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The design of multitarget drugs is an essential area of research in Medicinal Chemistry

since they have been proposed as potential therapeutics for the management of

complex diseases. However, defining a multitarget drug is not an easy task. In this

work, we propose a vector analysis for measuring and defining “multitargeticity.” We

developed terms, such as order and force of a ligand, to finally reach two parameters:

multitarget indexes 1 and 2. The combination of these two indexes allows discrimination

of multitarget drugs. Several training sets were constructed to test the usefulness of the

indexes: an experimental training set, with real affinities, a docking training set, within

theoretical values, and an extensive database training set. The indexes proved to be

useful, as they were used independently in silico and experimental data, identifying actual

multitarget compounds and even selective ligands in most of the training sets. We then

applied these indexes to evaluate a virtual library of potential ligands for targets related

to multiple sclerosis, identifying 10 compounds that are likely leads for the development

of multitarget drugs based on their in silico behavior. With this work, a new milestone is

made in the way of defining multitargeticity and in drug design.

Keywords: multitarget drugs, drug discovery, drug-design, multitarget index, multiple sclerosis,

polypharmacology

INTRODUCTION

In the field of polypharmacology, combinatorial therapies and multitarget drugs are the main
alternatives for dealing with complex diseases. The first one consists of a combination of multiple
single-targeted drugs. On the other hand, multitarget drugs are molecules with the ability to act
on different targets at the same time. Designing multitarget drugs is a problematic task; however,
it solves several concerns that are seen in combinatorial therapies, such as complex therapeutic
regimens, difficulty in including numerous drugs in a single formulation and drug interactions
at the different pharmacokinetics levels: absorption, distribution, metabolism, and elimination
(Rosini, 2014). In the last two decades, the number of multitarget drugs on the market has been
rising. From 2015 to 2017, 21% of the drugs approved by the Food and Drug Administration
(FDA) were multitarget drugs (MTD), primarily antineoplastic agents (Ramsay et al., 2018). This
trend may indicate that the number of multitarget drugs will continue to rise since they present
advantages over single-target drugs. For example, MTDs have higher in vivo efficacy, and several
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in silico methods and strategies for designing them are currently
being developed (Zhang et al., 2017). A common strategy is to
combine two pharmacophores in the same molecule or partially
overlap them, allowing binding to two or more targets (Talevi,
2015).

Binding to two or more targets at the same time offers the
possibility of treating multifactorial diseases. Neurodegenerative
diseases are a potential field for multitarget drugs. For
example, ladostigil is a dual cholinesterase–monoamine oxidase-
B (MAO-B) inhibitor currently being researched for the
treatment of Alzheimer’s disease and other neurodegenerative
diseases (van der Schyf, 2011). Cancer is another relatively
emergent field for multitarget drugs, mainly as more druggable
targets are being discovered. The use of multitarget drugs
is promising as it lowers the possibility of the disease to
evolve into a drug-resistant phenotype (Xie and Bourne,
2015). Currently, several anti-cancer drugs are considered
multitarget drugs since they inhibit two or more kinases or
receptors (Lu et al., 2012). Another example is in the field
of microbiology, in which dual ligands can be used to treat
tuberculosis. This dual mechanism of action is useful in treating
multidrug-resistant Mycobacterium tuberculosis (Chiarelli et al.,
2018).

One of the limitations that multitarget drug design faces is
data analysis. In some cases, the number of targets or compounds
being analyzed can be high. In PubChem, 71,303 molecules have
been identified as ligands that have two ormore biological targets,
and more than 30,000 ligands were found to be active against
more than 400 targets (Hu et al., 2014). Quantifying and defining
“multitargeticity” may be useful for analyzing these datasets.
Additionally, multitarget metrics could help multitarget drug
design by providing comparable and workable parameters for
drugs and ligands.

To the best of our knowledge, there is no current
measurement of “multitargeticity,” i.e., how multitargeted a
ligand is. Construction of a multitarget parameter should not
be based only on the simple average of the in silico or
experimental data; for example, highly selective ligands to a
single target would appear as multitarget drugs, since the average
is a measure sensitive to extreme values. With this in mind,
our research group suggested the use of a virtual multitarget
parameter, which consisted of a weighted average of the docking
scores of potential biopesticides (Loza-Mejía et al., 2018). This
analysis proved useful for comparing a ligand’s “multitargeticity.”
However, a more rigid index may help even further in multitarget
drug design.

Originally, this project started with the purpose of designing
dual ligands. We designed 211 ligands, and we wanted a
parameter that could summarize or identify the ligands that
had the most potency toward the two targets (the nature of
the ligands and the targets will be explained later). To analyze
the data, we plotted the docking score of the ligands of one
target against the docking score of the second one. In this
plot (Figure 1), a ligand can be described by the coordinates
or docking scores of both targets. Since they are coordinates,
the ligand describes an arrow or vector, starting from the
origin. The angle described by the vector is the selectivity; in

fact, the formula of the tangent is the formula for selectivity
(Equation 1).

tan α = Target #2 ligand′s affinity

Target #1 ligand′s affinity
(1)

Moreover, the magnitude of the vector is likely related to how
potent the ligand is. Greater affinities reflect greater magnitudes.
With the graph (Figure 1), there is a sense of what a multitarget
drug would be: one that equally distributes its magnitude
among the two targets. In other words, a ligand that had the
same affinity for both targets. Measuring the multitargeticity
of a dual ligand can be as simple as obtaining the tangent
of the angle (Equation 1). If the tangent equals 1 (α =
45◦), then mathematically, the ligand attacks both targets with
the same “strength.” However, this interpretation was meant
for more targets. In these scenarios, a single parameter for
defining multitargeticity would not suffice because more angles
are involved.

A radial plot was considered to extend the analysis to further
dimensions (Figure 1). The central idea was kept: a multitarget
ligand would equally distribute its strength among all the targets.
In the radial representation, a multitarget drug would appear
as a regular polygon, and the area could be considered the
magnitude or strength of the ligand. Multitargeticity could be
defined by the similarity between the figure described by the
ligand and a regular polygon. We calculated some parameters
that could be used to describe this relationship and therefore
give a quantitative definition of multitargeticity. However, the
area and shape are sensible to the order in which the targets
are analyzed. A different order would give a completely different
value, as shown in Figure 1.

The solution was to treat ligands as vectors and extend the
analysis to further dimensions, even if it cannot be visualized.
With two targets, an ideal multitarget drug is a vector that
makes a perfect square in a 2D plane. In 3 dimensions, a cube
would be the shape of an ideal multitarget ligand. Therefore,
a hypercube is the central analysis of this interpretation. In
contrast, a different distribution of affinities would produce
the shape of a rectangle, rectangular cuboid, or hyperrectangle,
depending on the number of targets analyzed. Measuring the
similarity between the hyperrectangle and a hypercube is, in
fact, a measure of multitargeticity, which is only a mathematical
definition of how much a ligand equally distributes its strength
among all the targets. With this analysis, another step was made
toward defining and measuring multitargeticity.

One of the several complex diseases that can be treated with
a multitarget drug approach is multiple sclerosis (MS). MS is a
disease that affects the central nervous system. Currently, MS is
the neurological disease with the highest incidence; in 2013,∼2.3
million people were estimated to have MS (Browne et al., 2014).
The pathophysiology of the disease is based on the demyelination
of axons, primarily due to the loss of oligodendrocytes, cells
responsible for maintaining the myelin sheaths around them
(Dobson and Giovannoni, 2019). Although the exact origin of
MS is not known, it is well-established that it causes damage to
the myelin sheath. Depending on the type of MS and the damage
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FIGURE 1 | Plotting the ligands’ affinities in a dispersion plot describe vectors in a 2D space. For further targets, in a radial plot, an ideal multitarget would describe a

regular polygon. Measuring the area of these polygons is influenced by the order in which the targets are plotted. A hypercube is not affected by ordering and

therefore makes an ideal representation of what a multitarget ligand would be.

present, the slow transmission of electronic impulses may lead
to axon loss, consequently damaging the optic nerve and leading
to degeneration of vision, weakness, atrophy, and muscular
rigidity, coordination and balance failures, recurrent fatigue,
dysphagia, depression, and anxiety, among other symptoms
(Huang et al., 2017). PAR-1 and KLK-6 are two molecules
of biological interest as possible targets for MS treatment
due to their role in oligodendrogliopathy and autoimmune
response (Burda et al., 2013). PAR-1 is a protease-activated
receptor involved in coagulation, angiogenesis, proinflammatory
responses, oligodendrocyte death, and myelination (Macfarlane
et al., 2001; Yoon et al., 2015; Pan et al., 2016; Lee et al., 2017).
Antagonists of PAR-1 have been shown to reduce the symptoms
of experimental autoimmune encephalomyelitis (EAE), which
is the most studied animal model for MS (Kim et al., 2015).
Kallikrein 6 (KLK-6) is the most abundant serine protease in
the central nervous system (CNS) and has proteolytic activity
against myelin basic protein (MBP) and amyloid precursor
protein, which are part of the myelin sheath and are involved
in myelination (Burda et al., 2013; Yoon and Scarisbrick, 2016).
KLK-6 is also involved in T-cell survival and apoptotic signalizing
(Scarisbrick et al., 2011).

Additionally, recently, a new drug for secondary progressive
MSwas approved by the FDA: siponimod, which is sold under the
trade nameMayzent R©. Siponimod is a dual drug itself: it binds to

sphingosine-1-phosphate receptor 1 and 5 (S1PR1 and S1PR5)
(O’Sullivan et al., 2016). Siponimod reduces oligodendrocyte
death and demyelination, acting as an effective neuroprotective
agent (Behrangi et al., 2019). S1PR1 is involved in regulating
the inflammatory response and therefore is of interest as a third
biological target (Chi and Nicol, 2010).

In this work, we present the construction of multitarget
indexes as parameters that can define multitargeticity, their
evaluation on several datasets, and their use in identifying
potential multitarget ligands for PAR-1, KLK-6, and S1PR1.

MATERIALS AND METHODS

Construction of an Experimental Training
Set: Multi-Kinase Ligands
We selected 10 known FDA-approved drugs labeled multikinase-
directed drugs as models of multitarget drugs (Li et al., 2016).
Additionally, two non-multikinase drugs were included as
negative controls. The binding affinity (defined in terms of Ki)
of each drug to its target was searched in the Binding DB (Gilson
et al., 2016). The targets of each ligand were selected according
to the FDA approved information. For the negative controls,
tyrosine-protein kinase ABL1 was included in the analysis. The
Ki was transformed into pM units and linearized. The objective
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of this analysis was to test if the multitarget index could correctly
classify drugs using experimental values. The analysis was done,
as stated in section Construction of the Multitarget Index.

Construction of a Docking Training Set:
Multi-Kinase Ligands
We selected 10 known FDA-approved drugs labeled multikinase-
directed drugs as models of multitarget drugs (Li et al., 2016).
The full list of the drugs we considered can be found in
the Supplementary Information. Three non-multikinase drugs
were also included as negative controls. The 13 ligands were
docked on the tyrosine-protein kinase KIT (PDB id: 4HVS),
vascular endothelial growth factor receptor 2 (PDB id: 3VO3)
and platelet-derived growth factor receptor beta (PDB id: 1SHA).
The docking studies were carried out in Molegro Virtual
Docker version 6.0 using the standard protocol suggested by the
manufacturer. All waters, cofactors, and non-active ligands were
removed from the workspace. MolDock optimizer was used as
the running algorithm with 25 runs per ligand. A sphere with
a radius of 15 Å was constructed around the active sites of the
three proteins and selected as the search site. The poses with
the lowest MolDock score were used for further analysis. The
objective of this analysis was to determine if the multitarget
index could correctly classify drugs using theoretical values. The
data were processed, as stated in section Construction of the
Multitarget Index.

Construction of an Experimental
Evaluation Set: DUD
We downloaded the database of DUD (Directory of Useful
Decoys; Huang et al., 2006), containing the energy scores of

nearly 98258 molecules against 40 targets; some targets had
a smaller number of calculated energies but were included in
the analysis, as this would challenge the indexes. The package
was cleaned so that only the negative energies of each ligand
were analyzed. The objective of this analysis was to determine
if the multitarget index could filter an extensive database. The
data were processed, as stated in section Construction of the
Multitarget Index.

Virtual Library of Ligands for MS
Selection and Construction of the Virtual Library
For ligand construction, PAR-1 antagonists with demonstrated
activity were searched. Vorapaxar is a commercially available
platelet antiaggregant whose mechanism of action is PAR-
1 antagonism; therefore, it was used as a reference ligand.
F16357 and SCH79797 are molecules whose antagonism has
been previously studied, and thus, they were used as starting
points for the design of multitarget molecules (Manaenko et al.,
2013; Readmond and Wu, 2017). Four possible scaffolds were
selected for PAR-1 (Figure 2), of which scaffolds W and X
were obtained by scaffold hopping from F16357 and vorapaxar,
respectively, with the help of Mcule (Kiss et al., 2012). F16357
was used as scaffold Y, and scaffold Zwas an annularmodification
of SCH79797.

For the selection of KLK-6 ligands, benzamidine isosteres
were designed, because this compound is known to be a serine
protease inhibitor (Silva et al., 2017). The selected benzamidine
isosteres were aminopyridine (A), aminopyridine with carboxylic
acid (B), aminopyridine with alcohol (C), 2-aminopirimidine
aminoquinoline (E), aminoisoquinoline (F), aminoquinazoline
(G), and benzylamine (H) (Figure 3). Currently, there are no

FIGURE 2 | The four scaffolds used for ligand construction.

FIGURE 3 | Proposed isosteres that may interact in the active site of KLK-6.
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commercially available drugs whose mechanism of action is
selective inhibition of KLK-6. However, it was found that
0HM, a benzylamine derivative, was previously determined as a
compound with high binding energy to KLK-6 and thus was used
as a reference ligand for this enzyme (Liang et al., 2012).

Finally, 211 compounds were constructed from a combination
of both types of ligands with the help of Marvin Sketch 16.2.22.0
and saved in ∗.smiles format. The three-dimensional geometry
was optimized with Spartan ’14 (1.1.4) using MMFF and HF
6-31 G∗.

Molecular Docking
The crystalline structures of PAR-1 complexed with vorapaxar
(PDB id: 3VW7), human S1PR1(PDB id: 3V2Y) and human
KLK-6 with 0HM (PDB id: 4D8N) were downloaded (Bernett
et al., 2002; Hanson et al., 2012; Liang et al., 2012; Zhang et al.,
2012). The water molecules and co-crystallized ligands were
removed from the work area. The docking procedure was carried
out in the same manner used for multikinase ligands.

Cheminformatics Analysis
The smiles codes of the 211 ligands were placed in admetSAR
in order to predict some of their pharmacokinetic properties
(Cheng et al., 2012). The following probability scores were
obtained: permeability of the blood-brain barrier (BBB), human
intestinal absorption (HIA), glycoprotein P substrate (PGP-
substrate), carcinogen, acute oral toxicity (AOT) and inhibition
of hERG (human Ether-à-go-go-Related Gene). A coefficient
of +1 was assigned to all values that fulfilled the following
conditions: BBB+, HAI+, PGP-non-substrate, non-carcinogen,
AOT III, or IV and weak hERG inhibitor. Otherwise, a negative
coefficient was assigned in such a way that the desirable
properties were considered positive. With these coefficients, an
average of the chemoinformatic properties was calculated, which
was called Chemoinformatic Score (CIS).

Construction of the Multitarget Index
Vector analysis, mentioned in the introduction, was used as the
mathematical basis for the index construction. Besides, vector
analysis allowed new interpretations of ligands, concepts, and
parameters that may have a significant impact on multitarget
drug design.

Order of a Ligand
The core idea of the index is to interpret ligands as vectors. The
theoretical affinity or score for a target may be interpreted as a
coordinate within this vector. This interpretation treats targets
as independent variables that are orthogonal to each other. The
ligand (L) is then defined as follows:

⇀

L = (a1, a2, . . . , ai) (2)

where ai is the affinity for each target. The usefulness is that the
number of targets is now coded as the number of coordinates
or dimensions. Therefore, the order of a ligand (n) relates to the
number of targets being tested: a multitarget of order n.

Force of a Ligand
This parameter corresponds to the norm of the vector, which is a
metric that combines all the affinities of the ligands into a single
value. It is generally understood as magnitude, meaning that
greater values correspond to ligands whose particular affinities
are large. It is a useful parameter when trying to compare
combined affinities. However, this metric is also sensible to
extreme values. The force of each ligand (F) was calculated in the
following way:

F =
⇀

||L|| =
√
a12 + a22 + . . . + an2 (3)

Plotting the ligand can enhance the interpretation, as seen
in Figure 1. However, for more than three coordinates,
representations must be truncated into a radial web for
better visualization.

Binding Capacity and Total Multitarget Capacity
Because each coordinate is a vector, the cross product of all the
targets will give a new vector. This new vector is an indirect
measure of the binding capacity of a ligand, which geometrically
corresponds to an nth volume (Equation 4). This metric is
more sensible than the force because it is a multiplication of
affinities, and considerable differences between affinities have
greater repercussions. This operation is the same as calculating
the geometric mean. We interpreted the metric as the binding
capacity, a measure of a ligand’s tendency to bind to more
targets. Higher binding capacity means it can bind efficiently to
more targets.

Bc = geometric mean = n

√√√√
n∏

i=1

an (4)

The average is interpreted as a ligand’s affinity to all the targets.
The average simulates a drug that has equal affinities for all
the proteins. Therefore, the average (µ) is defined as the total
multitarget capacity of the ligand (MTc) (Equation 5). It is only a
capacity since it is an idealized value.

MTc = µ = 1

n

n∑

i=n

ai (5)

Finally, the quotient of the binding capacity and the total
multitarget capacity gives a proportion of how much of that
multitarget capacity is being used. If the binding capacity equals
the total multitarget capacity, then the ligand is a true multitarget
ligand. By itself, this quotient is an index of “multitargeticity”
that can be expressed in percentage for easier reading and read
as “used multitarget capacity” (UMTc).

UMTc =
Bc

MTc
(6)

Index Standardization, Definition, and Interpretation
Since the idea behind the index is to compare different ligands,
it is necessary to standardize the index. The following scheme
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was proposed: the ligand should be its own reference for
standardization. This can be achieved through the following
formula, in which the individual contribution of each affinity to
the force is calculated.

L̂s = n




⇀

L

F




2

=
(
n·
[a1
F

]2
, n·
[a2
F

]2
, . . . , n·

[an
F

]2)
(7)

where n is the number of targets, F is the norm or force of the
ligand, and a is the affinity. This formula also standardizes the
mean, or multitarget capacity (MTc) to 1, independently of the
number of targets or the type of input used. For simplicity, the
new coordinates were renamed “standardized affinities” (̂a).

L̂s =
(
âa, â2, . . . , ân

)
(8)

This simplifies the standardized, used multitarget capacity
(UMTc) to a simple geometric mean ranging from 0
to 1, effectively making it an index or measurement of
“multitargeticity.” As in linear regression, a quadratic estimator
exacerbates the value, making it ideal for a multitarget index
(Equation 9).

1stMTi =


 n

√√√√
n∏

i=1

ân




2

=
(

n∏

i=1

ân

)2/n

(9)

The interpretation is the one originally described in the
introduction: how similar the hyperrectangle described by the
ligand is similar to a hypercube. Alternatively, in a less abstract
way, it is an efficiency measurement: how much “multitarget
capacity” is being used.

A Second Multitarget Index
A second parameter was calculated; the standard deviation (σ).
With this, another index was constructed that could measure the
dispersion of the affinities: the bigger the value, the less variation
among the targets. Since the standardized affinities’ mean equals
one, the second multitarget index is defined as follows:

2ndMTi = 1− σ (10)

As in 1stMTi, the value can be expressed as a percentage (%).
This is a more sensitive parameter that ranges from 1 to negative
values. This index also encodes selectivity: smaller values, even
negative, indicate more selectivity.

Defining of a Multitarget Ligand
With the two indexes, we propose the following values for
classifying a ligand as a multitarget:

The ligand is multitarget if 1stMTi ≥ 0.84 and 2ndMTi ≥ 0.60

These values correspond to an ∼20% deviation from the mean
affinity. It is worth mentioning that, although this gives a
quantitative definition of multitargeticity, ligands that do not
fulfill the criteria should not be discarded. These indexes quantify
the dispersion and variation of the affinities and do not indicate
in any way the potency.

Multitarget Potency and Selectivity
Equally low affinities will give high MT indexes values. For this
reason, a final critical parameter was introduced: the multitarget
potency. This value is the product of the force times, both
multitarget indexes (Equation 11), which is the equivalent of
calculating how much of that force is due to the multitargeticity
of the ligand.

PMT = F√
n
· 1stMTi · 2ndMTi (11)

We propose the multitarget potency as a metric for drug
design since the highest values of potency represent a possible
multitarget hit or even multitarget lead. In the same line of
thought, the next parameter that we propose is an attempt to
identify selective ligands. The selectivity is calculated as follows:

S = F√
n
· (1− 1stMTi)(1− 2ndMTi) (12)

Both parameters maintain the desired properties (higher values
indicate higher potency and selectivity) and are useful for
identifying possible multitarget and selective ligands. These
metrics, as with any other, have their benefits and drawbacks and
will be discussed further on.

RESULTS AND DISCUSSIONS

Performance of the MT Indexes in the
Experimental Training Set
With the criteria set on point 2.5.6, of the 10 approved
multikinase drugs analyzed (imatinib, sunitinib, dasatinib,
afatinib, bosutinib, lapatinib, nintedanib, pazopanib, sorafenib,
vandetanib), only afatanib was not classified as a multitarget
ligand. Although it is biologically active in both of its targets,
the epidermal growth factor receptor (EGFR) and the receptor
tyrosine-protein kinase erbB-2 (HER2 or erbB2), it has a
considerable preference over EGFR (Ki = 0.1 vs. Ki = 5 [nM]).

The two negative controls did not fulfill the criteria to be
cataloged as multitarget drugs. In fact, the epidermal growth
factor receptor (EGFR) is the main and only target for gefitinib
and erlotinib (Wishart et al., 2018). The indexes can reliably
classify and discriminate multitarget molecules in experimental
values, giving strength to the analysis.

The multitarget potency, the critical parameter proposed,
supports the findings, making dasatinib the most potent
multitarget drug of the analyzed set (PMT = 16.4). Sunitinib was
de 2nd most potent multitarget (PMT = 14.6); although it had
better indexes, the total strength was reduced since it had more
targets tested, and the affinities were not as strong as dasatinib
(Figure 4). In contrast, gefitinib was the least potent (PMT =
14.6), but it was also the 2nd most selective ligand of the dataset
(Sgefitinib = 2.7 vs. Sdasatinin = 1.3 and Ssunitinib = 0.2), being
afatinib the first (Safatinib = 2.9).

∗All PMT and S values are dimensionless.
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Performance of the MT Indexes in the
Docking Training Set
With the criteria set on point 2.5.6, of the ten known approved
multikinase drugs tested, only sorafenib was not classified as
a multitarget ligand. By contrast, the three negative controls
were classified as multitarget ligands according to the index. The
apparent discrepancy between these results and the experimental
ones is explained by considering that all the 13 ligands were
docked in the same three targets, indistinctively if they were
active or not, while in the experimental analysis, the preferred
targets were analyzed according to each ligand. Sorafenib had
larger calculated affinities thanmost of the ligands but was further

apart from each other, which lead to it nor being classified
as multitarget. The performance of sunitinib and dasatinib is
observed in Figure 5, and the results agree with the experimental
set. The only difference is that sunitinib is, in this case, the most
potent multitarget ligand.

The analysis still proves useful once the ligands are arranged
in order of highest to lowest multitarget potency, or the force
of each ligand is compared. It is important to emphasize that
the purpose of the index is not to reclassify drugs but instead to
provide useful metrics for analyzing data and aiding in the drug
design process, especially in the design of multitarget drugs. In
this case, seven multitarget ligands would be discovered or tested

FIGURE 4 | Dasatinib had 3 targets (n = 3) tested and greater affinities toward those, while sunitinib had order n = 5 and gefitinib n = 4. That is why, although

sunitinib has better MTi values, dasatinib has more multitarget potency (the number inside the circle). All the values are presented as % (or times 100). The threshold

for considering a ligand multitarget is viewed as a cut in the circles. The inner and outer rings are the 1st and 2nd MT indexes, respectively.

FIGURE 5 | Comparing with Figure 4, the multitarget tendency of sunitinib and dasatinib remains similar. The difference in the calculated affinities gives the change in

the potency. Sorafenib is an example of how the MT indexes affect the strength of the ligand, since that strength is unevenly distributed. The inner circle is the MT

potency. The inner and outer rings are the 1st and 2nd MT index, respectively. The inferior rectangle is the force of the ligand.
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before encountering a non-multitarget drug previously classified
as an MT drug. The multitarget indexes are useful when they are
used with the force of the ligand. The top 7 ligands are indeed
classified as multitarget ligands and are approved by the FDA
as multikinase drugs, and a summary of the performance can be
reviewed in Table 1.

Since this is an in silico evaluation, the scoring is affected
by the computational limitations of the docking procedures.
These limitations should be taken into consideration when
applying the metrics previously described. These are virtual
metrics and are sensible to the in silico scoring functions,
which themselves do not reflect the in vivo effect. Furthermore,
the indexes and metrics should be tested with experimental
values to prove the strength, robustness, and validity of this
classification. As mentioned above, the criteria for classifying

TABLE 1 | Sunitinib, imatinib, and sorafenib are approved multitarget drugs by the

FDA.

Name 4HVS

MolDock

score

3VO3

MolDock

score

1SHA

MolDock

score

F 1stMT

index

(%)

2ndMT

index

(%)

PMT

Sunitinib −166.0 −131.5 −156.6 263.4 96.3 81.4 119.1

Imatinib −193.9 −130.7 −163.2 285.1 90.4 69.1 102.8

Idelalisib −138.7 −104.8 −129.5 216.8 94.7 77.9 92.4

Sorafenib −201.6 −119.8 −154.8 280.9 83.8 58.7 79.8

Letrozole −137.9 −98.4 −114.8 204.6 92.7 72.4 79.3

Sorafenib did classify as a multitarget drug. However, the multitarget potency of sunitinib

and imatinib compared to letrozole and idelasib (negative controls in purple) is greater.

The rest of the molecules can be found in the Supplementary Information. The bold

values indicate the main or critical parameter(s) being evaluated.

a ligand as a multitarget can be modified, but the measure of
multitargeticity persists.

DUD Database
From the 98258 ligands analyzed, 5561 molecules were found to
be multitarget. This corresponds to about 5.7% of all the analyzed
ligands. The orders of the ligands varied widely, ranging from 9 to
40. A total of 912 ligands were found to bemultitarget of order 24.
The distribution can be seen in Graph 1. The multitarget index
filtered the ligands, meaning it does not classify every ligand as
multitarget, and only a subset is eligible according to the criteria.
It is important to notice that the chemical structures in this
dataset were diverse. In these cases, the MT indexes gain strength
as they “clean” the database and facilitating further research.

The most potent multitarget ligands were an unnamed
compound of the ZINC database, which could be further
tested to determine if its potential multitargeticity is only
theoretical. This is the purpose of the indexes, to be useful
in drug design and in identifying potential multitarget ligands.
The selectivity was also used to identify the most selective
ligands. In the DUD database, the third most selective ligand
corresponded to hepsulfam, with the followingMT indexes: 6.6%
(1st) and −272.1% (2nd). A comparison is made in Figure 6. The
selectivity was toward catechol-O-methyltransferase (COMT).
Hepsulfam is an alkylsulfonate alkylating drug-like busulfan used
in cancer therapy. COMT is a modulator of the dopaminergic
and adrenergic response, and it can influence nausea and
vomiting (Gan and Habib, 2016). Hepsulfam binding to COMT
could explain mild nausea and vomiting seen in clinical trials,
contrasting serious nausea present in other types of anticancer
drugs (Ravdin et al., 1991).

Graph 1 | Distribution of how many orders of ligands were among the 5561 ligands identifies as multitarget.
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FIGURE 6 | Multitarget parameters of the most potent multitarget ligand and hepsulfam, the 3rd most selective. The darker circle represents the selectivity, while the

lighter represents de potency. Hepsulfam had a negative MT potency.

Advantages and Limitations of the
Multitarget Indexes
The usefulness of using a multitarget index varies highly
according to the necessities of each research group. As a first
instance, the multitarget indexes give an initial quantitative
and workable definition for what a multitarget drug is. They
define and measure multitargeticity. The primary purpose of
the analysis is in drug design for identification of in silico and
potential in vivomultitarget drugs. In a sense, these indexes could
be useful in identifying multitarget hits and leads in the drug
discovery process. Second, because it is an index, it can be useful
in data analysis when comparing several ligands or targets at the
same time. Moreover, the analysis assumes that the targets are
independent of each other, which provides freedom regarding the
number of studied targets.

The index is also modifiable and perfectible in several ways.
For example, if highlighting a particular target is desired,
then coefficients can be introduced so that the affinities are
weighted.More calculationsmay be performed on the affinities in
previous steps without changing the procedure or interpretation
of the index, such as introducing ligand efficiency metrics. The
multitarget indexes do not only identify multitarget ligands
but are useful when selectivity is desired, making them not
only applicable in multitarget drug design but also in designing
selective single-target drugs and in the drug discovery process in
general. Finally, the analysis can be further perfected with more
statistical rigor, more meaningful parameters, and an in vitro and
in vivo extensions.

Like all other metrics, it has limitations that skew or simplify
the underlyingmechanisms. For example, equal affinitiesmay not
necessarily imply multitarget in vivo effectiveness, since there are
more variables to consider.

Various suppositions are needed in order to treat ligands as
vectors. The most obvious one is that indexes do not consider

how the ligand binds the target or the mechanism of action.
Second, it is assumed the affinities are calculated or measured
under the same conditions. Third, although the coordinates can
be any type of input, the final MT index value changes if the units
of the affinities introduced are different; therefore, MT index
values can only be compared if the data is processed the same
way and is in the same units.

The performance of the MT indexes in all the training
sets shows that they correctly classify drugs using experimental
values, identify potential multitarget ligands in silico, and can
filter an extensive database, making them valuable for the
intended purposes.

MT Indexes in the Virtual Library of
Candidates for MS
With the known limitations and advantages, the MT indexes
were used to analyze the experimental set. The 214 docked
ligands were submitted to the analysis previously described and
ranked in descending order of multitarget potency. Of the 211
designed compounds, 45 were derivatives from scaffold W, 34
from scaffold X, 29 from scaffold Y, and 103 from scaffold Z.
Scaffold Z was present in 9 out of the top 10 most potent
multitarget ligands. Benzamidine isostere A was present in 5 of
them, hinting that an aminopyridine fragment may be ideal for a
multitarget effect.

In most cases, a linker of 1 carbon atom and an ester group
were found in the most potent ligands. More linkers diminished
the MT index value, increasing the selectivity toward KLK-
6, the only exception to this rule was the top, most potent
molecule with four linkers. The reference molecules and their
multitarget parameters can be seen in Table 2. In Table 3, the
top 5 most potent multitarget ligands from the experimental set
are presented.

Frontiers in Chemistry | www.frontiersin.org 9 March 2020 | Volume 8 | Article 176

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Sánchez-Tejeda et al. A Definition of Multitargeticity

In multitarget drug design, the multitarget potency combines
the two indexes and the force. For choosing candidates, the
force against the 2nd MT index can be plotted, and the regions
divided into quadrants. The most favorable zone would be the
upper left since it would group the most potent and most specific
multitarget ligands (Graph 2).

Chemoinformatic Analysis
With the help of the chemoinformatic score (CIS), the
ligands were classified into three arbitrary categories: preferred

TABLE 2 | Summary of the multitarget metrics of the reference ligands.

Name KLK-6

MolDock

Score

PAR-1

MolDock

Score

S1RP1

MolDock

Score

F 1stMT

index

(%)

2ndMT

index

(%)

PMT

Vorapaxar −183.0 −147.7 −128.2 267.9 91.7 70.2 99.6

Siponimod −143.9 −184.2 −155.8 280.9 95.7 78.8 122.3

0HM −185.5 −140.5 −148.2 275.9 94.1 74.5 111.8

The bold values indicate the main or critical parameter(s) being evaluated.

TABLE 3 | Summary of the top 5 ligands which had the highest potency.

Name KLK-6

MolDock

score

PAR-1

MolDock

score

S1RP1

MolDock

score

F 1stMT

index

(%)

2ndMT

index

(%)

PMT

Zb0Ad4 −210.2 −174.8 −177.9 326.2 97.2 82.6 261.9

Zb0C0l1 −193.4 −161.3 −188.9 314.8 97.5 84.8 260.5

Zc0B0l1 −190.1 −160.9 −176.8 305.4 98.2 86.6 259.5

Zd0Ap2 −167.1 −153.4 −165.5 280.8 99.4 92.6 258.5

Zb0Ad1 −202.5 −164.5 −183.8 319.1 97.2 83.2 257.9

(CIS> 0.75), sufficient (0.75> CIS> 0.5) and risky (CIS
<0.5). In total, nine ligands (4.23%) entered the preferred
classification. Of these, eight belonged to scaffold X, and
1 to scaffold Z. Overall, 165 ligands (77.46%) fit into the
sufficient category, and 39 (18.31%) were classified as risky
(see Table 4).

From the 45 scaffold W ligands, 14 (31.11%) were
considered risky, while 31 ligands (68.89%) were considered
sufficient; none reached a CIS> 0.75. From scaffold X,
11 ligands (32.35%) obtained a risky score, 15 ligands
(44.11%) were sufficient, and 8 (23.23%) were preferred.
Scaffold Y had seven ligands (24.14%) classified as risky,
and 22 ligands (75.86%) classified as sufficient. Finally,
seven ligands (6.80%) of scaffold Z were considered risky,
while 95 ligands (92.22%) were considered sufficient, and
only 1 (∼1%) was preferred. These results can be seen
in Table 5.

TABLE 4 | Distribution of the chemoinformatic score among the ligands with the 4

scaffolds.

Preferred

(CIS>0.75)

Sufficient

(0.75>CIS>0.5)

Risky

(CIS<0.5)

Total

Scaffold W - 31 (68.9%) 14 (31.1%) 45

Scaffold X 8 (23.2%) 15 (44.1%) 11 (32.3%) 34

Scaffold Y - 22 (75.8%) 7 (24.1%) 29

Scaffold Z 1 (∼1%) 95 (92.2%) 7 (6.8%) 103

Total 9 163 39 211

Ligands with scaffold X were the most preferred in terms of pharmacokinetics

theoretical properties.

Graph 2 | When plotted, the upper left quadrant is the most valuable or with the most potentially multitarget ligands.
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TABLE 5 | Distribution of the chemoinformatic score among benzamidine

isosteres.

Preferred

(CIS>0.75)

Sufficient

(0.75>CIS>0.5)

Risky

(CIS<0.5)

Total

Isostere A 8 (5.9%) 114 (83.8%) 14 (10.3%) 136

Isostere B - 2 (15.4%) 11(84.6%) 13

Isostere C - 7 (53.8%) 6 (46.1%) 13

Isostere D - 6 (66.6%) 3 (33.3%) 9

Isostere E - 10 (100%) - 10

Isostere F - 9 (100%) - 9

Isostere G 1 (10%) 7 (70%) 2 (20%) 10

Isostere H - 9 (81.8%) 2 (18.2%) 11

A considerable proportion of ligands with isosteres B and C were classified as risky, while

ligands with isostere A had more preferred CIS.

TABLE 6 | Summary of the top 5 ligands which had the highest combined values

of Potency and CIS.

Name F 1st MTi (%) 2ndMTi (%) P CIS Final value

Xb0G0 294.1 96.9 82.7 235.8 0.81 10.5

Zb0As0 314.3 95.8 79.4 239.3 0.78 10.4

Xb0As0 269.4 97.8 85.7 225.9 0.82 10.4

Xb0Am1 273.4 97.2 84.0 223.3 0.82 10.3

Xb0Am0 261.1 98.2 86.9 222.7 0.80 10.1

The bold values indicate the main or critical parameter(s) being evaluated.

These results show that scaffold Z has the most
balanced theoretical pharmacological properties. However,
scaffold X also presented desirable properties in the
CIS; scaffold X is pharmacokinetically desired. It is also
worth mentioning that the aminopyridine derivatives with
carboxylic acids (B) and alcohols (C) presented a risky
CIS in the chemoinformatic analysis. Therefore, ligands
with these isosteres are not considered candidates for
therapeutic applications.

Pharmacokinetic and Pharmacodynamic
Viable Candidates
For determining possible final candidates, the CIS score and
multitarget potency were combined with the geometric mean.
The final table (Table 6) groups the ligands that combine the
highest potency and CIS values, meaning they are the most
likely to have a biological effect while remaining relatively safe.
This is a theoretical approach; therefore, the top molecules are
potential multitarget alternative candidates to treat MS. The
ligands with the highest combined score shared scaffold X in
most of the cases (10 out of the 20 top ligands), with scaffold
Z being the second most shared among the top 20. In 9 out
of the top 10 ligands, isostere A was present in the ligand
structure. It is also noted that a small linker is optimal for
joining these two fragments. From these results, it is assumed that
isostere A, as well as scaffolds X and Z, contribute to theoretical

FIGURE 7 | Ligand Xb0G0 had the highest combined multitarget theoretical

affinity and in silico ADME profile. The parameters of the MT indexes analysis.

The final score is the combination of the MT potency and CIS (in parenthesis).

multitarget effects. However, scaffold X ligands do not have as
much multitargeticity nor force as ligands with scaffold Z but
remain the safest and more pharmacokinetically favorable. The
applied multitarget metrics simplified the analysis and criteria
for determining viable candidates. In Figure 7, the most viable
candidate is presented.

CONCLUSIONS

As multitarget drugs are designed and tested, methods for
effectively comparing and optimizing ligands are required.
We present a new interpretation of ligands as vectors; new
multitarget definitions and metrics, such as order of a ligand,
the force of a ligand, binding capacity and multitarget capacity;
and two multitarget indexes representing multitarget potency
and selectivity, all of which might prove useful in drug design.
The training sets allowed the identification of the advantages
and disadvantages of using these metrics in multitarget drug
discovery. The data analyzed through the MT indexes served
to identify pharmacokinetically and pharmacodynamically viable
multitarget therapeutic candidates for MS. The indexes were also

Frontiers in Chemistry | www.frontiersin.org 11 March 2020 | Volume 8 | Article 176

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Sánchez-Tejeda et al. A Definition of Multitargeticity

useful for identifying selective ligands. The definitions, metrics,
and analysis proposed here may provide a guide toward the
definition of “multitargeticity.”
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