that the microbiome shapes immune sys-

tem development and function (e.g. [30]). To our knowledge, this paper is the first to identify

a correlation between baseline gp41 binding IgG antibodies and the microbiome. The

Fig 4. The microbiota vary between participants and can be described by weighted UniFrac axis 1 (MDS1). Variations along this axis are evident at the family

level within certain classes and orders, but are less evident at the phylum or genus level. These stacked bar plots show relative abundance of taxonomic groups

composing participants’ microbiota. In all cases participants are ordered from left to right according to where their microbiota falls along weighted MDS1 (Fig 2).

A All taxa at phylum level. B. All families within Order Clostridiales, all of which fall within Class Clostridia. C. All families within Order Bactereoidales, all of

which are in the Class Bacteroidetes. D. Genera within the family Clostridiales Incertae Sedis XI.

https://doi.org/10.1371/journal.pone.0225622.g004

Human gut microbiota and HIV vaccine response

PLOS ONE | https://doi.org/10.1371/journal.pone.0225622 December 23, 2019 10 / 17

https://doi.org/10.1371/journal.pone.0225622.g004
https://doi.org/10.1371/journal.pone.0225622


observed association between the richness and community structure of the microbiota and

immunogenicity of the NYVAC containing vaccine regimens expands on previous studies

suggesting that the microbiome influences the immune system and is associated with vaccine

immunogenicity.

Both phylogenetically informed and phylogenetically agnostic methods are standard in the

analysis of microbial beta diversity [31,32], and have been shown to provide complementary

information in some systems [33]. Our analysis of the relationship between taxonomic

agglomeration and strength of associations between immunogenicity and microbiome (Sec-

tion 2.4). demonstrated that without a phylogenetic informed distance metric like UniFrac,

taxonomic agglomeration was necessary to see patterns. That is, we detected no relationship

between species level SVs and immunologic parameters when we ignored their phylogenetic

relationships. In contrast, when we accounted for phylogeny with methods based on weighted

UniFrac [34] or phylogenetic agglomeration of SVs, relationships between community struc-

ture and vaccine response were evident.

Groups of co-occurring organisms were observed both as proportional clusters of family

level taxa (Fig 4) and as metric MDS axes in weighted UniFrac space (Fig 2). These groups

were associated with vaccine response, as measured by the production of a variety of antigen-

specific antibodies, and were inversely correlated with baseline gp41 antibody levels. While

our statistical analyses identified just a few organisms within these groups as relating to immu-

nogenicity, given the small sample size it is possible that other members of the cluster are also

associated with the immune response.

The baseline and vaccine-induced IgG response were inversely associated with the micro-

biota (Table 1, Fig 4). Within the family level cluster analysis, groups of families that were asso-

ciated with high concentrations of gp41-reactive IgG were also associated with low levels of

Table 2. Coefficients, R2 values and significance values of the relationship between alpha diversity and median-split immunogenicity responses calculated using the

betta function in breakaway. Highlighting and FDR calculations were applied as described in Table 1. R2 values were calculated from the pearson correlation coefficient

between alpha diversity and median split immunogenicity values.

Type Antigen Month Coef R2 P FDR

CD4+ Any ENV PTEG 6.5 40.69 0.033 0.041 0.091

12.0 44.76 0.006 0.013 0.037

IgA gp41 0.0 -1.84 0.032 0.946 0.946

6.5 16.30 0.145 0.534 0.628

12.0 68.38 0.211 0.017 0.042

p24 0.0 5.46 0.007 0.827 0.871

6.5 56.58 0.16 0.010 0.033

12.0 32.85 0.014 0.168 0.280

IgG Con.6.gp120.B 6.5 21.04 0.003 0.348 0.535

12.0 17.55 0.001 0.440 0.587

gp41 0.0 17.12 0.001 0.503 0.628

6.5 76.38 0.247 0.001 0.010

12.0 61.02 0.094 0.009 0.033

gp70 B.CaseA V1-V2 6.5 -5.83 0.006 0.812 0.871

12.0 70.51 0.062 0.000 0.000

p24 0.0 -30.85 0.033 0.129 0.235

6.5 60.60 0.117 0.010 0.033

12.0 47.26 0.234 0.074 0.148

ZM96.gp140 6.5 21.89 0.036 0.387 0.553

12.0 66.78 0.095 0.002 0.013

https://doi.org/10.1371/journal.pone.0225622.t002
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Fig 5. Family level groups fall into three proportional clusters, two of which are associated, in opposite ways, with magnitude of IgG responses as

demonstrated by a Heat-map of F [26], a measure of proportionality between different family level groups. In the upper panel (heatmap), each row and

column are a family level taxon. Redder cells indicate lowerF scores, which demonstrate higher statistical association between the pair of families. Three

proportional clusters (surrounded by squares) can be seen. The dots in the lower panel (dot-grid) indicate IgG binding antibodies specific to each antigen at each

time points (y-axis) that associate with each family level taxon (x-axis) (p< 0.05, FDR< 0.2). Blue dots indicate that a family level group is positively associated

with a particular antibody response at a given time point, while red dots indicate negative associations. Slope coefficients of these logistic associations are reported

in S6 Fig. Bacterial families in the top right cluster associate positively with magnitude of response to the vaccine target antigens Con.6.Gp120.B, gp70 B.Case A

V1-V2, and ZM96.gp140 and gp41 at month 6.1 and negatively to gp41 at baseline. The middle cluster associate negatively with IgG response to vaccine target

antigens and positively to gp41 baseline response. The lower left cluster does not appear to associate with any of the antigens.

https://doi.org/10.1371/journal.pone.0225622.g005
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gp120-reactive IgG at the 6.5 and 12-month time points. Surprisingly, bacteria associated with

high baseline gp41 IgG were associated with low month 6.5 gp41 IgG. Despite these opposite

correlations with the microbiota, direct assessment of the baseline and post-vaccine correlation

showed that levels of baseline gp41-reactive IgG were not predictive of any of the post-vaccine

IgG responses. Such a non-equality is possible because the correlations are weak and not all of

the variability can be explained by the microbiota measurements.

With 21 individuals providing both immune response and microbiota data, the study had

limited power. Furthermore, the small sample size limited detection of “local” level patterns

and forced us to make broader comparisons by looking at proportional family level groups

and weighted UniFrac measurements that summarize “overall” community structure rather

than specific organisms. Future studies with larger sample sizes will be needed to identify the

specific bacterial taxa underlying the patterns we observed.

The false discovery rate controls for the number of false positives that fall below that cutoff,

and indeed up to 20% of our global observations may have been false positives. While some of

our observations may be spurious, our broad findings, with the above caveats about samples

size, indicate that immunogenicity variables do associate with microbiota.

Our study used amplicon analysis, which is subject to primer bias which can lead to vari-

ability in the observed presence and abundance of some sequence variants. Indeed, we recog-

nize that whole genome shotgun sequencing can provide much of the information generated

here with less bias, and that it may also provide additional information about microbial traits.

Indeed, we advocate using newer technologies in subsequent analysis. At the time the initial

analysis was performed as well as in the present day, however amplicon analysis provides sub-

stantial cost savings. Furthermore, we were focused on looking at whether differences in the

microbiota appeared to associate with immunogenicity, and we expect that this core finding

would hold regardless of sequencing method.

A key limitation of the HVTN 096 study overall was that, near completion of the clinical

trial, the NYVAC vaccine was discovered to be contaminated with mycoplasma [17,19]. This

contamination could modulate the interaction between the immune system and microbiota in

this study in a way that it might not with vaccines in the future.

While the microbiome has been shown to impact efficacy of oral vaccines [9,10,35] this is

the first study, to our knowledge, to demonstrate statistical association between microbiota

structure and immunogenicity of an HIV vaccine, as well as the first to demonstrate the effect

of the microbiota on a vaccine delivered parenterally. Future vaccine development studies,

especially HIV-1 vaccine studies, should consider the microbiome as a potential correlate of

immunogenicity or correlate of protection.

Supporting information

S1 Fig. Magnitude of vaccine responses over time for all study participants. A Concentra-

tion of IgG binding antibodies over time and B concentration of IgA binding antibodies, and

Env specific CD4+ Helper cells among all study participants, including those without micro-

biota sequencing.

(PDF)

S2 Fig. Variability in microbiota within and between participants. Weighted unifrac dis-

tances between samples taken within the same participant at different time points (“within”),

and between different participants from all time points (“between)—open circles. Black

squares indicate the mean unifrac distance for the “within” and “between” participants sam-

ples. Violins show the bootstrapped distributions of those means. Samples taken between par-

ticipants have a weighted UniFrac distance that is 0.087 larger than those taken from within
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the same participant (bootstrapped 95% confidence interval: 0.012–0.154; permutation based

p = 0.02).

(PDF)

S3 Fig. Q-Q Plots of kernel regression p-values. Q-Q Plots comparing observed to expected

kernel regression p-values for both (A) logistic (Corresponding to Table 1) and (B) gaussian

glm models (corresponding to S2 Table). The diagonal is the 1:1 line. Points below the diago-

nal indicate associations with p-values that were lower than expected from a uniform distribu-

tion of p-values.

(PDF)

S4 Fig. Relationship between taxonomic aggregation and statistical significance of micro-

biota-vaccine associations. Kernel regression p-values of using kernels calculated from Jen-

sen-Shannon distance matrices calculated from SV tables that have been agglomerated to

different (Phylum through Species level) taxonomic levels. Squares indicate omnibus p-values,

which indicate whether there is a statistically meaningful hit at any taxonomic level, adjusting

for multiple comparisons [2]. Triangles indicate kernel regression p-values for weighted Uni-

Frac scores, and are identical to ones reported in Table 1 and S1 Table.

(PDF)

S5 Fig. Relationship between taxonomic aggregation and statistical significance of individ-

ual microbe—Vaccine associaitons. Statistical significance of regressions of taxa agglomer-

ated at a range of taxonomic levels, against each antibody found to relate to community

structure in Table 1 and S1 Table. We report both A p-values and B False discovery rates for

each. False discovery rates are calculated from p-values at each antibody-taxonomic level com-

bination. Horizontal lines indicate significance thresholds of 0.2 (gray), 0.05 (blue) and 0.01

(green).

(PDF)

S6 Fig. Coefficients of statistically significant, family level, microbe-vaccine associations.

Coefficients (y-axis) of general linear models relating family level taxa (x-axis) to antibody con-

centrations for which there was at least one statistically significant hit in S5 Fig. Error bars rep-

resent two standard errors of the coefficient. Colors and shapes indicate whether models have

p-values < 0.05 and FDR < 0.2, respectively. Only taxa involved in at least one statistically sig-

nificant association are shown. These same families are indicated with dots in Fig 4 when they

are statistically significant.

(PDF)

S1 Table. Stool donors by time and treatment. Numbers of participants per vaccine treat-

ment group (columns), and time points from which their microbiota were collected for this

study (rows). Treatment codes, T1-T4, are described in Section 1.1.

(PDF)

S2 Table. Gaussian linear model results. Significance values of kernel regression tests, as well

as significance values and slope coefficients of gaussian general linear models. This table mir-

rors Table 1, with the exception that here, antibody concentrations are treated as continuous,

box-cox transformed variables, rather than binomial, median split variables. Kernel regres-

sions ask whether participants that both have high or low concentrations of the antibody or T

cell pool of interest have more similar microbiota (as measured by weighted UniFrac) than

participants with dissimilar concentrations of that variable of interest. GLMs ask whether the

weighted UniFrac axis 1 (MDS1) scores (Fig 1) of the participants are statistically related the

variables of interest. Coefficients show the strength and direction of the association. R2
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indicates Nagelkerke pseudo R2. p-values are calculated by permutation (Kernel regression)

and directly (weighted Unifrac Regression). BH-FDR values are calculated from the p-values

using the bioconductor q-value package. Yellow highlighting indicates statistically significant

p (<0.05) and FDR (<0.20) values. Regression coefficients corresponding kernel p< 0.05 and

FDR< 0.2, values are color-coded according to their sign, red = negative, there are no positive

coefficients meeting our significance thresholds.

(PDF)

S3 Table. Only MDS1 of the microbiota predicts immunogenicity. p-values of logistic

regressions between UniFrac PCoA components 1–10 (MDS1-MDS10) and the median split

transformed concentrations of the antibodies described in Table 1. MDS1 is associated with

several immune responses (p< 0.05, FDR< 0.2), the other MDS components are not.

(PDF)

S4 Table. Microbial alpha diversity’s relationship to continuous, rather than median split

discrete, immunogenicity variables. Coefficients, R2 values and significance values of the rela-

tionship between alpha diversity and box-cox transformed and then z-normalized immunoge-

nicity responses calculated using the betta function in breakaway. Highlighting and FDR

calculations were applied as described in Table 1. R2 values were calculated from the pearson

correlation coefficient between alpha diversity and median split immunogenicity values.

(PDF)

S1 Methods. Supplemental methods section.

(PDF)
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