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ABSTRACT

Motivation: Systematic and scalable parameter estimation is a key to

construct complex gene regulatory models and to ultimately facilitate

an integrative systems biology approach to quantitatively understand

the molecular mechanisms underpinning gene regulation.

Results: Here, we report a novel framework for efficient and scalable

parameter estimation that focuses specifically on modeling of gene

circuits. Exploiting the structure commonly found in gene circuit

models, this framework decomposes a system of coupled rate equa-

tions into individual ones and efficiently integrates them separately to

reconstruct the mean time evolution of the gene products. The accur-

acy of the parameter estimates is refined by iteratively increasing the

accuracy of numerical integration using the model structure. As a case

study, we applied our framework to four gene circuit models with

complex dynamics based on three synthetic datasets and one time

series microarray data set. We compared our framework to three

state-of-the-art parameter estimation methods and found that our ap-

proach consistently generated higher quality parameter solutions effi-

ciently. Although many general-purpose parameter estimation

methods have been applied for modeling of gene circuits, our results

suggest that the use of more tailored approaches to use domain-spe-

cific information may be a key to reverse engineering of complex bio-

logical systems.
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1 INTRODUCTION

A quantitative understanding of how expression of genes is con-
trolled in time and space through the integration of computa-

tional and experimental methods is a main goal of molecular
systems biology (Church, 2005; Ideker et al., 2001; Kitano,
2002). Among the major obstacles in such an integrative systems

biology approach is the construction of kinetic models that quan-
titatively support the current knowledge of a given gene circuit.
What makes the construction of gene circuit models especially

difficult is the quantification of all reaction parameters, as direct
measurements of gene regulation kinetics are seldom available.
Thus, model parameters are often estimated indirectly using

more readily available experimental data [e.g. Schoeberl et al.
(2002); Zwolak et al. (2005)]. Even in modeling of relatively
well-known gene circuits, such as the phage-l lysis–lysogeny

developmental pathway (Arkin et al., 1998), there are a

number of unknown parameters, which are phenomenologically

determined by fitting the model’s outputs to some experimental

observations.

The quality of time series gene expression data is crucial to the

construction of phenomenological models that accurately cap-

ture the observed dynamical characteristics of a given gene cir-

cuit. With advances in the gene expression detection

technologies, single-molecule level measurements of gene expres-

sion can now be obtained in a wide range of organisms (Baugh

et al., 2011; Cai et al., 2006; Golding et al., 2005; Materna et al.,

2010; Newman et al., 2006; Suter et al., 2011; Taniguchi et al.,

2010; Zenklusen et al., 2008). In particular, recent advances in

fluorescence imaging techniques (Joo et al., 2008; Raj and van

Oudenaarden, 2009) facilitate real-time measurements of gene

expression at the single-molecule level, making more accurate

parameter estimation for quantitative modeling of gene circuits

possible. Such single-cell gene expression data are, however,

noisy because of intrinsic and extrinsic fluctuations (Cai et al.,

2006; Elowitz et al., 2002; Newman et al., 2006; Golding et al.,

2005; Raj et al., 2006; Raser and O’Shea, 2005; Suter et al., 2011;

Taniguchi et al., 2010) and often limited to lower concentration

molecular species such as mRNAs (Kulkarni, 2011; van Oijen,

2011). Because of such noisy gene expression and highly non-

linear dynamics involved in transcriptional regulations, manual

parameter estimation in nontrivial gene circuit models is gener-

ally infeasible.
To systematically estimate the parameters of a biochemical

kinetic model, the parameter estimation problem is often treated

as an optimization problem in which parameter values are se-

lected to minimize a certain objective function (Schwartz, 2008).

Although several stochastic optimization and Bayesian-based

methods were successfully applied to estimate parameters of bio-

chemical models (Baker et al., 2010; Moles et al., 2003), they

often suffer from scalability problems when there are a large

number of unknown parameters. To make the estimation of par-

ameters more efficient, several methods have been proposed to

reduce the parameter search space by decomposing rate equa-

tions (Jia et al., 2011; Koh et al., 2006; Zhan and Yeung, 2011).

However, the quality of these methods strongly depends on in-

terpolation and smoothing functions, which are often independ-

ent of the underlying model structure and can add strong

artifacts. Recently, Kalman filter-based approaches, which can

alleviate the scalability problem, were applied to efficiently esti-

mate kinetic parameters (Lillacci and Khammash, 2010; Quach

et al., 2007; Sun et al., 2008). Although these approaches support

parameter estimation of models with unobserved variables, a
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recent comparative study showed that their performance could

be sensitive to the initial condition, and estimated parameters

might be far from the true ones if the initial guess was not

close to the solution (Liu and Niranjan, 2012). Most of these

existing methods are applicable to parameter estimation prob-

lems of generic dynamical models, as they do not demand any

domain-specific knowledge. Although these general-purpose

methods can easily be applied to modeling of any biological

systems, it is clear that each of these methods has its advantages

and disadvantages, and that no single method is versatile enough

to efficiently give optimal parameter sets for all biological

models. This observation has led us to develop a more tailored

parameter estimation method that focuses on a specific yet im-

portant subclass of biological models, namely, gene circuit

models.

To facilitate the mechanistic construction of thermodynamics-

based models (Shea and Ackers, 1985; Sherman and Cohen,

2012) that describe the quantitative behavior of gene regulation

from time series mRNA data, we developed a novel parameter

estimation framework called Parameter Estimation by

Decomposition and Integration (PEDI) that specifically focuses

on modeling of gene circuits. The main paradigm of PEDI is

‘divide’ and ‘conquer’; by using the given mRNA data and

exploiting the structure of gene circuit models, our framework

divides a high-dimensional parameter estimation problem into

subproblems with a much smaller parameter space, each of

which is, in turn, conquered (i.e. solved) by using any constrained

optimization method. At the initial step, this problem reduction

process leads to a crude linearization for numerical integrations,

which often results in poor estimates especially for highly non-

linear systems. To improve the quality of the estimate with a

basically negligible increase in computing time, PEDI places

intermediate integration points using the underlying structural

information of a given gene circuit model and iteratively in-

creases the accuracy of these intermediate points to increase

the accuracy of the numerical integration, which in turn im-

proves the reconstructed dynamics. This article introduces

PEDI and, through the use of simulated annealing (SA) as the

optimization method, applies the framework to three-gene circuit

models with complex dynamics based on synthetic time series

mRNA datasets and one yeast gene circuit model based on

time series microarray data. We compared PEDI with three

state-of-the-art parameter estimation methods, namely, the evo-

lutionary strategy with stochastic ranking (SRES) (Runarsson and

Yao, 2000), the moment matching method coupled with hybrid

extended Kalman filter (HEKFþMM) (Lillacci and Khammash,

2010) and the two-phase dynamic decoupling method (TDDM)

(Jia et al., 2011). Our results show that PEDI consistently pro-

duced the most accurate estimates efficiently in all the four par-

ameter estimation experiments. This study, thus, demonstrated

that PEDI could provide an effective approach to efficiently

estimating kinetic parameters of gene circuit models.

2 METHODS

2.1 Problem setting

We concern ourselves with time series gene expression data generated

from an N-gene network at equally spaced Mþ 1 time points,

t05t1 � � �5tM. Gene gi is transcribed into mRNA mi, which is then

translated into protein pi, which can then be used to regulate the tran-

scription of genes in the network. We denote by mij and pij random

variables representing the levels of the mRNA copy and the protein

copy of gene gi at time tj, respectively. We further assume that these

random variables be expressed as follows:

mij ¼ �mij
þ vij,

pij ¼ �pij þ uij, for i ¼ 1, . . . ,N and j ¼ 0, . . . ,M,

where �mij
and �pij are the true mean of mij and pij, respectively, whereas

each of vij and uij is a statistically independent random variable with mean

0. We consider that only the levels of mRNAs are observable from the

experiments, but we assume that the true mean of each protein pi be

known at time t0.

Here, we are interested in constructing a kinetic model that estimates

the average trajectory of mRNAs given by �mij
, and we do not focus on

the time evolution of higher moments, as experimental time-series data

often contain only few datasets. Our model describes the average time

evolution of a gene circuit as a continuous-time deterministic process,

which is governed by a system of ordinary differential equations

(ODEs) as follows:

dm̂i

dt
¼ hiðp̂; �iÞ � �i1m̂i,

dp̂i
dt
¼ �im̂i � �ip̂i,

ð1Þ

with the initial conditions:

m̂iðt0Þ ¼ mi0,

p̂iðt0Þ ¼ �pi0 , for i ¼ 1, . . . ,N:

Here, m̂i and p̂i are time-dependent variables that estimate the dynamics

of �mij
and �pij , respectively; �i � ð�i1, . . . , �iKi

Þ is a Ki dimensional vector

that represents the parameters used in the rate equation representing the

regulation of mRNA mi; hi is the transcription rate function based on the

equilibrium thermodynamics model of the cis regulation of gene gi; p̂ is an

N dimensional vector whose i-th element is p̂i; �i and �i are the param-

eters used in the regulation of protein pi, which we assume to be known;

and mij is the sample mean of mi at time tj. The regulation of each gene is

modeled using four reaction processes, transcription, mRNA degrad-

ation, translation and protein degradation, whereby transcription is con-

sidered to be the main regulatory step. Using this model, our objective is

to search for values of the unknown parameters, which minimize a

weighted sum of squared residuals of the sample means of mRNAs. As

a system of coupled nonlinear rate equations can seldom be solved ana-

lytically, the numerical integration via simulation is usually used to esti-

mate the levels of mRNAs for a given parameter value. When the

dimension of the unknown parameters is high, however, finding practical

solution for � � ð�1, . . . , �NÞ based on simulation for each parameter

change becomes computationally intensive, and such an approach even-

tually proves to be infeasible.

2.2 Overview of PEDI

Figure 1 illustrates a high-level workflow of PEDI. The main idea of

our framework is to optimize parameters separately by using what is

available rather than dealing with exponentially larger parameter space

involved in the optimization of �. The framework takes advantage of the

fact that the rate functions in our gene circuit models have the following

structure:

dy

dt
¼ fðtÞ � ky, ð2Þ
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whose definite time integral from time t0 to time tj has the following form:

yðtjÞ ¼ e�kðtj�t0Þ yðt0Þ þ

Z tj

t0

fðtÞekðt�t0Þdt

� �

¼ e�kðtj�tj�1Þ yðtj�1Þ þ

Z tj

tj�1

fðtÞekðt�tj�1Þdt

" #
,

ð3Þ

where tj�15tj. As the transcription rate functions depend on regulatory

proteins, our parameter estimation framework based on the decompos-

ition of a gene circuit model requires the estimate of the protein levels

first. To this end, PEDI uses the time series sample average of the mRNA

and makes a linear assumption to estimate the mean time evolution of

each protein level. However, as gene circuits often involve highly non-

linear reactions, such a crude linear interpolation may result in an inad-

equate parameter estimation. To refine the quality of the parameter

estimation, the framework enriches the number of the data points by

estimating intermediate points of the observed data points using the

output from a computational simulation. These intermediate data

points are then used to make the interpolation of the observed data

points and the numerical integration of the rate functions more accurate.

The introduction of these intermediate data points does not increase the

complexity of the parameter search space, as they are only used for nu-

merical integrations. By repeating this process, PEDI attempts to increase

the accuracy of the interpolation and the fitness of the parameter estima-

tion. Thus, PEDI can efficiently perform parameter estimation by avoid-

ing computationally intensive search in a high-dimensional parameter

space while keeping the quality of the parameter estimation high.

As PEDI decomposes a system of ODEs into individual ODEs, it has

an objective function for each mRNA mi. The form of Ji, the objective

function of mRNA mi is a weighted sum of squared residuals. More

detailed information on the objective functions in PEDI is described in

Supplementary Section S1.

2.3 Initial optimization process

PEDI decomposes a gene circuit model into individual rate equations.

This process involves uncoupling of coupled rate equations. To estimate

the time evolution of the mRNAs from the decomposed rate equations,

we first need to estimate the time evolution of the transcription factors of

each gene in the model. Thus, the first step of our framework is to gen-

erate the initial estimate of each protein copy at the M time points (i.e. t1
to tM). To this end, we estimate p̂iðtjÞ by applying the time-integral form

in Equation (3), using the time series sample average of mi and using the

trapezoidal rule to approximate the numerical integration. This estimates

the mean levels of the transcription factors of each gene gi at the M time

points, making the evaluation of the transcriptional kinetic function of

each mRNA mi at the M time points possible.

Using the initial estimates of the protein levels at the M time points,

PEDI sets out to estimate the mean time-course of mi by optimizing the

value of �i. To estimate the mean time evolution of mi, we once again use

the time-integral form in Equation (3) and apply the trapezoidal rule to

approximate the integration of the rate equation of m̂i. This approximate

integration is used to compute m̂i for each i with a given parameter

combination, which is then used in a metaheuristic optimization—such

as SA and genetic algorithms—to test the fitness of each parameter com-

bination and to find the initial estimate of the optimal �i. This parameter

optimization process is largely independent of the values of the param-

eters in a model and remains efficient even when a combination of the

parameter values makes the timescale of some rate equations widely dif-

ferent and the ODEs stiff.

While facilitating an efficient and scalable parameter estimation, a

model decomposition involving the linear approximation of the time in-

tegral of each rate equation may not result in a high-quality estimate,

especially when the model of interest is highly nonlinear or the given time

series data are sparse. In addition, such a linearization inevitably intro-

duces integration errors, making the assessment of the prediction error

for each parameter combination difficult. More detailed information

on the initial optimization process is described in Supplementary

Section S1.

2.4 Parameter estimation refinement

To improve the accuracy of the numerical integration and the parameter

estimation, PEDI next performs a simulation of the ODE model, given

the current estimate of �. This simulation-based numerical integration not

only gives a much more accurate picture in terms of the performance of

the current estimate but also generates an arbitrary number of data points

for each m̂i and p̂i. From this simulation, we generate Lm þ 1 equally

spaced m̂i data points between t0 and tM for each mRNA, where we set

Lm ¼ cmM for some integer cm41. The value of Lm may come with

additional constraints depending on the choice of a numerical integration

method.

By using the simulated mRNA data points, PEDI attempts to better

estimate the time evolution of proteins than the simple linear

Ini�al es�ma�on

Model Observed data
Input

Sample average of observed mRNAs Es�mated protein levels
Linear

assump�on

Optimize each by minimizing the relative error of separately

Refinement
Shift intermediate

points based on
experimental data

mRNA with intermediate points Estimated protein levels

Better
interpolation

M+ 1points

Lm+1
points

Lp+1
points

by minimizing the relative error of
separately by using additional points in a better

numerical integration method

Implement trapezoidal rule for the objective function

Termination condition satisfied?

Yes

No

Optimize each

M+ 1 points

Simulate the model
and obtain mRNA with

Lm+1 points

Fig. 1. An illustration of the workflow of PEDI. Briefly, given a model

structure and time series mRNA data at Mþ 1 time points, it first makes

a linear assumption and estimates the proteins data points, which are then

used to estimate parameters for the mRNA regulations. These initial

estimates are then iteratively refined by placing Lm þ 1 mRNA integra-

tion points and Lp þ 1 protein integration points and by increasing the

accuracy of these integration points
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interpolation that is used in the initial estimate. To this end, we first

adjust the simulated data of m̂i so that they can better reflect the time

evolution of the sample mean of each mi. Let dm þ 1 be the number

of simulated mRNA data points in each time interval between time

points tj and tjþ1 (i.e. dm ¼ cm). Then, to estimate the dm þ 1 mRNA

points in this time interval, we adjust every simulated data point between

tj and tjþ1 by considering the difference between the sample mean and the

simulated data point of mRNA mi. Specifically, by letting �t be the time

interval between tj and tjþ 1 and m̌i be a time-dependent variable that

represents the Lm þ 1 adjusted m̂i data points, we express ›miðtj þ qm�tÞ

for all qm 2 f0, 1=dm, 2=dm, . . . , 1g as follows:

›miðtj þ qm�tÞ ¼ m̂iðtj þ qm�tÞ þ ð1� qmÞrj þ qmrjþ1, ð4Þ

where rj is mij � m̂iðtjÞ. This definition makes sure that, at each time point

tj, we have ›mðtjÞ ¼ mij. This allows us to use the additional data points

from ›mi to make the interpolation of mij and, in turn, the estimation of

the time evolution of pi more accurate than the ones based on a simple

linearization.

By using the Lm þ 1 data points of ›mi between t0 and tM, we generate

equally spaced Lp þ 1 data points for each pi. Here, we require that

Lp � dpM be smaller than Lm where dp is a positive integer. We de-

note by ›pi a time-dependent variable that represents the Lp þ 1 data

points of pi. To compute the values of ›pi at the Lp þ 1 time points, we

first set ›piðt0Þ to be �pi0 . Next, we iteratively compute the next data point

of ›pi for the other Lp time points. To this end, we integrate the rate

equation of pi between each time interval �t=dp using the Lm=Lp data

points of ›mi within this time interval (see Supplementary Section S1 for

details).

Using the Lp þ 1 time points of the newly generated protein variables,

›pðtÞ � ð ›p1ðtÞ, . . . , ›pNðtÞÞ, we can better interpolate the dynamics of the

transcription factors of gene gi and estimate the dynamics of m̂iðtjÞ from

the decomposed rate equation ofmi for a given parameter combination of

�i. Thus, applying this approach for the calculation of Ji within an opti-

mization method, we can search for a parameter combination �̂i of �i that

increases the quality of the estimate (see Supplementary Section S1 for

details).

By using �̂ � ð�̂1, � � � , �̂NÞ generated from this optimization, we simu-

late the model and calculate the sum of Ji. We repeat the parameter

refinement process until a given termination condition is satisfied (e.g.

until the value of the sum of Ji stabilizes). For the next iteration of the

refinement process, if the current error is smaller than the previous one,

we use the current �̂ as the seed parameter values for the next iteration.

Otherwise, we select the current �̂ over the previous one at probability of

pmax expð1� �c=�oÞ where pmax is the maximum probability of choosing

the current estimate, �c is the current sum of Ji and �o is the previous one.

That is, if the error from the current �̂ is worse than the previous one, the

probability of accepting the current �̂ for the next round becomes smaller.

The detailed information of specific configurations of PEDI used in

the Section 3 of this article is described in Supplementary Sections S1

and S2.

2.5 Prediction error

Optimization-based parameter estimation methods may have different

objective functions. To compare the accuracy of estimated parameters

of various parameter estimation methods objectively and without depend-

ing on any specific objective functions, we define the prediction error of

the i-th mRNA as follows:

PEi ¼
XM
j¼1

jm̂iðtjÞ �mijj

jmij � �mij
j þ �

, ð5Þ

where " is a small fixed value and the prediction error of the model as

follows:

PE ¼
XN
i¼1

PEi: ð6Þ

In other words, we defined the prediction error to be the sum of the dif-

ference between the sample mean and the estimate with respect to the

difference between the sample mean and the true mean at each time point

and for each mRNA. As this definition of prediction error depends on

the true mean of mRNAs—whose values are hidden from objective

functions—this prediction error can be more objective to compare par-

ameter estimation methods than using a specific objective function

(e.g. sum of mean squared error). However, this definition can only be

used when mRNA data are synthesized from a model, as the true mean

values are not available in real biological systems. In this study, we set "

to be 0.1.

3 RESULTS

3.1 Models

To test the performance of our parameter estimation framework,

we constructed three different gene circuit models,M1, M2 and

M3 (see Fig. 2). The first system is a three-gene circuit (Fig. 2A).

In this system, the transcription of gene g1 is upregulated by

protein p2 and downregulated by protein p3. The transcription

of gene g2 is repressed by protein p1, forming a negative feedback

loop of gene g2. Such a regulatory structure can be seen, for

example, in the phage-l lysis-lysogeny decision circuit in which

CII upregulates synthesis of CI, CI in turn downregulates syn-

thesis of CII and Cro downregulates synthesis of CI (Arkin et al.,

1998). Provided that the level of protein p2 is high and the level of

protein p1 is low, this system exhibits a complex transient behav-

ior. In this setting, protein p1 initially increases rapidly because of

the upregulation facilitated by protein p2, and this increase in

protein p3 downregulates gene g2, leading to a rapid decrease

in protein p2, which, in turn, downregulates gene g1 and so on.

Fig. 2. The schematics of the three gene circuits used in this study. (A)

The gene circuit structure of modelM1. (B) The three-gene repressilator

structure represented in model M2. (C) The seven-gene repressilator

structure represented in modelM3
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We modeled this gene circuit by the following system of ODEs,

which we refer to as modelM1:

dm1

dt
¼

k3ðk1p2Þ
n1

1þ ðk1p2Þ
n1 þ ðk2p3Þ

n2
� �1m1,

dm2

dt
¼

k5
1þ ðk4p1Þ

n3
� �2m2,

dm3

dt
¼ k6 � �3m3,

dpi
dt
¼ �imi � �ipi, for i ¼ 1, 2, 3:

In this model, we treated the equilibrium rate constants and

the maximum transcription rates: k1, . . . , k6 as unknown and

estimated them from synthetic time series mRNA data by

adding a Gaussian noise to the simulated data. We simulated

this model from time 0 to 1500 time units and sampled mRNA

data at 31 time points. The initial condition for the simulation is

m1ð0Þ ¼ 0, m2ð0Þ ¼ 500 and m3ð0Þ ¼ 0, and all protein mol-

ecules are initially set to be absent in the system. We note that

this parameter estimation problem has an infinite number of

suboptimal solutions. This is because the transcriptional regula-

tion kinetic function of p1 can be simplified to

k3ðk1p2Þ
n1=ððk1p2Þ

n1 þ ðk2p3Þ
n2 Þ if k1 � p2 or k2 � p3 is assumed

to be always much greater than 1. In such a case, there is an

infinite number of combinations of k1 and k2 with the same

kn22 =k
n1
1 ratio that produce the same dynamics. As a result, we

could obtain an infinite number of optimal solutions if this as-

sumption were to be satisfied. However, as the initial amounts of

proteins p2 and p3 are zero, those solutions may just be subopti-

mal and may not capture the initial transient behavior well.

Thus, it is challenging to find an optimal solution that can cap-

ture the initial transient behavior without being stuck in one of

those suboptimal solutions. Supplementary Table S1 shows the

values of the parameters used in the simulation.
The second and third models are both based on a gene circuit

structure, which has a potential to exhibit a sustained oscillation.

This gene circuit is called repressilator, which was synthetically

constructed to exhibit an oscillatory behavior based on transcrip-

tion regulation with cyclic repression (Elowitz and Leibler, 2000).

We model the mean time evolution of n-gene repressilator by the

following system of ODEs:

dmi

dt
¼

kpi

1þ ðkeipði�1ÞÞ
ni
� kmimi,

dpi
dt
¼ �mi � �pi, for i ¼ 1, . . . , n,

where p0 is equivalent to pn. By having an odd number of inter-

acting genes, the repressilator can exhibit an oscillation under

specific parameter conditions. Here, we constructed two repres-

silator models with a different number of genes. One is a three-

gene model, which we refer to as modelM2, and the other one is

a seven-gene model, which we refer to as modelM3 (Fig. 2B and

C). Given the parameter combinations that we selected (see

Supplementary Tables S2 and S3), these two models exhibit os-

cillatory dynamics as the eigenvalues of the Jacobian matrix at

the fixed point contain complex numbers. We set the initial

condition of modelM2 to be m1ð0Þ ¼ 50, p1ð0Þ ¼ 500, and the

other molecular species to be initially absent in the system. For

the initial condition of model M3, we set m1ð0Þ ¼ 20 and the

other molecular species to be initially absent in the system. To

generate the dataset for the true mean trajectory of the mRNAs

in the two-gene circuit models, we simulated each deterministic

model and sampled the mRNA levels at 31 equally spaced time

points. Using these true mean trajectory datasets, we later added

the noise term for each data point for each sample and generated

the sample mean of each mRNA.

3.2 Comparison using synthetic data

In this study, we used as the optimization component in PEDI an

adaptive SA algorithm (Kirkpatrick et al., 1983) in which the

parameter to control the temperature schedule can be changed.

To measure the improvement made by PEDI, we also used the

SA algorithm—without the PEDI framework—for the param-

eter estimation of modelsM1 andM2 and compared the per-

formance between PEDI and SA (see Supplementary Section

S3). Our results demonstrated that PEDI improved the consist-

ency and the accuracy of parameter estimation while increasing

the runtime efficiency.

Next, we compared PEDI with three state-of-the-art param-

eter estimation methods, namely, the SRES (Runarsson and

Yao, 2000), the HEKFþMM (Lillacci and Khammash, 2010)

and the TDDM (Jia et al., 2011). SRES is an evolutionary opti-

mization algorithm, which was reported to be among the best

candidates for parameter estimation of biological models in pre-

vious comparative studies (Moles et al., 2003; Sun et al., 2012).

HEKFþMM is a hybrid parameter estimation method, which

first applies the hybrid extended Kalman filter and then, if ne-

cessary, applies the moment-matching method as the refinement

step. TDDM is another model decomposition-based method,

which avoids costly ODE simulations by estimating the slopes

of smooth piecewise polynomial functions that interpolate

observed data. While PEDI, HEKF and TDDM were all imple-

mented in Matlab, the moment-matching method was imple-

mented in C. SRES was implemented in Matlab, but it calls a

C library for stochastic ranking computations. Thus, we expected

that the efficiency of HEKFþMM and SRES might be over-

estimated from the comparisons based on computational time.
To generate a sample data point of a given mRNA at a given

time point, we sampled a value by adding to the true mean of

mRNA a Gaussian random variable with mean 0 and variance

being the time average of the true means of this mRNA. For the

experiments with modelsM1 andM2, we generated four time

series data samples and used the average of the four as the

observed dataset. To analyze the performance of parameter es-

timation methods with a time series dataset at a higher noise

level, we generated only a single time series data sample and

used this as the observed dataset in the experiments with

model M3. For the parameter estimation of each of the three

models, we ran each method 10 times. Detailed information

about the specific settings used in the three parameter estimation

methods in this comparison is described in Supplementary

Section S4.
To evaluate the performance of each method, we used four

basic criteria, the computational efficiency, the quality of
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reconstructed dynamics, the accuracy of estimated parameters

and the quality of predictability. The computational efficiency

was measured by computing the average runtime of the 10 runs

from each method. The quality of reconstructed dynamics was

analyzed by measuring the average, the smallest and the largest

prediction errors of each method, whereas the accuracy of esti-

mated parameters was analyzed by measuring the average rela-

tive error of the estimated parameter set with the smallest

prediction error for each method. Finally, the quality of predict-

ability was analyzed by extrapolating mRNA data at the next k

observed time points using the parameter set with the smallest

prediction error of each method; we measured the mean squared

distance between the estimated data points and 100 samples that

are generated for each of the k observed data points where we set

k to be 1, 3 and 5.

The results from the comparison of the four methods using

model M1 are summarized in Table 1. Here, PEDI outper-

formed the other methods in three of the four criteria. Both

SRES (with 100 generations of evolution) and TDDM per-

formed poorly in terms of efficiency and accuracy. Although

HEKFþMM was the most efficient method in this experiment,

PEDI was also relatively efficient (0.5min versus 2.2min). By

comparing the best parameter solutions of these two methods,

we found that PEDI generated the most accurate estimate (Fig.

3A and Supplementary Fig. S9). HEKFþMM produced par-

ameter sets with negative values in 7 of the 10 runs. This is due to

the fact that the moment-matching algorithm used an uncon-

strained local optimization technique (Lillacci and Khammash,

2010). To analyze the typical behavior of each method, we

measured the average prediction error and the average relative

parameter error (Table 1 and Supplementary Fig. S10). These

show that PEDI generated not only the best parameter solution

but also the highest quality parameter solutions on average.

PEDI was also able to extrapolate the mRNA levels at next

few time points more accurately than the other three. Taken

together, we found that PEDI was able to generate the

highest quality parameter solutions efficiently among the four

methods.

Next, we analyzed the performance of the four methods using

model M2. These results are summarized in Table 2. In this

experiment, PEDI outperformed the other methods in three of

the four criteria. Although HEKFþMM was once again the

most efficient method in this experiment, both PEDI and

TDDM had comparable speed with HEKFþMM. Again,

PEDI substantially outperformed the other methods in terms

of the quality of the estimates in this experiment. By comparing

the best parameter solution of each method, we found that PEDI

generated high-quality estimates with the smallest prediction

error (Fig. 3B and Supplementary Fig. S11). Even the worst

parameter solution of PEDI had a lower prediction error than

the best solution of any of the other methods (Table 2). To

analyze the typical behavior of each method, we measured the

average prediction error and the average relative parameter error

of the best parameter solution (Table 2 and Supplementary

Fig. S12). These show that PEDI consistently outperformed

the other methods and produced much higher quality parameter

solutions in a computationally efficient fashion. Furthermore,

PEDI was also able to extrapolate the mRNA levels at next

few time points substantially more accurately than the other

three.
We next applied the four methods to model M3. The com-

parison of the four methods is summarized in Table 3. Among

the four methods, the two model decomposition-based methods

were much more efficient than the other two methods. TDDM

was the fastest with its average runtime being 26min, and PEDI

was a close second with its average runtime being 33.5min.

Although HEKFþMM was the most efficient method for the

2 three-gene models (Tables 1 and 2), it was more than four times

slower than PEDI in this experiment. These results, coupled with

the results from modelsM1 andM2, show that model decom-

position-based methods can scale better than typical parameter

estimation methods. The least computational efficient method

was SRES. We ran SRES with 2000 generations of evolution,

which, on average, took more than eight times longer than PEDI

did. However, the quality of the estimates from SRES was just

on a par with that of TDDM.
In the other three criteria, PEDI outperformed the other three

methods substantially. In terms of the quality of estimated par-

ameters, PEDI performed substantially better than the other

three methods. By comparing the best parameter solution ofTable 1. Comparison of the results from modelM1

Method PEDI SRESa HEKFþMM TDDM

Runtime 2.2min 8.1min 0.5min 11.3min

Average PE 225:9 1584.0 N/Ab 2145.0

Best PE 127:5 836.5 207.0 2144.9

Worst PE 359:5 2424.5 N/Ab 2145.1

Best paramc 0:046 8490.5 0.12 9382.6

Pred(1)d 33:6 378.8 40.0 3095.9

Pred(3)d 31:8 410.4 36.3 2831.9

Pred(5)d 33:4 392.8 38.6 2620.7

aWith 100 generations. bBecause seven runs resulted in negative parameter values.
cThe average relative error of the best parameter solution. dPred(k) indicates the

mean squared distance of the next k time points. The comparison criteria are as

follows: the average runtime; the average, best and worst prediction errors; the

average relative error of the best parameter set; and the quality of data extrapola-

tion. Each bold face indicates the best among the four.

A B

Fig. 3. Comparison of the four methods based on the reconstructed dy-

namics with the smallest prediction error from modelsM1 andM2. (A)

The results of m1 inM1. (B) The results of m1 inM2. Here, each value

within parentheses next to each method indicates the prediction error for

a given mRNA, the red square points indicate the observed data points,

and the dotted red lines indicate the true average trajectories
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each method, PEDI came out to be the most accurate one with

its prediction error being at least twice as good as the other

methods. PEDI outperformed the other methods in terms of

the accuracy of both the reconstructed dynamics and the param-

eter values (Fig. 4 and Supplementary Fig. S13). In addition, the

average parameter solution of PEDI had at least 30% lower

prediction error than the best parameter solution of any other

(Table 3). Furthermore, the parameter sets from PEDI were the

closest to the true parameter set on average, and the best par-

ameter solution from PEDI had only 16% error to the true par-

ameter set (Supplementary Fig. S14 and Table 3). PEDI was also

able to extrapolate the data at the next time points much more

accurately than the other three. As data extrapolation of bio-

chemical dynamics—especially those with transient behaviors—

is a challenging problem, this highlights the importance of high-

throughput parameter estimation methods, which can generate

high-quality parameter sets in a timely fashion to ultimately fa-

cilitate construction of a predictive model for given biological

phenomena. To test whether our performance results remain

intact in parameter estimation of a variant of seven-gene repres-

silator model, we modifiedM3 by adding a repression connec-

tion from g3 to g6. Our results show that PEDI produced higher

quality parameter solutions much more efficiently than the other

methods (see Supplementary Section S5). Taken together, we

found that PEDI was able to consistently produce high-quality

parameter estimates under various conditions in a computation-

ally efficient matter.

3.3 Parameter estimation with yeast microarray data

To compare the performance of the parameter estimation meth-

ods using experimental data, we used time series microarray ex-

periments of the genomic expression patterns in the yeast

Saccharomyces cerevisiae responding to several environmental

changes (Gasch et al., 2000). We modeled a gene circuit involving

genes GCN4, LEU3 and ILV5. GCN4 is a master regulator of

many genes including those for the amino acid biosynthesis path-

way (Natarajan et al., 2001). LEU3 is a gene encoding a

Fig. 4. Comparison of the four methods based on the estimated param-

eter set with the smallest prediction error frommodelM3. This shows the

results for mRNAs m1, m2 and m3. The left-hand side panels show the

comparison for the reconstructed trajectory. The numbers in the parenth-

eses indicate the prediction error. The dotted red curve shows the true

trajectory, whereas the red square points indicate the synthetic data

points. The right-hand side panels show the comparison of the parameter

combination generating the estimated trajectory for the four methods.

Here, the red point in the middle of each side for the parameter compari-

son indicates the true value of each parameter

Table 2. Comparison of the results from modelM2

Method PEDI SRESa HEKFþMM TDDM

Runtime 15.0min 268.7min 10.6min 10.9min

Average PE 781:4 2119.9 N/Ab 2197.1

Best PE 227:0 1854.0 2964.2 2196.8

Worst PE 1590:9 2502.7 N/Ab 2197.2

Best paramc 0:091 1592.7 0.64 0.45

Pred(1)d 26:2 1139.2 1164.0 3021.6

Pred(3)d 26:7 893.0 1274.9 2501.2

Pred(5)d 22:9 767.7 1099.4 1765.0

aWith 400 generations. bBecause nine runs resulted in negative parameter values.
cThe average relative error of the best parameter solution. dPred(k) indicates the

mean square distance of the next k time points. The comparison criteria are as

follows: the average runtime; the average, best and worst prediction errors; the

average relative error of the best parameter set; and the quality of data extrapola-

tion. Each bold face indicates the best among the four.

Table 3. Comparison of the results from modelM3

Method PEDI SRESa HEKFþMM TDDM

Runtime 33.5min 279.5min 143.5min 26.0min

Average PE 1123:5 2399.6 N/Ab 2250.1

Best PE 647:1 2174.6 1477.2 2195.9

Worst PE 2215:5 2735.5 N/Ab 2587.5

Best paramc 0:16 1.6 0.36 0.27

Pred(1)d 112:4 595.3 176.1 558.5

Pred(3)d 91:1 525.0 150.7 577.6

Pred(5)d 103:5 461.1 182.2 569.0

aWith 2000 generations. bBecause four runs resulted in negative parameter values.
cThe average relative error of the best parameter solution. dPred(k) indicates the

mean squared distance of the next k time points. The comparison criteria are as

follows: the average runtime; the average, best and worst prediction errors; the

average relative error of the best parameter set; and the quality of data extrapola-

tion. Each bold face indicates the best among the four.
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transcription factor that regulates genes involved in amino acid

biosynthesis, whereas ILV5 encodes an enzyme that catalyzes

amino acid biosynthesis (Friden and Schimmel, 1988;

Zelenaya-Troitskaya et al., 1995).
The network structure of these three genes is reported to

follow the network motif called the coherent type 1 feed-forward

loop (Mangan and Alon, 2003). We described the model of this

feed-forward gene circuit by the following system of ODEs:

dm1

dt
¼ f1ðtÞ,

dm2

dt
¼ �

ðkXYp1Þ
n1

1þ ðkXYp1Þ
n1
� k1m2,

dm3

dt
¼ �

ðkXZp1Þ
n2

1þ ðkXZp1Þ
n2

� �
ðkYZp2Þ

n3

1þ ðkYZp2Þ
n3

� �
� k2m3,

dpi
dt
¼ �ðmi � piÞ, for i ¼ 1, 2, 3,

where f1 is a piecewise polynomial function of t and m1, m2 and

m3 are the mRNA copies of GCN4, LEU3 and ILV5, respect-

ively, whereas p1, p2 and p3 are proteins Gcn4p, Leu3p and Ilv5p,

respectively. As in Cao and Zhao (2008), we estimated the time

evolution of m1 with a smoothing method based on spline.

In this experiment, we set � ¼ 1 and � ¼ 0:5 to have protein

stability higher assuming that each transcription rate is close to

the maximum value when the corresponding expression profile is

at the highest. With this setting, we estimated eight unknown

parameters in the regulation of genes LEU3 and ILV5. In this

experiment, we did not use HEKFþMM, and we just compared

PEDI with SRES (with 400 generations of evolution) and

TDDM. This is because the dataset contains only one time

course microarray data sample with eight time points, with

which we could not satisfactorily estimate the covariance

matrix that HEKFþMM demanded. To quantify the perform-

ance, we measured the mean squared error of each estimate with

respect to the observed mRNA data points, and we compared

the best parameter solution from each method that gave the

lowest error. We found that the error from the best solution of

PEDI was 0.02, whereas the errors from the best solutions of

SRES and TDDM were more than 0.2 and 0.3, respectively

(Supplementary Table S4). This shows that PEDI was able to

approximate the dynamics of the RNA copy of LEU3 and ILV5

well. Indeed, the reconstructed dynamics from the best param-

eter solution of PEDI shows a close agreement between the re-

sults from PEDI and the time series microarray data (Fig. 5). The

average computational time of PEDI, SRES and TDDM is

3.3min, 143.3min and 1.7min, respectively. These results once

again show that PEDI was able to generate a high-quality esti-

mate efficiently.

By using the best parameter solution from PEDI, we next

analyzed regulatory mechanisms of this gene circuit. By looking

at the parameters controlling the binding affinity of Gcn4p to the

cis-regulatory elements of gene LEU3 and gene ILV5, we found

that Gcn4p had close to 20% higher binding affinity to the bind-

ing site for gene ILV5. As the protein–DNA binding cooperativ-

ity estimated by PEDI was high (Supplementary Table S4), we

expect the change in transcription rates of ILV5 to be a switch-

like, sigmoidal function of both Gcn4p and Leu3p. Thus, the

differential binding affinity of Gcn4p allows for a delay in

turning the ILV5 gene on after Gcn4p is turned on, as this

AND-gate type transcription regulation of ILV5 in this model

requires higher concentrations of both Gcn4p and Leu3p to turn

ILV5 on. In the normal nonstarvation conditions, Gcn4p level is

tightly controlled with a means of a rapid degradation through

the ubiquitin pathway. On the other hand, Gcn4p level substan-

tially increases in the amino acid starvation condition (Kornitzer

et al., 1994). Our results show that the delay caused by the dif-

ferential binding affinity in the feed-forward loop may serve as

an extra layer of protection to ensure that this amino acid bio-

synthesis pathway is only activated under the starvation condi-

tion. As our hypothesis is based on one type of time series

expression dataset with only eight time points, however, it

needs to be taken with caution and further analysis is required

to contrast it with alternative explanations. Indeed, our hypoth-

esis can be validated experimentally; by changing the Gcn4p

binding site for gene ILV5 to have a lower binding affinity, it

predicts that the regulation of the amino acid biosynthesis path-

way will be disrupted more easily.

4 DISCUSSION

The parameter estimation problem in modeling of biological sys-

tems is challenging, as it usually involves many (often infinite)

suboptimal solutions. Efficient and scalable parameter estima-

tion is crucial to the systematic construction of quantitative

models that support existing knowledge of complex biological

systems and, more broadly, to the success of integrative systems

biology going forward. Here, we have introduced a novel com-

putational framework, which, instead of considering general ap-

plicability, is customized especially for parameter estimation of

gene circuit models. To see how PEDI performs in comparison

with state-of-the-art parameter estimation methods, we applied

SRES, HEKFþMM and TDDM to the parameter estimation

of the same gene circuit models with the same datasets. We found

that PEDI consistently gave the most accurate estimates in a

Fig. 5. The reconstructed dynamics from the best parameter solution of

PEDI for the yeast feed-forward loop model. The dynamics of mRNA

GCN4 was estimated by a smooth piecewise polynomial function. PEDI

predicted the dynamics of mRNAs, LEU3 and ILV5
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computationally efficient matter. To test how PEDI performs

given experimental gene expression data, we applied it to model-

ing of a yeast gene circuit from time series microarray data. We

found that the reconstructed dynamics from PEDI closely agreed

with the experimental data, and by analyzing the estimated par-

ameter set, we were also able to make a testable hypothesis for an

underlying regulatory mechanism of this gene circuit.
Although PEDI can be applied to gene circuits with an arbi-

trary size and degree of transcriptional interaction connectivity,

there are some limitations. For example, PEDI cannot directly

support gene regulatory models including transcriptional elong-

ation and posttranscriptional modifications. Although we can

relax the conditions of PEDI so as to support more generic bio-

logical models by not requiring a model to have the form

described by Equation (3), the efficiency and the accuracy of

the model decomposition might decrease. While acknowledging

the limited scope of the applicability, we believe that the value of

a more tailored approach to the gene circuit domain far exceeds

such potential drawbacks because of the importance of transcrip-

tional regulation in quantitative understandings of cellular sys-

tems. By narrowing down our focus to gene circuit models, our

customized approach was able to display two main advantages

over the general parameter estimation methods: (i) it can make

more appropriate assumptions about the kinds of gene expres-

sion data available for parameter estimation and (ii) it can ex-

ploit the structural information on gene circuit models—in

particular, statistical thermodynamic-based gene circuit models.

An additional practical benefit of PEDI is that it is relatively easy

to implement in a lower level language such as C.
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