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Abstract

Plant-pollinator networks have been widely used to understand the ecology of mutualistic

interactions between plants and animals. While a number of general patterns have been

identified, the mechanisms underlying the structure of plant-pollinator networks are poorly

understood. Here we present an agent based model (ABM) that simulates the movement of

bees over heterogeneous landscapes and captures pollination events, enabling the influ-

ence of landscape pattern on pollination networks to be explored. Using the model, we con-

ducted a series of experiments using virtual landscapes representing a gradient of forest

loss and fragmentation. The ABM was able to produce expected trends in network structure,

from simulations of interactions between individual plants and pollinators. For example,

results indicated an increase in the index of complementary specialization (H2’) and a

decline in network connectance with increasing forest cover. Furthermore, network nested-

ness was not associated with the degree of forest cover, but was positively related to forest

patch size, further supporting results obtained in the field. This illustrates the potential value

of ABMs for exploring the structure and dynamics of plant-pollinator networks, and for

understanding the mechanisms that underlie them. We attribute the results obtained primar-

ily to a shift from specialist to generalist pollinators with increasing forest loss, a trend that

has been observed in some field situations.

Introduction

Pollination is a critically important process for the functioning of most terrestrial ecosystems,

and animal-pollination is also widely recognised as an ecosystem service of significant value to

humanity. Some 75% of food crops and around 90% of wild flowering plants depend at least to

some extent on animal pollination [1, 2]. Evidence suggests that pollination services may con-

tribute more than €200 billion annually to the global economy [2, 3], and that global food
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production is becoming increasingly dependent on animal pollination [4, 5]. At the same

time, many pollinators are increasingly under threat from human activities, including climate

change, habitat loss and use of insecticides [2, 6]. As a result, a lack of wild pollinators is lead-

ing to a widespread yield gap in crop production, which is negatively affecting rural livelihoods

[7]. Land management approaches are therefore required that can support and enhance popu-

lations of pollinators in agricultural landscapes [2, 7]. Such approaches should be based on an

understanding of the ecological factors affecting the dynamics, structure and function of polli-

nator communities, at both local and landscape scales [8]. Alteration of landscapes by human

activity can have major impacts on the distribution of nesting and foraging resources for wild

pollinators such as bees, which can potentially affect their ability to pollinate agricultural

crops, yet little is currently known about these processes [9,10].

One of the principal approaches to understanding the ecology of pollinator communities

involves the analysis of plant-pollinator networks [11]. Such networks are typically constructed

by recording the number of pollinator visits to flowers, then by considering both plants and

pollinators as network nodes, with pollination interactions forming the links between them. A

large number of studies of pollinator networks have now been undertaken, which have pro-

vided a variety of insights. For example, many networks have been found to be nested, with the

core of the network comprised of highly connected generalist species, and more specialist spe-

cies interacting with only a subset of these generalist species [12]. A further generalisation is

that the number of interactions in such networks tends to increase with network size, follow-

ing a power-law relationship [12]. However, relatively few studies have been conducted into

the impacts of habitat loss and fragmentation on the structure of pollinator networks [9, 13].

For example, Aizen et al. [14] found that mutualistic interactions were lost non-randomly as

habitat area declined, as generalist species were more likely to persist than relatively specialist

species. Plant-pollinator interactions present in smaller habitat patches tended to be nested

subsets of those recorded in larger patches. Similarly, Burkle et al. [15] observed non-random

loss of bee species occurring as a result of habitat loss over a period of 120 years, with relatively

specialised species being most vulnerable. This was associated with a reduction in redundancy

in the network structure and a weakening of interaction strengths [15].

Despite the valuable insights provided by analysis of pollinator networks, their construction

faces a number of challenges and limitations. Principal among these is the difficulty of detect-

ing all the interactions that take place between plant and pollinator species, which often

requires a substantial investment of time and effort, particularly in species-rich communities

[16]. Consequently, detection of species and the interactions between them can often be par-

tial, leading to a potential source of measurement error. Networks are therefore often charac-

terised by an unknown degree of uncertainty, relating to the extent of under-sampling, which

can hinder interpretation of the results obtained [16, 17]. The ecological understanding gained

from pollinator networks may also often be limited by a lack of information about life history

traits and ecological functions of the different species involved [18]. While a number of statisti-

cal approaches have been developed to overcome such limitations [19], these can also be

demanding in terms of the amount and type of independent data required [16].

As a result of potential sampling error, and the difficulties of achieving a comprehensive

sample of plant-pollinator interactions, the mechanisms responsible for variation in the struc-

ture and functioning of pollinator networks remain unclear [17]. There is therefore a need to

develop spatio-temporally explicit methods that can be used to estimate or eliminate sampling

effects, while also enabling the simultaneous evaluation of multiple mechanisms [17]. Poten-

tially, agent based models (ABM) could be of value in this context. Such models are character-

ised by the explicit representation of individuals as autonomous decision-making ‘agents’,

which can interact with each other and their environments. As complex behaviour can arise
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from very simple ABMs, such models are attracting increasing interest from researchers as a

tool for exploring the dynamics of ecological systems [20]. A key advantage of this modelling

approach is its ability to capture emergent phenomena of systems from relatively simple sets of

rules governing individual behaviour. ABMs are also highly flexible, and can provide a rela-

tively natural description of a system [21].

A number of previous studies have employed ABM approaches to simulate the movement

of individual bees and the process of pollination, particularly in honeybees (e.g. see [22–24]).

For example, Becher et al. [25] describe a software tool, BEESCOUT, which enables explora-

tion of how bees explore a landscape and distribute their scouting activities over time and

space. As part of this software tool, an ABM determines the detection probabilities of food

patches by bees, using different search strategies. Outputs from this model can be used as

input for the BEEHAVE model of honeybees, which can be used to explore bee colony dynam-

ics in response to different stressors [26]. A further example is provided by Qu et al. [27], who

describe EcoSimInGrid, a spatially explicit agent-based model designed to simulate the effects

of shared pollination services on plant communities, enabling the relative effects of shared pol-

lination and habitat productivity on community diversity to be analysed. However, we are not

aware of any other ABM that has been explicitly designed to simulate the structure of plant—

pollinator networks.

Here we describe a spatially explicit ABM of bee foraging and flower visitation, which simu-

lates the movement of individual bees across a heterogeneous landscape, and captures the

number of visits made by members of a community of bee species to flowers of different plant

species. Model outputs can be used directly to analyse the structure and dynamics of plant-pol-

linator networks in a similar way to the approaches used for analysing field data. We apply

the model to analysis of pollinator networks along gradients of forest loss and fragmentation,

using the Atlantic Forests of Brazil as a case study. This region is of global conservation impor-

tance owing to the high species richness and endemicity of both plant and insect species, as

well as of many other species groups [28]. The area has suffered from intense deforestation in

the past, and remaining forest areas are highly fragmented; more than 80% of the fragments

are<50 ha, almost half the remaining forest is<100 m from a fragment edge, and the mean

distance between fragments is >1.4 km [28]. Evidence suggests that forest fragments are losing

species through the disruption of key ecological processes such as pollination and seed dis-

persal [29, 30]. Recent field-based research in this region has documented a number of rela-

tionships between the extent of forest loss and the structure of pollinator networks [31, 32].

Here we examine whether these relationships are robust, such that they can be replicated in a

virtual environment where sampling of both plant and bee communities is comprehensive,

rather than being the consequence of inadequate sampling in the field. Specifically we use the

ABM to test the hypothesis that increasing forest loss and fragmentation reduces network size,

increases nestedness and reduces complementary specialization (H2') of pollinator networks,

by differentially affecting the relatively specialized interactions that predominate in intact for-

est [14, 32]. In addition, we hypothesize that the relationships between network characteristics

and patterns of forest loss may be non-linear and characterised by threshold responses [33].

Materials and methods

Model specification

The model was developed using the Netlogo programming environment [34], a widely used

platform for developing ABMs [20] that has the advantage of easily incorporating GIS data.

The model was constructed using a world of dimensions 100 x 100 Netlogo grid cells, within

which bees can search for food sources. In this study, a grid cell (pixel) was assumed to

Deforestation impacts on pollinator networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0209406 December 31, 2018 3 / 17

https://doi.org/10.1371/journal.pone.0209406


represent an area of 10 x 10 m, providing an overall landscape of 1 km2 in area. Potentially,

landscape maps could be imported in a number of different formats, including image files (e.g.

BMP, JPG or PNG). Here maps were imported as GIS files in ASCII format, using the Netlogo

GIS extension. The maps employed a binary classification of land cover, with categories of ‘for-

est’ and ‘open’ (non-forest) vegetation. Floral resources were located by randomly selecting

individual Netlogo grid cells, with different flower species associated with different grid cell

colours, and with ten grid cells of each flower species. A total of 20 flower species were incor-

porated in the model simulations described here; ten were restricted to forest and ten to open

vegetation. The world was set not to wrap either vertically or horizontally.

Bees were created as an additional class of agents, which were able to move across the land-

scape while foraging for floral resources. A total of 20 bee species were created, represented by

different colours. Each species belonged to one of three functional groups, with contrasting

behaviour: ‘specialist’, ‘generalist’ and ‘super-generalist’ (see S1 File), with nine, eight and

three species in each group, respectively. The nesting location of each species was defined as

the starting point of the foraging journeys undertaken by the bee agents. Based on preliminary

field observations, nesting locations of specialist species were located randomly within forest

vegetation only, whereas nesting locations of generalist and super-generalist species were

located randomly across the entire landscape, irrespective of vegetation type.

The model was designed to simulate foraging flights undertaken by bees in search of nectar

and pollen resources. Bee movement was simulated as a correlated random walk. Turning

angles were randomly drawn from a distribution derived from empirical values obtained for

searching bumblebees [25]. At each timestep (tick), the bees moved forward one step. The ste-

plength was drawn randomly from a normal distribution, the mean of which could be speci-

fied by the user using a slider on the model interface. For the simulations presented here, a

mean step length of 2 was selected, representing 20 m; this choice was based on our prelimi-

nary field observations. The total movement distance during foraging flights was determined

by the energy levels of each individual bee agent. Initial energy values differed between the bee

functional groups, with values of 200, 100 and 50 adopted for super-generalist, generalist and

specialist species respectively (see S1 File). Bee functional groups also differed in terms of

which flower species could be visited. Whereas specialist bee species could only visit a single

flower species, generalist species could visit four, and super-generalists eight. These values

were guided by empirical data [31, 32]. For the latter two groups, bee species were allocated

randomly to individual plant species (see S1 File).

The amount of energy used during the bee flight was proportional to the distance moved at

each timestep, with a single unit representing the amount of energy required to move a dis-

tance of one cell (10 m). As a result, total flight length was higher for super-generalist than for

generalist species, and higher for generalist than specialist species, reflecting field observations.

Once the energy had been used, the foraging flight was terminated; the return flight to the hive

was not simulated since our intention was to focus on recording bee-plant interactions.

The model was designed to capture flower visitation events, which took place when a bee

entered any grid cell that was defined as an appropriate flower for the focal bee species accord-

ing to bee profiles (Table C in S1 File). In nature, bees will detect floral resources through a

combination of visual and olfactory cues, but it is unclear at what range such cues have an

effect, or how this varies among bee species. The model therefore assumed no detection by the

bee agents until the bee was coincident with the flower grid cell, following Becher et al. [25].

The number of visits of each bee species to each flower species was summed for all of the indi-

viduals present in each simulation. The presence of different flower species varied between the

different experiments conducted (see Tables A and B in S1 File), but the overall density of both

flowers and bees remained constant for all simulations (10 individuals of each bee species and
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20 individuals of each flower species). A bee could potentially visit more than one flower on an

individual foraging flight. Code for the model is provided in S2 File.

Model experiments

Model experiments were conducted to evaluate the impact of forest loss and fragmentation on

network structure by creating gradients of deforestation. Eleven different values of forest cover

were examined, namely 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100%. Each

deforestation gradient was replicated ten times, producing 110 unique input maps in total. All

simulations were continued until foraging flights of all bees were complete (150 ticks).

The software program GradientLand [35] was used to generate land cover maps, which

were imported into Netlogo to conduct the experiments. GradientLand is designed to simulate

sets of habitat loss gradients as random and fractal neutral landscapes. It differs from other

landscape generator programs by producing a sequential gradient over the same original land-

scape, which is designed to mimic the sequential habitat removal processes observed in the

real world. Patches of a particular habitat type can only lose habitat from patch edges, and as a

result the overall patch shape and fractal pattern are preserved. GradientLand produces land-

scapes with relatively stable pixel aggregation and patch shapes along gradients of habitat loss,

especially for landscapes with highly clumped habitat patches (high values of H, the Hurst

exponent used to generate base fractal surfaces [35]). Here an H value of 0.9 was used in all

simulations, which is typical of current landscapes in the Atlantic Forest region of Brazil (D.

Boscolo, unpublished data). The default value of five was used as a random seed. Sensitivity

analysis was conducted by repeating model runs with different allocation of bee to flower spe-

cies (see Table D and Fig B in S1 File).

Data analysis

The maps generated by GradientLand were analysed using FRAGSTATS v.4 [36] to character-

ise landscape pattern. We used four class metrics as generated by FRAGSTATS, following Fer-

reira et al. [31, 32]: (1) Forest Cover (PLAND), calculated as the percentage of forest cover in

the landscape; (2) Landscape Connectance Index (CONNECT), which represents the percent-

age of connections between forest patches less than 50 m apart (considered as a functional con-

nection based on bees’ foraging flight capabilities), relative to the maximum possible number

of connections among all patches of a given landscape; (3) Mean Patch Area (AREA_AM),

referring to the mean area of all forest patches within the 1 km2 study area; and (4) Mean

Patch Shape Index (SHAPE_AM), calculated as forest patch perimeter (m) divided by the

square root of forest patch area (m2), adjusted by a constant [36]. Owing to the presence of

very small patches within the landscapes, we also calculated AREA_MN and SHAPE_MN

weighted by the proportional contribution of each forest patch to the total area of remaining

forest in the landscape. This approach reflects the fact that larger habitat patches could poten-

tially have a greater influence on the structure of pollinator networks than smaller ones [31].

In each experiment, we calculated a number of measures describing the structure of plant-

bee networks: (i) connectance, namely the proportion of possible links in the network, calcu-

lated as the sum of links divided by the number of cells in the matrix of plant and bee species;

(ii) nestedness, namely the extent to which specialist species interact with specific subsets of

generalist species and with themselves; (iii) H2', an index of complementary specialization, rep-

resenting the extent of reciprocal specialist interactions; values range between 0 and 1, lower

values corresponding to networks with less specialized interactions; (iv) network size, namely

the sum of the total number of bee and plant species in the network; (v) asymmetry of the

Deforestation impacts on pollinator networks
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network, positive values indicating more plant species and negative values indicating more bee

species. All metrics were calculated using the bipartite package in software R [37].

To assess how landscape affected plant-bee interaction network structure we used General-

ized Linear Models, with a Poisson error distribution. To assess whether any explanatory vari-

ables were correlated with each other, we applied Spearman rank correlation tests. All analyses

were performed using the software R [37].

Results

Analysis of the virtual landscapes using FRAGSTATS indicated that the percentage forest

cover values differed slightly from the descriptors of the experimental treatments (Table 1).

For example, for the 0% cover treatment, the actual mean value of the ten replicates obtained

in the virtual landscapes was 0.79%, indicating the presence of some forest (Fig 1). This reflects

the stochastic element incorporated in GradientLand when generating fractal landscapes,

arising from use of a random seed. Mean patch size of forest increased exponentially with an

increase in forest cover, whereas area weighted mean patch size increased linearly (Table 1).

Mean patch shape index declined gradually with increasing forest cover, but when weighted by

area, shape index values displayed a different response, reaching a maximum value at 50% for-

est cover. Landscape connectance did not show a consistent response with forest cover, values

often differing markedly between one forest cover category and the next, along the deforesta-

tion gradient (Table 1). In general, in landscapes with relatively low forest cover, most forest

was located within a small number of relatively large patches, rather than being divided into a

large number of small fragments (Fig 1). This reflects the high fractal index (0.9) used to gener-

ate the landscapes and also the forest distribution expected for the Atlantic Forest region [28].

Visual assessment of network diagrams tended to indicate a general decrease in network

connectivity, and an increase in specialisation, with increasing forest cover (Fig 1). When

quantitative measures were analysed, significant variation was observed in each of the four

measures of network structure across the deforestation gradients (Figs 1 and 2). However, in

no case was this variation systematic or characterised by a simple overall linear relationship.

There was a general tendency for network connectance and nestedness to decline with increas-

ing forest cover, until values of around 50% cover were reached; trends above this threshold

Table 1. Characteristics of virtual landscapes used in the model experiments, generated by GradientLand.

ET PLAND (%) AREA_MN (ha) AREA_AM (ha) SHAPE_MN SHAPE_AM CONNECT

0 0.79 ±0.03 0.38 ±0.10 0.56 ±0.08 1.40 ±0.09 1.60 ±0.08 29.1 ±9.53

10 10.40 ±0.11 2.76 ±0.50 8.77 ±0.51 1.40 ±0.05 2.00 ±0.10 45.52 ±11.29

20 20.37 ±0.15 4.73 ±1.78 16.37 ±1.07 1.41 ±0.08 2.06 ±0.12 22.43 ±6.01

30 30.42 ±0.15 5.49 ±1.39 25.18 ±1.61 1.44 ±0.07 2.35 ±0.21 33.58 ±9.51

40 40.43 ±0.16 7.68 ±3.64 33.49 ±2.68 1.35 ±0.02 2.06 ±0.16 15.33 ±2.59

50 50.53 ±0.14 11.50 ±4.44 44.25 ±2.87 1.39 ±0.05 2.28 ±0.13 22.0 ±4.74

60 60.57 ±0.13 13.94 ±5.29 54.66 ±3.47 1.33 ±0.04 2.18 ±0.13 21.74 ±4.01

70 70.65 ±0.14 17.55 ±2.54 69.71±0.52 1.39 ±0.07 2.17 ±0.19 50.0 ±8.01

80 80.80 ±0.13 25.62 ±7.10 80.31±0.36 1.26 ±0.03 1.83 ±0.13 33.74 ±9.45

90 90.90 ±0.09 38.16 ±9.72 90.61±0.18 1.26 ±0.04 1.60 ±0.10 52.43 ±12.01

100 99.99 ±0.00 99.99 ±0.00 99.99 ±0.00 1.01 ±0.00 1.01 ±0.00 0 ±0.00

Values derived from FRAGSTATS (see text). Values presented are means (n = 10) ± SE. Abbreviations: ET, experimental treatment; PLAND, percentage of landscape

covered by forest; AREA_MN, mean patch size; AREA_AM, area weighted mean patch size; SHAPE_MN, mean patch shape index; SHAPE_AM, area-weighted mean

patch shape index; CONNECT, connectance index. Details of the metrics are given by McGarigal et al. (2012).

https://doi.org/10.1371/journal.pone.0209406.t001
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Fig 1. Example of forest cover gradient, generated using GradientLand, and associated pollinator networks

produced from model output (for details, see text). Forest cover, illustrated in black: A1, 0%; B1, 10%; C1, 20%; D1,

30%; A2, 40%; B2, 50%; C2, 60%; D2, 70%; A3, 80%; B3, 90%; C3, 100%. In the network diagrams, plant species are

illustrated on the higher row, and bee species on the lower row. The widths of the connecting lines are proportional to

interaction strength. The rectangles represent species, and the width is proportional to the sum of interactions involving

this species.

https://doi.org/10.1371/journal.pone.0209406.g001
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Fig 2. Relationship between forest cover and the structure of pollinator networks derived from model output. Values presented are means ± SE

(n = 10). A. Connectance, the realised proportion of possible links. B. Nestedness, the extent to which specialist species interact with specific subsets of

generalist species. C. H2’, a measure of network specialisation. D. Network size, the number of plant and bee species per network. For details of

calculation, see text.

https://doi.org/10.1371/journal.pone.0209406.g002
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value were less apparent. Conversely, H2' and network size tended to increase with increasing

forest cover, again until cover values of around 50% were reached. Thereafter, network size

tended to decline, whereas the highest values of H2' were associated with forest cover values of

>70% (Fig 2).

Regression analysis revealed a number of relationships between the structure of pollinator

networks and the spatial pattern of virtual landscapes (Table 2). Negative relationships were

recorded between network connectance and percentage of forest cover, and both weighted

Table 2. Relationships between the structure of simulated pollinator networks and the spatial pattern of virtual landscapes along a gradient of forest loss, deter-

mined using generalized linear models. Landscape pattern metrics were generated using FRAGSTATS (see Table 1).

Estimate Std. Error t value Pr(>|t|)

Connectance

PLAND -0.000516564 9.86E-05 -5.238529001 <0.001

AREA_MN -0.000425145 0.000107713 -3.94703102 <0.001

AREA_AM -0.000499433 9.47E-05 -5.275108581 <0.001

SHAPE_MN 0.027680759 0.016801954 1.647472648 0.102

SHAPE_AM 0.006618329 0.006303062 1.050018101 0.296

CONNECT 6.36E-05 0.000124251 0.5120134 0.610

Nestedness Estimate Std. Error t value Pr(>|t|)

PLAND -0.044391605 0.025480796 -1.742159256 0.084

AREA_MN -0.006705688 0.026949709 -0.248822295 0.804

AREA_AM -0.035382611 0.024607112 -1.437901801 0.153

SHAPE_MN 9.859955389 3.865428319 2.55080539 0.012

SHAPE_AM -1.516447611 1.475006035 -1.028095869 0.306

CONNECT 0.06276676 0.028472054 2.204504115 0.030

H2’ Estimate Std. Error t value Pr(>|t|)

PLAND 0.001793754 0.000290499 6.174728071 <0.001

AREA_MN 0.001878867 0.000302687 6.207290541 <0.001

AREA_AM 0.001841068 0.000272348 6.759973344 <0.001

SHAPE_MN -0.162683152 0.049646195 -3.276850388 0.001

SHAPE_AM -0.061742598 0.018452599 -3.34601093 0.001

CONNECT 1.41E-05 0.000380664 0.036921512 0.971

Network size Estimate Std. Error z value Pr(>|z|)

PLAND -0.002040696 0.000707432 -2.88465278 0.004

AREA_MN -0.001563505 0.000771097 -2.027637237 0.043

AREA_AM -0.002029303 0.00068357 -2.968681279 0.003

SHAPE_MN 0.18303377 0.106282999 1.722135915 0.085

SHAPE_AM 0.06188097 0.040272089 1.53657215 0.124

CONNECT -0.00017342 0.000798296 -0.217237312 0.828

Asymmetry Estimate Std. Error t value Pr(>|t|)

PLAND -0.000368197 0.000240108 -1.533463182 0.128

AREA_MN -3.84E-05 0.000253213 -0.151547564 0.880

AREA_AM -0.000210453 0.000232482 -0.905243962 0.367

SHAPE_MN 0.012823678 0.037369521 0.343158751 0.732

SHAPE_AM -0.007374806 0.013905834 -0.530339011 0.597

CONNECT 0.000236462 0.000272471 0.867840627 0.387

Abbreviations: PLAND, percentage of landscape covered by forest; AREA_MN, mean patch size; AREA_AM, area weighted mean patch size; SHAPE_MN, mean patch

shape index; SHAPE_AM, area-weighted mean patch shape index; CONNECT, connectance index. Error distributions were Gaussian with the exception of network

size, which was Poisson. For details of network structure measures, see text.

https://doi.org/10.1371/journal.pone.0209406.t002
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and unweighted mean patch size. Similar results were obtained for network size. In contrast,

H2' was positively related to percentage of forest cover, and both weighted and unweighted

mean patch size, but was negatively related to both weighted and unweighted mean patch

shape. Network nestedness was positively related to mean patch shape and connectance, but

not to the other landscape metrics, whereas network asymmetry was not related to any of the

landscape metrics (Table 2).

The generalised linear model was conducted using a single model for each individual factor.

Interpretation of these results should be based on consideration of correlations between these

factors. Correlation analysis identified significant correlations between the percentage of forest

cover and all other landscape metrics with the exception of the landscape connectance index.

Similar results were obtained with both weighted and unweighted mean patch size. The only

variables that were significantly correlated with landscape connectance were both weighted

and unweighted shape indices (Table 3).

Discussion

Results of the landscape pattern analysis were consistent with expectations, and were broadly

consistent with those of other studies. It is well established, for example, that different land-

scape pattern metrics are often highly correlated [38], as observed here. In particular, the per-

centage forest cover in the simulated landscapes was very closely related to patch area. The

FRAGSTATS shape index (SHAPE) measures the complexity of patch shape compared to a

square standard shape of the same area [36]. The negative relationship between forest cover

and SHAPE observed here is therefore understandable as the patches became increasingly

irregular in shape with increasing forest loss, reflected in the increasing values of the index.

The landscape connectance index relates to the distance between adjacent patches, and there-

fore was understandably related to SHAPE. Similar relationships have been identified in real

world situations [38]; for example, Ferreira et al. [32] found percentage forest cover and patch

area to be highly correlated along gradients of forest loss in the Atlantic Forest of Brazil. Simi-

larly, in an assessment of deforestation in Ecuador, shape index increased as deforestation

progressed, and both forest area and mean patch size were again highly correlated [39]. This

consistency with field observations supports the use of maps generated by GradientLand in the

ABM presented here.

Table 3. Spearman correlation analysis of the relationships among landscape pattern metrics for virtual landscapes along a gradient of forest loss.

AREA_MN AREA_AM SHAPE_AM SHAPE_MN CONNECT

PLAND 0.87

<0.001
0.98

<0.001
-0.43

<0.001
-0.27

0.004
-0.10

0.306
AREA_MN 0.90

<0.001
-0.23

0.0171
-0.34

<0.001
-0.06

0.544
AREA_AM -0.41

<0.001
-0.25

0.009
-0.07

0.448
SHAPE_AM 0.48

<0.001
0.24

0.011
SHAPE_MN 0.31

0.001

Values were derived using FRAGSTATS (see Table 1). Values of correlation coefficient (r) are presented, along with P values (in italics). N = 110. Abbreviations:

PLAND, percentage of landscape covered by forest; AREA_MN, mean patch size; AREA_AM, area weighted mean patch size; SHAPE_MN, mean patch shape index;

SHAPE_AM, area-weighted mean patch shape index; CONNECT, connectance index.

https://doi.org/10.1371/journal.pone.0209406.t003
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The structure of a pollinator network can be considered as an emergent property of a mutu-

alistic plant-pollinator system. The current results (Fig 2) demonstrate that the ABM was able

to produce expected trends in network structure by simulating the interactions between indi-

vidual plants and pollinators. This illustrates the potential value of ABMs for exploring the

structure and dynamics of pollinator networks, and their underlying mechanisms. Specifically,

the increase in the index of complementary specialization H2' with increasing forest cover is

consistent with field observations. H2' specifies the degree of specialization in a network, with

lower values corresponding to those networks with fewer reciprocal specialist interactions

[40]. Specifically, H2' quantifies the deviation of observed interactions from those expected

given the species’ abundances or interaction frequencies, values ranging from 0 for the most

generalized networks to 1 for networks that are completely specialised [41]. A number of stud-

ies have reported increasing generalization of plant-pollinator networks with increasing habi-

tat loss. For example, Aizen et al. [14] recorded increasing loss of specialist plant-pollinator

interactions with increasing habitat loss in Argentinian sierras, and Fereira et al. [32] reported

a similar trend in the Atlantic Forests of Brazil along a gradient of forest cover. Comparable

results were obtained by Geslin et al. [42] along an urbanisation gradient in France. Such

results are also consistent with theoretical expectations, as plants with specialist pollinators are

more vulnerable to disruption of pollination mutualisms as a result of habitat loss, as they are

less able to compensate for the loss of their mutualistic partners through forming relationships

with other alternative pollinators [43]. Nonetheless, it should be noted that some field evidence

contradicts this pattern. For example in a coastal dune marshland community, Traveset et al.

[44] found increased specialisation of plant-pollinator interactions following habitat loss.

Here, pollinators included beetles, flies and ants as well as bees, highlighting the fact that not

all functional groups of pollinators respond similarly to habitat loss.

A second key result obtained from the modelling results presented here was the significant

positive relationship observed between network nestedness and habitat patch size, but the lack

of any relationship between nestedness and the degree of forest cover. This closely parallels

results obtained in field surveys in the understory of Brazilian Atlantic Forests, where Ferreira

et al. [32] similarly found that nestedness was positively related to patch size and shape but was

not associated with forest cover. Patterns of nestedness in mutualistic networks are the subject

of theoretical debate [12, 45, 46], and the response of nestedness to changing land cover is

poorly understood. Very few previous studies have assessed how nestedness of plant-pollinator

networks changes over a gradient of habitat loss and fragmentation [46]. Spiesman and Inouye

[47] note that habitat loss and fragmentation may cause mutualistic networks to disassemble

through a process whereby specialist species are lost from a network before more generalist

species. In this case, habitat loss and / or fragmentation should lead to a reduction in nested-

ness because of a decline in the number of interactions between specialists; those species that

remain will form a relatively well-connected network of generalists. This provides a potential

mechanism for the results observed here and by Ferreira et al. [32], although it is interesting to

note that this process was related in both studies to the degree of fragmentation but not of hab-

itat loss. In their research on plant-pollinator networks in pine-oak savannah in Florida, USA,

Spiesman and Inouye [47] similarly found no effect of the degree of habitat loss on nestedness;

the effects of fragmentation were not explicitly examined in that study.

The negative relationship recorded here between forest cover and network connectance

(Table 2) is also consistent with field evidence. Connectance provides an indication of the pro-

portion of all possible interactions in a network that are actually realized [47]. Spiesman and

Inouye [47] found a similar negative relationship between habitat amount and network con-

nectance in their research on pine-oak savannah, which they attributed to variation in the

number and abundance of pollinator species. Similarly, in our study we attribute this result to
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the loss of specialist pollinators with increasing forest loss, a pattern that has been observed in

the field along deforestation gradients in the Atlantic forests of Brazil [31] as well as in other

habitats [14]. It has been suggested that such changes in the structure of plant-pollinator net-

works could have consequences for their dynamics and viability; both nestedness and connec-

tance may enhance community stability by allowing competitors to facilitate one another by

sharing mutualistic partners, thereby reducing the negative effects interspecific competition

[47, 48]. Loss of both network connectance and nestedness as a result of habitat loss and frag-

mentation could therefore reduce the stability of plant-pollinator networks in Atlantic Forest,

and potentially undermine their resilience to further environmental change.

In contrast, the negative relationship recorded here between forest cover and network size

differs from the results obtained by Ferreira et al. [32] in the Atlantic Forests of Brazil, where

the converse trend was observed. It is important to note that the simulated networks presented

here differ from these field situations, as they incorporated pollination interactions across the

entire landscape (i.e. including both forest and non-forest vegetation), rather than being lim-

ited to a single environment type, as was the case in the field studies. This highlights the need

for field data for pollinator networks to be collected from both inside and outside forest

patches along deforestation gradients; such data are currently lacking. A further difference is

that the species richness and abundance of both bees and flower species was constant across

the modelled gradient of forest cover, which contrasts with the field situation. In field studies,

as habitat area increased, networks tended to become larger and more diverse [14, 32]. The

variation in network size encountered in the model results is attributable to stochastic pro-

cesses, such as chance interactions between bees and flowers arising from pollinator behaviour.

As evidence of this, it is notable that in none of the model experiments conducted did all possi-

ble interactions between bee and flower species actually occur. It should also be noted, how-

ever, that some field studies have reported results that were consistent with the model outputs

presented here. For example, working in temperate woodlands, Vanbergen et al. [49] found

that plant-pollinator networks from relatively disturbed sites were less connected, but were

also more speciose and therefore larger. This was attributed to the effects of disturbance on the

size and distribution of interspecific interactions in the networks, and the influence of these

factors on robustness to co-extinction cascades. Similar mechanisms were identified by Grass

et al. [50] in calcareous grassland fragments, where plant–pollinator communities were found

to respond to the loss of species associated with habitat fragmentation by opportunistic partner

switches. While such processes have not yet been documented in Atlantic Forest, these results

suggest they might usefully be examined in future field investigations.

Although a number of relationships were detected between landscape pattern and the struc-

ture of pollinator networks, regression analyses did not fully explain the variation in the model

outputs. Many of the measures of network structure varied non-linearly along the forest cover

gradient, with contrasting patterns of response either below or above 50% forest cover. Net-

work size, for example, reached a peak around 40% forest cover. This finding is relevant to the

concept of landscape-scale thresholds in habitat fragmentation and loss, which have attracted a

great deal of attention from both empirical and theoretical researchers, including those work-

ing in Atlantic Forest of Brazil [51, 52]. Both modelling and empirical studies have suggested

that extinction thresholds can often be observed below 30% of remaining habitat, associated

with an exponential increase in the distance among patches at 10–20% of remaining habitat

[52]. However, the occurrence of such thresholds is still the focus of debate and controversy,

reflecting the fact that species often respond individually to habitat loss [52]. The current

research suggests that fragmentation thresholds may also occur in the structure of plant-polli-

nator networks as a result of species-level responses to deforestation, a novel suggestion that

merits further investigation. Such responses may again be attributable to shifting contribution
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of specialist versus generalist pollinator species across the deforestation gradient. However,

these features of the results must also reflect the stochastic processes included in the model,

including the random distribution of both bee and plant species, and the random elements of

bee movement. Such processes are also influential in a field situation, but here the problem of

uncertainty is compounded by the additional challenge of achieving adequate sampling. As

noted by Vázquez et al. [53], field sampling of pollinator networks is subject to a number of

potential observation errors, and by the relative abundance of the species in the network,

which influences the probability of observing a particular interaction. The characteristics of

mutualistic networks have repeatedly been shown to be influenced by the degree of sampling

effort. For example, the number of species and links within a network tend to increase with the

number of observations made. Evidence suggests that nestedness, however, may be relatively

insensitive to sampling effort [19, 54]. Potentially, the model described here could be used to

explore such sampling issues, for example by evaluating how network metrics vary with the

abundance of both bees and flowers, and the duration of model runs, which is effectively a

proxy for sampling effort.

While the model as presented here was assessed in relation to a particular ecosystem,

namely the Atlantic Forests of Brazil, it could readily be adapted to a wide range of other eco-

logical situations. The GIS extension of Netlogo enables real-world maps of landcover to be

imported into the model, which could potentially be integrated with field data describing the

distribution of different plant and pollinator species. The model could be further developed

in a number of additional ways. Here, the model was configured such that nine bee species

only visited a single plant species, whereas only two plant species were limited to a single bee

species. This is consistent with the fact that plant-pollinator relationships have often been

observed to be highly asymmetric and nested, whereby species with relatively few partners pri-

marily interact with subsets of a generalized core group of partners [12, 17, 53, 55]. However,

the numbers of specialist and generalist bee species could readily be changed to represent com-

munities with different characteristics. While three different functional types of bees were

included here, this could be extended to include additional morphological and behavioural

variation among pollinators, as well as variation in life history traits of plant species. This

could enable the functional importance of network structure to be evaluated. Recent research

conducted in the Seychelles has provided evidence that pollinator network structure can relate

to pollination efficiency and fruit set [56], processes that could also potentially be simulated.

The model as presented here was limited in its simple binary classification of land cover; much

more elaborate vegetation maps could potentially be incorporated. This would enable the role

of landscape heterogeneity to be explored, a factor that has previously been shown to have a

major influence on the structure of plant-pollinator networks in tropical savannah ecosystems

in Bahia, Brazil [57] and in the Atlantic Forest [58]. The model could also be used to examine

the resilience of pollinator networks, for example by simulating the removal or extinction of

individual species, and observing the impacts on network structure (c.f. [59]).

The principal value of this modelling approach is that it provides a tool to examine the

mechanisms underlying the structure of pollinator networks in a realistic way. A variety of dif-

ferent mechanisms have been proposed as an explanation of patterns in network structure,

including neutrality, trait matching among interacting species, phylogenetic constraints and

sampling artefacts [17, 60, 61]. However, relatively little is known about the relative impor-

tance of these mechanisms, and very few studies have attempted to evaluate multiple mecha-

nisms simultaneously, partly because of the methodological challenges involved [17].

Modelling approaches such as the ABM presented here could make a valuable contribution in

this area, by enabling the relationship between network structure and the relative influence of

different mechanisms to be explored. This could be achieved by conducting experiments in
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silico, as described here in relation to forest fragmentation. A similar issue relates to the use of

metrics to describe landscape pattern. Although a large number of metrics have been devel-

oped, their relationships with ecological processes have rarely been tested, and as a result their

practical value has been questioned [62]. Again, the relationship between landscape pattern

and pollinator behaviour, and ultimately pollinator network structure, can be explored using

this model, as demonstrated here. In this study, relationships between landscape pattern and

network structure emerged even though pollinator movement was essentially random; no

explicit process linking pollinator behaviour to landscape pattern was included in the model.
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