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BACKGROUND: Regulated cell death is a fundamental component of numerous physiological processes; spanning from organogenesis in
utero, to normal cell turnover during adulthood, as well as the elimination of infected or damaged cells throughout life. Quality control
through regulation of cell death pathways is particularly important in the germline, which is responsible for the generation of offspring.
Women are born with their entire supply of germ cells, housed in functional units known as follicles. Follicles contain an oocyte, as well as
specialized somatic granulosa cells essential for oocyte survival. Follicle loss—via regulated cell death—occurs throughout follicle develop-
ment and life, and can be accelerated following exposure to various environmental and lifestyle factors. It is thought that the elimination of
damaged follicles is necessary to ensure that only the best quality oocytes are available for reproduction.

OBJECTIVE AND RATIONALE: Understanding the precise factors involved in triggering and executing follicle death is crucial to uncov-
ering how follicle endowment is initially determined, as well as how follicle number is maintained throughout puberty, reproductive life,
and ovarian ageing in women. Apoptosis is established as essential for ovarian homeostasis at all stages of development and life. However,
involvement of other cell death pathways in the ovary is less established. This review aims to summarize the most recent literature on cell
death regulators in the ovary, with a particular focus on non-apoptotic pathways and their functions throughout the discrete stages of ovar-
ian development and reproductive life.

SEARCH METHODS: Comprehensive literature searches were carried out using PubMed and Google Scholar for human, animal, and
cellular studies published until August 2022 using the following search terms: oogenesis, follicle formation, follicle atresia, oocyte loss, oo-
cyte apoptosis, regulated cell death in the ovary, non-apoptotic cell death in the ovary, premature ovarian insufficiency, primordial follicles,
oocyte quality control, granulosa cell death, autophagy in the ovary, autophagy in oocytes, necroptosis in the ovary, necroptosis in oocytes,
pyroptosis in the ovary, pyroptosis in oocytes, parthanatos in the ovary, and parthanatos in oocytes.

OUTCOMES: Numerous regulated cell death pathways operate in mammalian cells, including apoptosis, autophagic cell death, necropto-
sis, and pyroptosis. However, our understanding of the distinct cell death mediators in each ovarian cell type and follicle class across the
different stages of life remains the source of ongoing investigation. Here, we highlight recent evidence for the contribution of non-
apoptotic pathways to ovarian development and function. In particular, we discuss the involvement of autophagy during follicle formation
and the role of autophagic cell death, necroptosis, pyroptosis, and parthanatos during follicle atresia, particularly in response to physiologi-
cal stressors (e.g. oxidative stress).

WIDER IMPLICATIONS: Improved knowledge of the roles of each regulated cell death pathway in the ovary is vital for understanding
ovarian development, as well as maintenance of ovarian function throughout the lifespan. This information is pertinent not only to our un-
derstanding of endocrine health, reproductive health, and fertility in women but also to enable identification of novel fertility preservation
targets.

GRAPHICAL ABSTRACT

Although apoptosis has well-established roles in regulating ovarian follicle number across the lifespan, recent evidence suggests
autophagic cell death, necroptosis, pyroptosis, and parthanatos also contribute.
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Introduction
Regulated cell death plays an integral role in tissue and organ differenti-
ation during foetal development, and in the maintenance of cell turn-
over throughout subsequent stages of life. These cell death pathways
are critical for responding to toxic insults or microbial infection, while
dysfunctional cell death signalling can be implicated in the development
of some disease states in humans (Kist and Vucic, 2021). Accordingly,
some cell death regulators represent viable therapeutic targets. The
ovary houses the female germline in the form of oocytes, which are
encapsulated by somatic granulosa and theca cells to form ovarian fol-
licles. Women are born with their lifetime supply of follicles termed
the ‘ovarian reserve’. Therefore, maintaining the quality of the reserve
of long-lived oocytes is crucial to ensure the generation of healthy, via-
ble children (Kerr et al., 2012a).

Across the reproductive lifespan, regulated cell death plays funda-
mental roles during follicle formation, follicle development, ovulation,
and the elimination of damaged oocytes. Therefore, understanding the
specific pathways and key factors involved in the regulation of oocyte
attrition (death of the oocyte specifically) and follicle atresia (death of
the whole follicle, oocyte, and supporting somatic cells) has been the
topic of intensive study over the past several decades. Animal models
have contributed vital insights since the availability of human tissue for
study is limited.

During foetal development, there is a considerable oversupply of fe-
male gametes, which are initially generated by foetal germ cell prolifer-
ation before entry into meiosis. However, this supply is significantly
depleted by extensive oogonial and oocyte loss during follicle forma-
tion (Kerr et al., 2013; Findlay et al., 2015). Oogonia and oocyte sur-
vival during ovarian development is dependent on the activation or
suppression of cell death signals. These signals dictate the size and
quality of the follicle pool that women will be endowed with, which
will ultimately define their lifetime fertility (Kerr et al., 2013; Findlay
et al., 2015). The process of follicle development (folliculogenesis)
then commences, during which a subset of immature primordial fol-
licles is activated to develop and mature through discrete stages of
growth (pre-antral, antral, and pre-ovulatory), ultimately producing a
single mature ovulatory oocyte with each menstrual cycle in women.
During puberty, there is a surge in follicle atresia, which is thought to
be predominately hormonally induced, though the exact reasons for
this remain unknown (Liew et al., 2017). Folliculogenesis occurs
throughout reproductive life and, like follicle formation, is subject to a
significant amount of redundancy, since more follicles are activated
than will actually be ovulated. Indeed, over 99% of activated follicles
will undergo natural atresia (Wallace and Kelsey, 2010; Pelosi et al.,
2015).

In addition to natural atresia, exposure to endogenous and exoge-
nous insults that may be detrimental to oocyte quality can readily trig-
ger regulated cell death pathways and follicle loss. Although, in some
cases, this might be necessary in order to maintain the integrity of the
female germline (Winship et al., 2018). For example, it is well-
established that exposure to ionizing radiation, certain chemotherapies,

and various environmental toxicants can induce DNA damage and sig-
nificantly alter the balance of follicle atresia versus survival and matura-
tion (Oktem and Oktay, 2007; Tatone et al., 2008; Soleimani et al.,
2011; Winship et al., 2018). Additionally—depending on the severity
of damage—exposure to such agents can completely ablate the follicle
pool, leading to permanent infertility and premature menopause (Kerr
et al., 2012a; Titus et al., 2021). Thus, understanding the precise
mechanisms of regulated cell death that occur within ovarian follicles in
response to various exogenous insults has important implications for
developing effective fertility preservation strategies.

In this review, we provide a comprehensive overview of the most
recent literature that identifies cell death pathway regulators in the
ovary, highlighting apoptotic and non-apoptotic pathways, and their
functions throughout the discrete stages of ovarian development and
reproductive life.

Methods
Comprehensive literature searches using PubMed and Google Scholar
were conducted for this review to identify peer-reviewed English publi-
cations for human, animal, and cellular studies published until August
2022. The search included keywords in the following areas: oogenesis,
follicle formation, follicle atresia, oocyte loss, oocyte apoptosis, regu-
lated cell death in the ovary, non-apoptotic cell death in the ovary,
premature ovarian insufficiency (POI), primordial follicles, oocyte qual-
ity control, granulosa cell death, autophagy in the ovary, autophagy in
oocytes, necroptosis in the ovary, necroptosis in oocytes, pyroptosis
in the ovary, pyroptosis in oocytes, parthanatos in the ovary, and par-
thanatos in oocytes.

Types of regulated cell death
that occur within the ovary
Regulated cell death refers to the programmed induction of cell death
by specific molecular pathways. In the ovary, apoptosis has been the
most widely investigated regulated cell death pathway to date (Liew
et al., 2016; Marcozzi et al., 2018; Li, 2021), with new insights into the
mechanisms of apoptotic cell death within the ovary published regu-
larly (Table I). However, recent evidence indicates that other cell
death pathways—including autophagy and autophagic cell death, nec-
roptosis, pyroptosis, and parthanatos—may also play important roles
in regulating ovarian function across the lifespan (Fig. 1; Table II). The
classification of these various pathways differs in their gross cellular
morphology, pathophysiological relevance, and by the specific signal
transduction molecules that activate and execute the cell’s demise.
However, it is important to appreciate that additional regulated cell
death pathways exist in other tissues and cell types (reviewed in detail
by Galluzzi et al., 2018).
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Table I Recent insights into the mechanisms of apoptotic cell death within the ovary.

Species Study type Factor(s) Developmental
stage

Ovarian cell
type

Study design Main findings Reference

Human In vivo Leucyl-tRNA synthe-
tase 2 (LARS2)

Follicle atresia Granulosa cells Analysis of LARS2 expression in
human granulosa cells derived
from patients with premature
ovarian insufficiency (POI).

LARS2 expression is decreased in granulosa cells of
POI patients. Knockdown of LARS2 induces granu-
losa cell apoptosis and impairs mitochondrial func-
tion, by increasing reactive oxygen species (ROS)
levels.

(Feng et al.,
2022)

GnRH agonists Oocyte
maturation

Granulosa cells
Mature follicles

Analysis of follicular fluid collected
from human follicles. Mural granu-
losa cells and luteal cells isolated
from follicular fluid.

Significantly increased apoptosis in cumulus oo-
cyte complexes (COCs) from women treated
with GnRH agonists. Suggests that GnRH triggers
could impair follicle maturation and trigger cor-
pus luteum regression.

(Gonen et al.,
2021)

In vitro Sirtuin-1 (SIRT1) Follicle atresia Granulosa cells Analysis of primary and immortal-
ized human granulosa cells treated
with SRT2104 (a SIRT1 activator).

SRT2104 significantly increased the number of
apoptotic cells, as well as elevating pro-apoptotic
cleaved caspase-3 and cleaved poly-(ADP-ribose)
polymerase (PARP) levels, suggesting SIRT1 is in-
volved in apoptosis within the ovary.

(Sapuleni et al.,
2022)

Anandamide (AEA) Follicle
development

Oocyte
maturation

Granulosa cells In vitro culture of human immor-
talized granulosa cells (COV434)
and human granulosa cells 6

AEA.

AEA reduces cell viability and induces granulosa
cell apoptosis via extrinsic pathway. Suggests bal-
ance of endocannabinoids is crucial for normal
follicle development.

(Costa et al.,
2021)

Phosphate and tensin
homolog (PTEN)

Oocyte
maturation

Granulosa cells Analysis of PTEN expression in
human granulosa cells.
Knockdown of PTEN in vitro using
shRNA.

PTEN expression promotes granulosa cell apo-
ptosis. Knockdown of PTEN significantly reduces
granulosa cell apoptosis.

(Yao et al.,
2021)

Cow In vitro Bone morphogenic
protein (BMP) 4

Follicle
development

Granulosa cells Analysis of the expression and
function of BMP4 in cultured bo-
vine cumulus cells.

Knockdown of BMP4 induced apoptosis and cell-
cycle arrest in bovine cumulus cells. BMP4 is an
important regulator of granulosa cell proliferation
via regulation of apoptosis.

(Tian et al.,
2022)

Pig In vitro Cortisol
FSH

Oocyte
maturation

Granulosa cells In vitro culture of porcine COCs
and granulosa cells 6 cortisol
and/or FSH.

Cortisol induces granulosa cell apoptosis. FSH
prevents this cortisol-induced apoptosis.

(Nakanishi
et al., 2021)
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Table I Continued

Species Study type Factor(s) Developmental
stage

Ovarian cell
type

Study design Main findings Reference

Pig Hypoxanthine (Hx)
Growth differentiation

factor 9 (GDF9)
BMP15

Oocyte
maturation

Granulosa cells In vitro analysis of cultured porcine
granulosa cells collected from an-
tral follicles.

Hx prevents the G2-M transition in porcine gran-
ulosa cells, inducing cell cycle arrest and apopto-
sis. Oocyte factors GDF9 and BMP15 counteract
this effect. Suggests counterbalance of intrafollic-
ular factors is important for regulating cell cycle
progression of granulosa cells.

(Li et al., 2020)

Mouse In vivo Lon protease 1
(LONP1)

Follicle
development

Follicle atresia

Oocytes Characterization of oocyte-spe-
cific conditional Lonp1–/– repro-
ductive phenotype in mice.

Conditional loss of Lonp1 in oocytes significantly
depletes primordial and growing follicles, leading
to infertility. Lonp1 is critical for oocyte survival,
due to its suppression of apoptosis inducing fac-
tor mitochondria-associated 1 (AIFM1) transloca-
tion to the nucleus.

(Sheng et al.,
2022)

Complement 1Q-
like protein (C1QL1)

Follicle atresia
Ovarian ageing

Granulosa cells Characterization of reproductive
phenotype of C1QL1-deficient
mice (using C1QL1 antiserum).

Loss of C1QL1 increased granulosa cell apopto-
sis and antral follicle atresia. C1QL1 has impor-
tant functions in regulating granulosa cell
apoptosis, via AKT/mammalian target of rapamy-
cin (mTOR) signalling.

(Lu et al.,
2022)

Growth hormone
Fos and Jun signalling

Ovarian ageing Follicles
Mature

oocytes

Treatment of ageing mice with
GH. Analysis of follicle counts and
superovulation.

GH treatment decreased oocyte apoptosis and
improved mature oocyte quality. Suggests de-
creased GH levels and associated increase in c-
Jun N-terminal Kinase (JNK) signalling mediates
the age-related decline in oocyte quality.

(Liu et al.,
2021)

TAp63 and DNp63
(p63 isoforms)

Ovarian reserve
establishment

Primordial
follicles

Selective deletion of Trp63 exon
13 (D13p63) in mice, which dele-
tes the TAp63a isoform only.

D13p63þ/– mice are completely infertile and
have almost complete depletion of primordial fol-
licles by postnatal day (PN) 10 via intrinsic apo-
ptosis. Shows that integrity of the p63 C-
terminus is critical for oocyte development and
survival.

(Lena et al.,
2021)

Wntless
(Wnt pathway

regulator)

Reproductive life Granulosa cells
Luteal cells

Characterization of oocyte-and
granulosa cell-specific conditional
Wntless–/– reproductive pheno-
type in mice

Granulosa cell-specific conditional Wntless–/–mice
were subfertile and experienced recurrent mis-
carriage. Suggests deletion of Wntless impairs lu-
teinization and induces granulosa cell apoptosis
via intrinsic pathway.

(Cheng et al.,
2020)

(continued)
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Table I Continued

Species Study type Factor(s) Developmental
stage

Ovarian cell
type

Study design Main findings Reference

Cortisol Oocyte
maturation

Mature
oocytes

Granulosa cells

Treatment of wild-type and tu-
mour necrosis factor alpha (TNF-
a) deficient mice with cortisol
in vivo.

Cortisol impaired oocyte competence, increased
oxidative stress, and induced mural granulosa cell
apoptosis via extrinsic pathway.

(Yuan et al.,
2020)

Specificity protein 1
(SP1)

Ovarian reserve
establishment

Primordial
follicles

Global and granulosa cell-specific
Sp1 knockdown in mice.

Knockdown of Sp1, especially in granulosa cells,
suppresses nest breakdown, oocyte apoptosis
and formation of primordial follicles.

(Cai et al.,
2020)

B lymphoma Mo-MLV
insertion region 1
(BMI1)

Ovarian reserve
establishment

Puberty
Reproductive life

Follicles
Oocytes
Granulosa cells

Characterization of Bmi–/– mouse
reproductive phenotype

Complete infertility, disrupted estrous cyclicity
and delayed onset of puberty in Bmi–/– mice.
Significant reduction of primordial follicles and
mature oocytes. Increased granulosa cell apopto-
sis via intrinsic pathway and mitochondrial
dysfunction.

(Wang et al.,
2019)

Ex vivo TNF-a
BH3 interacting-do-

main death agonist
(BID)

Follicle atresia Primordial
follicles

Ex vivo culture of wild-type and
Bid–/– postnatal mouse ovaries
with or without TNF-a.

TNF-a significantly depletes primordial follicle
numbers in wild-type, but not Bid–/– ovaries, sug-
gesting that TNF-a can directly induce primordial
follicle atresia via the extrinsic apoptosis
pathway.

(Winship et al.,
2022)

In vitro Orexin-A (OXA) Follicle
development

Follicle atresia

Granulosa cells Knockdown of OXA receptor 1
(OXR1) in mouse primary granu-
losa cells.

OXA (a neuropeptide) and OXR1 are expressed
in mouse primary granulosa cells. OXA regulates
granulosa cell proliferation and apoptosis in vitro
via the AKT/ERK signalling pathway, thus may
have roles in regulating follicle growth and
atresia.

(Safdar et al.,
2021)

Chemokine (C–C mo-
tif) ligand 5 (CCL5)

Ovarian ageing
Reproductive

senescence

Granulosa cells Analysis of cultured mouse ovar-
ian follicles and granulosa cells.

CCL5 impairs oocyte maturation and promotes
granulosa cell apoptosis in vitro. Suggests CCL5
secretion by theca-interstitial cells may impair fol-
licle development and maturation during ovarian
ageing.

(Shen et al.,
2019)

Caenorhabditis
elegans

In vivo DNA topoisomerase
3 (TOP3)

Oocyte quality
control and ovar-
ian reserve
maintenance

Oocytes Analysis of top-3 C. elegans
mutants.

Loss of top-3 impairs the ability to eliminate de-
fective oocytes, suggesting that top-3 is critical for
oocyte quality control via intrinsic apoptosis.

(Dello Stritto
et al., 2021)
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.Apoptosis
Apoptosis is the programmed, controlled death of a cell; which
involves degradation and fragmentation of protein and DNA, and en-
gulfment of the collapsed cell by neighbouring cells and/or phagocytes
in a non-inflammatory manner. It occurs in all multicellular organisms
throughout life from foetal development onwards and is an essential
homeostatic mechanism to maintain healthy cell populations in tissues
and organs. There are two major apoptotic pathways: the intrinsic and
extrinsic pathways (Fig. 2). The intrinsic (mitochondrial) pathway is ac-
tivated from within the cell and is predominately regulated by mito-
chondria. On the other hand, the extrinsic (death receptor) pathway
is triggered from outside the cell, typically in response to conditions
and factors within the extracellular environment.

Intrinsic apoptosis
The intrinsic apoptosis pathway is initiated by a variety of non-
receptor-mediated microenvironmental perturbations, including growth
factor withdrawal, DNA damage, endoplasmic reticulum stress, reac-
tive oxygen species (ROS) overload, replication stress, and microtubu-
lar alterations or mitotic defects, among others (Elmore, 2007; Li and
Yuan, 2008; Suen et al., 2008; Wang and Youle, 2009). These stimuli
produce intracellular signals that cause disruptions to the mitochondrial
membrane, which result in mitochondrial inner and outer membrane
permeabilization, loss of mitochondrial transmembrane potential, and
release of normally sequestered pro-apoptotic proteins from the inter-
membrane space into the cytosol. This release of pro-apoptotic pro-
teins is considered the ‘point of no return’ in apoptosis, after which
cytochrome c release, caspase activation (predominately caspase-3),
formation of the apoptosome, and death of the cell will occur (Aubrey
et al., 2018).

The intrinsic apoptosis pathway is controlled by members of the B
cell lymphoma 2 (BCL-2) family of proteins. These can be divided into

three subgroups based on their structure and function: the anti-
apoptotic BCL-2 proteins, including BCL-2, BCL-XL, BCL-W, MCL-1,
and A1; the pro-apoptotic proteins, BAX, BAK, and BOK; and the
BH3-only proteins PUMA, NOXA, BH3 interacting-domain death ago-
nist (BID), BAD, BIM, BIK, HRK, and BCL-2 modifying factor (BMF).
The BH3-only proteins are responsible for sensing apoptotic signals
and transmitting them to other BCL-2 family members to ultimately
trigger the apoptotic cascade. They do this by binding and inhibiting
the core anti-apoptotic BCL-2 proteins, leading to conversion of BAX,
BAK, and BOK from inert monomers into membrane-permeabilizing
oligomers (Moldoveanu and Czabotar, 2020). Once permeabilized,
apoptogenic factors, such as cytochrome c, are released from the mi-
tochondrial intermembrane space and trigger caspase activation.

Extrinsic apoptosis
The extrinsic apoptotic pathway can be activated by two types of
plasma membrane receptors: death receptors, which are activated by
cognate ligand binding (Guicciardi and Gores, 2009); and dependence
receptors, which are activated when specific ligands drop below a cer-
tain threshold (Goldschneider and Mehlen, 2010). The most widely
characterized death receptors include, but are not limited to, FAS cell
surface death receptors and the tumour necrosis factor (TNF) recep-
tor superfamily members (Wajant and Siegmund, 2019). Briefly, bind-
ing of the death receptor ligand to the receptor allows the assembly
of the death-inducing signalling complex that regulates the activation of
pro-caspase-8 and -10.

Although the mitochondrial pathway is strongly associated with in-
trinsic apoptosis; in certain cell types, the extrinsic pathway can cross-
talk with the intrinsic pathway through caspase-8-mediated proteolytic
cleavage of tBID to BID, which triggers the release of apoptogenic fac-
tors to activate BAX and induce apoptosis (Cui et al., 2016).

Figure 1. Types of cell death active within the ovary throughout various stages of development. The regulated cell death pathways ap-
optosis (intrinsic and extrinsic), autophagic cell death, necroptosis, pyroptosis, and parthanatos are all active within the ovary in numerous species, in-
cluding humans. The ovarian cell type and stage of development in which evidence has been published is summarized. Figure created using
BioRender.
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Table II Emerging evidence suggesting the contribution of other regulated cell death pathways to ovarian function.

Cell death
pathway

Species Study
type

Factor(s) Developmental
stage

Ovarian cell
type

Study design Main findings Reference

Autophagic
cell death

Human In vitro – Follicle
development

Follicle atresia

Granulosa cells Human granulosa cells treated
with apoptosis-inducing substan-
ces in vitro. Analysis of autophagy
and phagocytosis markers.

Granulosa cells ingest and destroy apoptotic
oocytes via autophagy-assisted phagocytosis

(Yefimova
et al., 2020)

Cow In vitro FSH Oocyte
maturation

Granulosa cells Bovine granulosa cells treated
with increasing doses of FSH
in vitro.

High doses of FSH induce autophagy in bovine
granulosa cells. Suggests why aggressive FSH
stimulation in patients leads to poor oocyte qual-
ity and embryo development.

(Tang et al.,
2021a)

Pig In vivo Light chain 3B
(LC3B)

Follicle atresia
Oocyte

maturation

Granulosa cells
Cumulus cells
Oocytes

Analysis of autophagy and apo-
ptosis markers in granulosa cells,
cumulus cells, and oocytes iso-
lated from porcine cumulus oo-
cyte complexes (COCs).

Significant increase in abundance of LC3B-II pro-
tein in granulosa cells, cumulus cells and oocytes
from both early and late stage atretic follicles.
Suggests that growing follicle atresia is regulated
by both apoptosis and autophagy of granulosa
cells.

(Gioia et al.,
2019)

Rat In vivo Beclin 1 (BECN1) Follicle atresia Oocytes Analysis of BECN1 levels in pre-
pubertal, juvenile, and adult rat
ovaries.

In atretic oocytes, high levels of BECN1 are cou-
pled with high levels of caspase-3, BAX, and
BAK. Suggests that BECN1, a pro-autophagic
protein, promotes apoptosis of oocytes.

(Escobar et al.,
2019)

In vitro
In vivo

Hypoxia-inducible
factor (HIF)-1a

Corpus luteum
formation

Granulosa cells Rats treated in vivo with a HIF-1a
inhibitor. In vitro analysis of cul-
tured rat granulosa cells.

HIF-1a plays a crucial role in regulating granulosa
cell luteinization and subsequent early corpus lu-
teum development. Inhibition of HIF-1a in-
creased apoptosis in early corpora lutea.

(Tang et al.,
2021b)

Mouse In vivo – Ovarian reserve
establishment

Primordial
follicles

Inhibition of autophagy using 3-
methyladenine in perinatal mice.

Active autophagy observed in ovaries from
16.5 days post coitum (dpc) to postnatal day
(PN) 3. Inhibition of autophagy increased number
of cyst oocytes and delayed follicle formation.
Suggests autophagy assists in germ cell cyst
breakdown and primordial follicle assembly.

(Zhihan et al.,
2019)

Ex vivo Lysine-specific
demethylase 1
(LSD1)

Ovarian reserve
establishment

Primordial
follicles

Ex vivo culture of perinatal mouse
ovaries, with Lsd1 either knocked
down or overexpressed using
specific siRNAs.

LSD1 is highly expressed in mouse foetal ovaries,
but sharply reduces from 18.5 dpc onwards.
Suggests that, via regulation of autophagy, LSD1
contributes to the initiation of apoptosis during
ovarian reserve establishment.

(He et al.,
2020)

(continued)
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Table II Continued

Cell death
pathway

Species Study
type

Factor(s) Developmental
stage

Ovarian cell
type

Study design Main findings Reference

Necroptosis Human In vivo Phosphoglycerate
translocase 5
(PGAM5)

Ovarian ageing Granulosa cells Analysis of PGAM5 expression in
human cumulus cells.

PGAM5 expression in human cumulus cells
increases with advancing age and is associated
with decreased mitochondrial function, which
may implicate a role for necroptosis in the pro-
cess of ovarian ageing.

(Li et al., 2022)

In vitro Sirtuin-1 (SIRT1) Follicle atresia Granulosa cells Analysis of primary and immortal-
ized human granulosa cells treated
with SRT2104 (a SIRT1 activator)
and Nec-1 (a necroptosis
inhibitor).

SRT2104 significantly increased the number of
necrotic cells, as well as elevating pro-necroptotic
receptor-interacting serine/threonine-protein ki-
nase (RIPK) 1 and mixed lineage kinase domain-
like pseudokinase (MLKL) protein levels. Nec-1
attenuated RIPK1 and MLKL levels, suggesting
SIRT1 is involved in necroptosis within the ovary.

(Sapuleni et al.,
2022)

Cow In vivo RIPK1 and RIPK3 Oocyte
maturation

Granulosa cells Analysis of mRNA expression of
RIPK1 and RIPK3 in granulosa and
theca cells derived from healthy
and atretic bovine follicles.

Suggests that both apoptosis and necroptosis oc-
cur within granulosa cells of dominant follicles un-
dergoing luteinization.

(McEvoy et al.,
2021)

Pig In vivo Chemerin Corpus luteum
regression

Luteal cells High throughput sequencing of
the transcriptome of cultured
mid-luteal stage porcine luteal
cells.

Chemerin (an adipokine) interacts strongly with
necroptosis-associated genes during the mid-lu-
teal phase, suggesting a potential role for necrop-
tosis (in conjunction with apoptosis) in facilitating
corpus luteum regression.

(Makowczenk-
o et al., 2022)

Pyroptosis Human In vivo Gasdermin family
members
(GSDMs)

– – Analysis of expression of GSDMs
in human ovarian tissue from
patients with serous ovarian can-
cer and healthy counterparts.

Many GSDMs, including gasdermin D
(GSDMD—a key pore-forming protein involved
in pyroptosis) are expressed in normal ovarian
tissue.

(Berkel and
Cacan, 2021)

Cow In vivo
In vitro

Non-esterified
fatty acids
(NEFAs)

Follicle atresia Granulosa cells Analysis of serum and cultured
granulosa cells obtained from bo-
vine ovaries.

NEFAs induced pyroptosis and inflammation of
granulosa cells in vitro, as evidenced by increased
NLR family pyrin domain containing 3 (NLRP3),
toll-like receptor 4 (TLR4), caspase-1, and inter-
leukin-1b expression.

(Wang et al.,
2020)

(continued)
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Table II Continued

Cell death
pathway

Species Study
type

Factor(s) Developmental
stage

Ovarian cell
type

Study design Main findings Reference

Rat In vivo
In vitro

Polystyrene micro-
plastics (PS MPs)

Follicle atresia Granulosa cells Analysis of serum, ovaries and
cultured primary granulosa cells in
rats.

PS MPs activated the NLRP3/caspase-1 signalling
pathway in ovarian granulosa cells possibly trig-
gered by oxidative stress.

(Hou et al.,
2021)

Mouse In vivo NLRP3
inflammasome

Ovarian ageing Follicles Characterization of Nlrp3–/–

mouse phenotype across the re-
productive lifespan.

Although not directly assessed, both publications
suggest that pyroptosis is contributing to age-re-
lated follicle depletion in mice, via activation of
the NLRP3 inflammasome.

(Lliberos et al.,
2020)

(Navarro-
Pando et al.,
2021)

Parthanatos Human In vitro Poly(ADP-ribose)
(PAR)

Oocyte
maturation

Cumulus gran-
ulosa cells

Oocytes collected from normal
and diminished ovarian reserve
(DOR) patients. Cumulus cells
isolated and cultured.

Increased PAR expression in cumulus cells of
DOR patients. Suggests poly[ADP-ribose] (PAR)
polymerase 1 (PARP-1)-dependent cell death
may contribute to diminished ovarian reserve.

(Batnasan
et al., 2020)
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..Autophagy and autophagic cell death
Derived from the Greek language, meaning ‘self-eating’, autophagy is a
tightly-regulated process whereby cells degrade and recycle their own
cytosolic components inside lysosomes, which can lead to cell death

(Galluzzi et al., 2018; Schwartz, 2021). Unlike apoptosis, this form of
regulated cell death occurs in the absence of chromatin condensation
and phagocytes. Autophagic cell death manifests in the accumulation
of large numbers of autophagic vesicles containing cytoplasmic material

Figure 2. Overview of regulated cell death pathways. A summary of each of the well-described regulated cell death pathways—apoptosis
(intrinsic and extrinsic), autophagic cell death, necroptosis, pyroptosis, and parthanatos. Intrinsic apoptosis: After an intrinsic lethal signal occurs
(e.g. DNA damage), BH3-only proteins activate BAX and BAK either directly, or indirectly by binding and inhibiting BCL-2 proteins. Mitochondrial
outer membrane permeabilization (MOMP) then occurs, which releases cytochrome C (Cyt C) and SMAC, the latter of which can inhibit apoptosis.
The apoptosome is then formed, leading to caspase-9 activation, subsequent caspase-3 and -7 activation, and initiation of apoptosis. Extrinsic apo-
ptosis: Once death receptors (e.g. TNFR1, FAS, or TRAIL-R) detect an extrinsic lethal signal, this receptor associates with pro-caspase-8 and -10 to
form complex I. Complex IIa is subsequently formed, which leads to caspase-8 and -10 activation. Apoptosis is then initiated either directly, via direct
cleavage of caspase-3 and -7; or indirectly, via cleavage of BID into tBID and subsequent activation of BAX and BAK. Necroptosis: Following an ex-
trinsic lethal signal and in the absence of caspase-8 activation, complex IIb (i.e. the necrosome) is formed. This leads to phosphorylation of receptor-
interacting serine/threonine-protein kinase (RIPK) 1 and 3, which phosphorylate and activate mixed lineage kinase domain-like pseudokinase (MLKL).
MLKL then forms a complex, resulting in release of cytokines, chemokines, and damage-associated molecular patterns (DAMPS). Ultimately, this
results in inflammation and necroptosis of the cell. Pyroptosis: Once toll-like receptors (e.g. TLR4) detect an extrinsic lethal signal, nuclear factor
kappa B (NF-jB) signalling is activated. This results in inflammasome formation and subsequent caspase-1 activation. Then, pro-IL-1b is converted
into IL-1b, and gasdermin D (GSDMD) is cleaved into N-GSDMD fragments. This leads to inflammation and pyroptosis of the cell. Parthanatos:
Once an intrinsic lethal signal occurs (e.g. excessive reactive oxygen species accumulation), poly[ADP-ribose] polymerase 1 (PARP-1) becomes acti-
vated. If PARP-1 overactivation occurs, this can lead to accumulation of PAR polymer and translocation of apoptosis inhibitory factor (AIF) from mito-
chondria. AIF forms a complex with macrophage migration inhibitory factor (MIF), which re-enters the nucleus. Ultimately, this leads to DNA
fragmentation and parthanatos of the cell. Autophagic cell death: Beclin-1 normally exists in a complex with BCL-2 proteins. Once these have
been phosphorylated and inactivated, free Beclin-1 can then initiate autophagy. Autophagy involves fusion of the autophagosome and lysosome to
form the autolysosome, which then degrades and recycles intracellular components. This can lead to cell survival, but sometimes can cause autoph-
agy-mediated cell death (by activating either apoptosis or necroptosis) or autophagy-dependent cell death (i.e. cell death without apoptosis or nec-
roptosis). Figure created using BioRender.
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.
for degradation by lysosomes, and results in early degradation of
organelles and late degradation of cytoskeleton, which is the reverse
for apoptotic cells (Cuervo, 2004; Thorburn, 2008).

Autophagy is mediated by dozens of autophagy-related (ATG) pro-
teins that regulate expanding ‘isolation membranes’, which encapsulate
and enclose proteins/organelles into a double-membrane structure
called the autophagosome (Li et al., 2021b). These autophagosomes
then fuse with liposomes to degrade the internal components. Once
fused, acidic hydrolases in the lysosome can degrade the autophagic
cargos, and salvaged nutrients are released to the cytoplasm to be
recycled by cells. Genetic models have demonstrated that some auto-
phagic machinery is essential for regulated cell death (e.g. ATG1,
reviewed by Schwartz, 2021); however, it has been suggested that it
might be more appropriate to name the process ‘autophagy-mediated
cell death’ (Kroemer and Levine, 2008). Although, more recent litera-
ture suggests that autophagy-dependent cell death, that is independent
of apoptosis or other regulated cell death pathways, can occur (Bialik
et al., 2018; Denton and Kumar, 2019; Kriel and Loos, 2019) (Fig. 2).
Indeed, there is strong evidence that apoptotic and autophagic machin-
eries are highly interconnected during developmental regulated cell
death (Zhang and Baehrecke, 2015).

Necroptosis
Necrosis is morphologically distinct from apoptosis and characterized
by a gain in cell volume, organelle swelling, plasma membrane rupture,
and loss of intracellular contents (Galluzzi et al., 2018). Unlike apopto-
sis, necrosis provokes an inflammatory response by spilling the cell’s
cytosolic constituents into the extracellular space through the damaged
plasma membrane. During apoptosis, however, these products are
safely isolated by membranes and then consumed by phagocytes.
Necroptosis is a programmed, regulated form of necrosis that is initi-
ated by various extracellular and intracellular stressors, including viral
infection (Guo et al., 2018), inflammation (Pasparakis and
Vandenabeele, 2015), and factors detected by specific death receptors
(e.g. FAS, TNFR1) or pathogen recognition receptors (Galluzzi et al.,
2018; Frank and Vince, 2019) (Fig. 2). Importantly, these death recep-
tors can also activate the extrinsic apoptosis pathway (Grootjans et al.,
2017; Frank and Vince, 2019). At the molecular level, necroptosis criti-
cally depends on activation of the receptor-interacting serine/threo-
nine-protein kinase (RIPK) 1/3 necrosome and mixed lineage kinase
domain-like pseudokinase (MLKL), in the absence of caspase-8 activa-
tion, to ultimately cause cell membrane rupture (Galluzzi et al., 2018).
Indeed, necroptosis is generally observed as a fall-back regulated cell
death mechanism that is triggered when apoptosis is hindered, such as
during pathogen infection (Brault and Oberst, 2017; Naderer and
Fulcher, 2018).

Pyroptosis
Exogenous insults also extend to infection, and regulated cell death is
proposed to contribute to immune defence against infections
(Jorgensen et al., 2017). Pyroptosis is mediated by the cleavage of gas-
dermins, caspases (namely caspase-1), or granzymes; leading to the
formation of pores in the cell membrane, lysis of the cell, and the re-
lease of inflammatory molecules (Frank and Vince, 2019) (Fig. 2). This
type of regulated cell death is primarily observed in inflammatory cells,
such as macrophages, and occurs most frequently upon infection with

intracellular pathogens (Xia et al., 2019). As such, it is likely to form
part of the host response to control bacterial, viral, fungal, or proto-
zoan pathogens (Xia et al., 2019). While the sterile inflammatory re-
sponse is required for organ development and tissue repair,
dysregulation of this process may lead to inflammatory disease, for ex-
ample asthma, Type 2 diabetes, and inflammatory liver diseases (Rock
et al., 2010). Indeed, there is accumulating evidence that pyroptosis
and inflammasome dysregulation may contribute to sterile inflamma-
tory diseases, gynaecological diseases, autoimmune diseases, neuronal
diseases, and even cancer (Li et al., 2021a; Yu et al., 2021). Moreover,
cytokine dysregulation resulting in a pre-inflammatory phenotype that
occurs with age, known as ‘inflammageing’ (Rea et al., 2018), has also
been associated with pyroptosis (Mejias et al., 2018).

Parthanatos
Parthanatos is a poly[ADP-ribose] polymerase 1 (PARP1)-dependent
and apoptosis-inducing factor (AIF)-mediated, caspase-independent
cell death pathway, which is distinct from apoptosis, necroptosis, or
other known forms of regulated cell death (Fig. 2). Parthanatos is asso-
ciated with various diseases including several retinal diseases,
Parkinson’s disease, stroke, heart attack, and diabetes (David et al.,
2009). Parthanatos is triggered by an excessive ROS response, which
leads to an accumulation of poly[ADP-ribose] (PAR) polymer and
translocation of AIF from mitochondria to the nucleus, resulting in
chromatin condensation and nuclear fragmentation (David et al., 2009;
Wang et al., 2011). Parthanatos does have shared characteristics with
necroptosis, including loss of membrane integrity and depletion of cel-
lular energy stores (NAD and ATP) (Yu et al., 2003). However, cells
undergoing parthanatos experience regulated chromatolysis without
swelling and rupturing of cell membranes (Andrabi et al., 2008), as
occurs during necroptosis. Key morphological features of parthanatos
include shrunken, condensed nuclei, and membrane disintegration
(Andrabi et al., 2008).

Timing and pathways of
regulated cell death in ovarian
development and function
Regulation of cell death pathways is critical to orchestrating numerous
aspects of ovarian development and function across the lifespan
(Fig. 1). More than 99% of mammalian follicles will not reach ovulation,
instead undergoing atresia (Wallace and Kelsey, 2010; Pelosi et al.,
2015). It is well-established that follicle atresia is predominately medi-
ated by apoptosis. In women, germ cell number peaks at �5 months
gestation, with �6.8 million germ cells present in the ovary. This num-
ber falls to �1 million at birth, and by the onset of puberty, the follicle
pool contains only 300 000 follicles (Baker, 1963). Despite this, over a
woman’s reproductive life, only �400 oocytes will survive and un-
dergo maturation to ovulation (Morita and Tilly, 1999). At �50 years
of age, ovarian senescence and menopause is triggered when a critical
threshold of <1000 follicles remain in the ovary (Faddy et al., 1992).

Whilst there is continuous loss of germ cells throughout life, there
are two distinct waves during which large numbers of oocytes and pri-
mordial follicles are lost in a short period of time (Fig. 3). The first

Regulated cell death pathways in the ovary throughout life 445
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.occurs prior to birth in humans, during which primordial follicle forma-
tion is occurring, and a second occurs at the onset of puberty. It is
now widely accepted that granulosa cell apoptosis is primarily respon-
sible for the atresia of growing follicles, whereas primordial follicle atre-
sia is largely initiated by oocyte apoptosis (Vaskivuo and Tapanainen,
2003; Meng et al., 2018; Regan et al., 2018). However, alternative reg-
ulated cell death pathways can also trigger follicle atresia across the
lifespan, especially following exposure to certain environmental stres-
sors and toxicants.

Ovarian reserve establishment
Germ cell loss occurs throughout the process of primordial follicle for-
mation, predominately via apoptosis (McClellan et al., 2003).
However, our analysis of studies performed in mice reveals some dis-
crepancies in the exact timing of apoptosis. One of the earliest charac-
terizations was by Bakken and McClanahan (1978), who identified
germ cell degeneration (death) by their condensed nuclei containing
rounded clumps of densely stained chromatin. This study reported in-
creased germ cell degeneration during the last mitotic divisions, as
oocytes become arrested in the first meiotic prophase (Bakken and
McClanahan, 1978). At this time, germ cell nests begin to break down
and facilitate primordial follicle assembly, culminating in loss of up to

98% of germ cells (Pepling and Spradling, 2001). Data examining germ
cell loss during the early stages of meiosis (embryonic day 13.5–17.5 in
mice; approximately mid-gestation in humans) are variable. Some
reports highlight little to no germ cell loss and few TUNEL-positive-
stained germ cells at this time (Pepling and Spradling, 2001).
Meanwhile, others have identified a continuous decline and increased
proportion of apoptotic germ cells during the first meiotic prophase
compared to oogonia undergoing mitosis (Coucouvanis et al., 1993;
McClellan et al., 2003). Thus, it is still debated by the field as to
whether there are specific windows of germ cell loss during foetal de-
velopment, or if this loss occurs continuously in the lead up to nest
breakdown and follicle formation. Irrespective of the timing of loss, it
is well-established that the key anti-apoptotic proteins (e.g. BCL-XL
and BCL-2) and pro-apoptotic proteins (e.g. BAX, BMF, and PUMA)
are clearly required for this process (Rucker et al., 2000; Flaws et al.,
2006; Ke et al., 2013; Myers et al., 2014; Vaithiyanathan et al., 2016).

Extensive germ cell loss occurs during nest breakdown. It has been
proposed that these dying cells could be acting as nurse-like cells that
transfer important organelles (including centrioles, Golgi, and mito-
chondria) and the cytoplasm to a select few oogonia, before undergo-
ing regulated cell death (Lei and Spradling, 2016). The remaining
oogonia that acquired these additional cellular components become
progressively larger, mature, and form the primordial follicle pool.

Figure 3. Timing of regulated cell death across the lifespan within the ovary in women. It is well-defined that multiple windows of in-
creased germ cell loss across the female lifespan. These include immediately prior to birth and puberty. After puberty, there is a consistent decline in
germ cell number across reproductive life, until menopause ensues. However, spikes in loss can be induced in response to endogenous and/or exog-
enous insults. Figure created using BioRender.
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Apoptosis is fundamental to orchestrating nest breakdown and pri-
mordial follicle assembly (Lei and Spradling, 2016). However, autoph-
agy likely also plays a key role in this process (recently reviewed by
Bhardwaj et al., 2022). Interestingly, inhibiting autophagy mediators us-
ing 3-methyladenine delays follicle formation and results in an in-
creased number of cyst oocytes (Rodrigues et al., 2009; Zhihan et al.,
2019). In support, germ cell survival immediately prior to and during
follicle formation is severely impaired in mice with genetic loss of
autophagy-related genes Atg7 and Becn1 (Gawriluk et al., 2011; Song
et al., 2015). Lysosome amplification—a hallmark of autophagy—is
also observed in oocytes upon birth and is most apparent in primor-
dial follicle oocytes (Rodrigues et al., 2009). Lysine-specific demethy-
lase 1 (LSD1)—a critical repressor of autophagy—is highly expressed
in mouse foetal ovaries, but sharply reduces during the period of folli-
cle assembly. Expression data, together with functional studies in vitro,
indicate that LSD1 is an indispensable regulator of oocyte death during
ovarian reserve establishment, via regulation of autophagy (He et al.,
2020). During the foetal-to-neonatal transition in mammals, which is
associated with a transformation in nutrient supply from the maternal–
foetal blood interface to lactation, there is a disruption in nutrient sup-
ply to the ovary (Kuma et al., 2004). Interestingly, autophagy has been
shown to play a critical role in nutrient stress adaptation to prevent
excessive germ cell loss during this period in mice (Song et al., 2015;
Sun et al., 2018). Together, these studies imply key roles for autoph-
agy mediators in regulating oocyte survival, particularly during nest
breakdown and primordial follicle formation.

Once established, primordial follicles enter meiotic arrest. Deemed
‘non-growing follicles’, the oocytes remain arrested at the diplotene
stage of meiotic prophase 1, and the surrounding granulosa cells have
low mitotic potential (Hartshorne et al., 2009). These primordial fol-
licles represent the stockpile of oocytes available to females for their
reproductive life. As such, these primordial follicle oocytes are some
of the longest living cells in the mammalian body, and may remain
arrested for decades in humans (Pelosi et al., 2015). These follicles will
ultimately leave this period of dormancy, either by activation to con-
tinue through stepwise maturation via follicle development, or to un-
dergo follicle atresia and oocyte loss. Regulation of this process and a
balance between growth, survival, and atretic factors are essential in
maintenance of normal reproductive function.

Puberty
During puberty, rising gonadotrophin levels cause dynamic physiologi-
cal changes in the ovary, including the development of antral follicles
to the Graafian (pre-ovulatory) stage and the onset of ovulation.
Strikingly, this window also coincides with a significant spike in the loss
of the ovarian reserve of primordial follicles, by approximately half dur-
ing the adolescent/young adult period (ages 13–25 years) in humans
(Wallace and Kelsey, 2010) and roughly two-thirds in mice (Allan
et al., 2006; Bristol-Gould et al., 2006). This loss is thought to be
gonadotrophin-mediated, though the precise mechanisms remain un-
known (Liew et al., 2017). Notably, overexpression of LH in juvenile
mice has been shown to trigger depletion of the primordial follicle re-
serve (Flaws et al., 1997). Conversely, LH and FSH suppression pre-
vented follicle loss in a more recent study (Liew et al., 2017).
Importantly, this primordial follicle loss is regulated by apoptosis, as

demonstrated by the essential requirement for the pro-apoptotic
BH3-only protein, BMF, in this process (Liew et al., 2017).

It remains unclear why such vast numbers of primordial follicles are
eliminated at the time of sexual maturation. One explanation for this
may be the fact that there are two separate populations of primordial
follicles in the ovary that each have distinct functional roles. Class 1
primordial follicles, which are localized to the ovarian medulla, will acti-
vate and grow during pre-pubertal life but never be ovulated. These
are fast growing, taking 19–21 days to reach maturity in mice (Gilchrist
et al., 2001). They will contribute to the first wave of follicle activation,
which is in turn likely required for the establishment of the hypotha-
lamic–pituitary–ovarian axis, and puberty onset. Class 2 primordial fol-
licles, located at the ovarian cortex, are slower growing (�47 days)
and are thought to represent the source of all mature ovulatory
oocytes for fertilization (Mork et al., 2012; Zheng et al., 2014).
Therefore, it is possible that the spike in oocyte loss observed at the
transition of puberty involves the clearance of any remaining Class 1
primordial follicles in the medulla. While the two classes of follicles
have not been clearly identified in human ovaries, the growth pattern
of the first wave of activated follicles during foetal development is con-
served in humans (Lintern-Moore et al., 1974; Peters et al., 1975).
Moreover, in human ovaries, nearly 20%, 5%, and 0% of the primordial
follicles in pre-pubertal, pubertal, and adult ovaries, respectively, are
classed as morphologically abnormal (Anderson et al., 2014). Cultures
of human cortical tissue containing primordial follicles and isolated pre-
antral follicles from pre-pubertal and pubertal girls exhibited low acti-
vation rates and compromized oocyte growth respectively, compared
to adult samples (Anderson et al., 2014). Thus, it can be speculated
that these abnormal primordial follicles are either eliminated or prefer-
entially activated before puberty onset and the commencement of
ovulation in humans (Anderson et al., 2014). This provides an intrigu-
ing parallel to the two distinct types of primordial follicles identified by
Mork et al. (2012) in mice (Anderson et al., 2014).

Follicle atresia throughout reproductive life
Atresia is a complex process that naturally occurs to regulate the folli-
cle pool across the lifespan (Regan et al., 2018). It affects all stages of
follicular development and involves multiple forms of regulated cell
death. The highest incidence of follicular degeneration is observed
when follicles become dependent on FSH, at the early antral follicle
stage (Chun et al., 1996). Atresia is essential for maintaining ovarian
homeostasis, and the dysregulation of atresia contributes to reproduc-
tive disorders, including PCOS and POI (Duncan, 2014).

Apoptosis
The regulation of intrinsic apoptosis ensures the maintenance of the
number and the quality of the long-lived primordial follicle pool. This
pathway is responsible for eliminating defective oocytes, which is para-
mount to sustain fertility and generate healthy offspring. Genotoxic
stress (i.e. DNA damage) within oocytes—particularly in the form of
double-stranded breaks—is extremely harmful to chromosome struc-
ture and overall DNA integrity. DNA damage can readily accumulate
within primordial follicle oocytes as a consequence of normal cellular
metabolism and increased levels of oxidative stress during the ageing
process (Titus et al., 2013; Stringer et al., 2018; Winship et al., 2018).
Additionally, DNA damage can be induced exogenously following

Regulated cell death pathways in the ovary throughout life 447
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.
exposure to various exogenous insults, including ionizing radiation, en-
vironmental toxicants, and certain chemotherapies causing extensive
primordial oocyte apoptosis (Oktem and Oktay, 2007; Tatone et al.,
2008; Soleimani et al., 2011; Winship et al., 2018).

In oocytes, intrinsic apoptosis is predominately regulated by
TAp63a—an isoform of p63, which is the major p53 family member
present. TAp63a, and its downstream effector PUMA, are primarily
responsible for initiating oocyte apoptosis in response to genotoxic
stress in vivo (Suh et al., 2006; Livera et al., 2008; Kerr et al., 2012b).
Building on this work, a recent report showed that the ovaries in neo-
natal mice with a Trp63 exon 13 deletion (which leads to selective si-
lencing of the TAp63a, but not the b isoform) were almost
completely devoid of oocytes (Lena et al., 2021). This phenotype was
a consequence of increased transcription of Puma and Noxa expres-
sion cause by the constitutively active TAp63b isoform. These data re-
veal that control of p63 signalling, and the intrinsic apoptosis pathway,
is fundamentally important for oocyte maintenance.

Antral follicular degeneration is predominantly initiated by granulosa
cell apoptosis. Activation of the death ligand–receptor system is the
most common trigger of granulosa cell apoptosis, via the extrinsic apo-
ptosis pathway specifically (Inoue et al., 2011; Chu et al., 2018). The
FAS–FAS ligand (FAS-L) system has been localized to the human and
rodent ovary, primarily in the granulosa and theca cells of unhealthy
pre-antral and antral follicles, and in luteal cells of the corpus luteum
(Albamonte et al., 2019), indicating a role in ovarian follicular atresia
and luteolysis. Indeed, co-culture of interferon-c pre-treated granulosa
cells and denuded oocytes resulted in granulosa cell apoptosis, which
could be blocked by an inhibitor of the FAS–FAS-L interaction
(Hakuno et al., 1996). Additionally, new evidence suggests that the ex-
trinsic apoptosis pathway may also regulate atresia of primordial fol-
licles. A recent study examining the impact of checkpoint inhibitor
immunotherapy on ovarian function in a mouse model revealed that
TNF-a can directly induce primordial follicle loss via BID, which is a
key member of the extrinsic apoptosis pathway (Winship et al., 2022).

Autophagy and autophagic cell death
Emerging evidence suggests that autophagic cell death plays a role in
follicle atresia (recently reviewed by Bhardwaj et al., 2022). Granulosa
cell apoptosis may also be triggered by the accumulation of autophagic
vacuoles (autophagosomes) leading to the down-regulation of BCL-2
expression (Choi et al., 2010, 2011), suggesting that autophagy is
closely related to apoptosis induction in granulosa cells. Interestingly,
recent investigations show that different regulated cell death pathways
beyond apoptosis play active roles in mediating follicle atresia, depend-
ing on the stage of follicle development. Pre-antral follicle atresia
occurs largely via enhanced granulosa cell autophagy, meanwhile antral
follicle atresia arises due to granulosa cell apoptosis (Meng et al.,
2018). The oocyte residing within the atretic follicle may then be elimi-
nated by mechanisms involving mediators common to both apoptosis
and autophagy pathways (Escobar et al., 2008; Sanchez et al., 2012;
Escobar et al., 2019). Unlike standard morphological features of apo-
ptosis, oocytes within atretic follicles do not display normal chromatin
compaction; however, they do display DNA fragmentation. Therefore,
oocyte death may begin with autophagic degradation of cytoplasmic
components, including mitochondria, which activates caspases that
lead to DNA fragmentation without compaction; thus, triggering a
non-conventional route of cell death.

There is, in fact, evidence that autophagy contributes to the regula-
tion of oocyte death and follicle atresia at all stages of development,
though its role in cell survival versus cell death appears to be complex.
The expression of autophagy-related genes (e.g. those encoding ATG
proteins, microtubule-associated proteins 1A/1B light chain 3 A and B
[LC3A/B], beclin-1 [BECN1] and [LAMPs]) have been detected in fol-
licles at all stages of development in rodents and pigs (Rodrigues et al.,
2009; Choi et al., 2010; Gawriluk et al., 2011; Hale et al., 2017; Ullah
et al., 2019; Leopardo et al., 2020). In mice, the relative mRNA ex-
pression of Becn1 is highest in primordial follicle oocytes compared
with oocytes from primary, pre-antral, small antral, and large antral fol-
licles, and protein is present in follicles (theca and granulosa cells) and
oocytes of all stages including atretic follicles, but is absent from ovary
epithelium (Gawriluk et al., 2011). In the rat, the expression pattern of
LC3A appears to be restricted to granulosa cells with weak staining in
thecal cells, but no staining in oocytes (Choi et al., 2010). LC3B pro-
tein is localized to the cytoplasm of oocytes and granulosa cells of all
follicle stages as well as in steroidogenic cells of the corpus luteum
(Ullah et al., 2019; Leopardo et al., 2020). Importantly, LC3B levels
are significantly higher in ovaries of heat-stressed mice (Ullah et al.,
2019) and after exposure to FSH (Zhou et al., 2017; Tang et al.,
2021a). Less is known about the expression of these genes in humans;
however, BECN1 and LC3A are present in the KGN immortalized hu-
man granulosa cell line (Yefimova et al., 2020; Li et al., 2021b).
Importantly, a recent in vitro study demonstrated that human granulosa
cells can remove apoptotic oocytes by unconventional autophagy-
assisted phagocytosis (Yefimova et al., 2020), which may explain the
expression of autophagy degradation machinery in these cells. LC3A is
also expressed in cumulus cells from human cumulus–oocyte com-
pletes (COCs), with higher expression in cumulus cells classed as dys-
mature (Kang et al., 2018). Interestingly, oocytes from COCs with
dysmature cumulus cells had a much lower fertilization rate, highlight-
ing LC3A as a possible biomarker for lower quality human cumulus
cells (Kang et al., 2018).

The involvement of autophagy, with or without cell death, has been
reported in the establishment and maintenance of the primordial folli-
cle reserve (Rodrigues et al., 2009; Gawriluk et al., 2011; Zhihan et al.,
2019), follicle development and atresia (Meng et al., 2018), luteiniza-
tion of granulosa cells and formation of corpus luteum (Tang et al.,
2021b), and corpus luteum regression (Choi et al., 2011). Expression
or activation of autophagy-related proteins is most evident in high
stress conditions (such as starvation, heat, and hypoxia) and can sup-
press apoptotic signalling in the oocyte and/or granulosa cells in the
ovary, promoting the survival of oocytes and follicles, and thereby en-
suring fertility (Gannon et al., 2012; Hale et al., 2017; Watanabe and
Kimura, 2018). Consistent with the concept that autophagy plays im-
portant survival roles in the ovary, deletion of the autophagy induction
gene Atg7 in female mice leads to excessive germ cell loss during folli-
cle formation, reduced ovarian reserve, and subfertility (Song et al.,
2015). It has been proposed that autophagy protects immature
oocytes from elimination by apoptosis, under starvation conditions
(Song et al., 2015; Wang et al., 2017). Moreover, loss of function
mutations in ATG7 and ATG9A are associated with autophagy impair-
ment and ovarian failure in women (Delcour et al., 2019). On the
other hand, elevated expression of autophagy-related genes within
granulosa cells appears to be important for the normal and insult-
induced atresia of antral and pre-ovulatory follicles (Shen et al., 2017,
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2018; Gioia et al., 2019; Ma et al., 2019; Bhardwaj et al., 2022), but
excessive or unregulated autophagy may be pathogenic. For example,
increased autophagy has been observed in ovaries from women with
PCOS (Li et al., 2018; Kumariya et al., 2021; Xie et al., 2021), which
may indicate an important role for autophagy in ovarian homeostasis.

As a final note, in mature oocytes, BECN1—a key regulator of
autophagosome formation and membrane trafficking—may also regu-
late chromosome segregation and cytokinesis during the last stages of
meiosis, independent of its role in the autophagy pathway (You et al.,
2016). Thus, it is important to consider that expression of proteins as-
sociated with autophagy does not necessarily imply autophagy is
occurring.

Oxidative stress, necroptosis, and pyroptosis
ROS contribute to the physiological functions of follicles and human
granulosa cells (Saller et al., 2012). Indeed, ROS are needed for vari-
ous processes within the ovary, including ovulation (Shkolnik et al.,
2011; Wang et al., 2022). However, accumulation of ROS from physi-
ological stress (i.e. release of cortisol) or exposure to environmental
and/or endogenous toxins can trigger various regulated cell death
pathways and follicle atresia. Besides apoptosis and autophagy, necrop-
tosis of granulosa cells and oocytes has been reported in the ovary in
response to ROS accumulation. In studies performed in vitro, serum
starving human granulosa cells causes generation of ROS and induces
both necroptosis and apoptosis (Tsui et al., 2017). Indeed, mediators
of necroptosis, such as phosphorylated MLKL, RIPK1, and RIPK3 pro-
teins, are readily detected in the granulosa cells of pre-antral and antral
follicles in macaque ovaries and human corpora lutea (Blohberger
et al., 2015; Du et al., 2018). Moreover, a recent publication identified
elevated gene expression of RIPK1 and RIPK3 in atretic, but not
healthy, bovine follicles (McEvoy et al., 2021). Collectively, these data
suggest that necroptosis, in concert with apoptosis and autophagy,
may play a role in regulating late-stage follicle atresia, but limited mech-
anistic information is available.

In the ovary, granulosa cells of antral follicles are producers and tar-
gets of acetylcholine (ACh) (Mayerhofer et al., 2006). ACh is an im-
portant neurotransmitter that has been implicated in the regulation of
cell viability, proliferation, gap junctional communication and intracellu-
lar calcium levels, as well as expression of transcription factors (Fritz
et al., 2001, 2002; Kunz et al., 2002; Traut et al., 2009). Two esterases
cleave and inactivate ACh—butyrylcholinesterase and acetylcholines-
terase (AChE), with several splice variants of AChE (e.g. AChE-E, -S,
and -R)—which results in isoforms that differ in subcellular localization
and enzyme activity (Meshorer and Soreq, 2006). Importantly, the ex-
pression of splice variant AChE-R increases in response to oxidative
stress (Härtl et al., 2011; Zimmermann, 2013) and circulating levels
also increase with age in humans (Sklan et al., 2004). AChE-R can in-
duce RIPK1-/MLKL-dependent necroptosis of granulosa cells
(Blohberger et al., 2015), which can be blocked using key inhibitors of
necroptosis (e.g. the RIPK1 inhibitor necrostatin-1 and MLKL-blocker
necrosulfonamide) (Blohberger et al., 2015; Du et al., 2018). Locally
inhibiting AChE using Huperzine A, via intrabursal injection, in vivo for
4 weeks in rats significantly increased the number of pre-antral follicles,
corpora lutea, and pup numbers, highlighting an important role for
ACh in follicular development and ovulation (Urra et al., 2016).
Blocking the breakdown of ACh by inhibiting AChE (using Huperzine
A) or interfering with necroptosis (necrostatin-1) did not improve

follicle survival, but did promote oocyte development and growth of
macaque follicles from the pre-antral to the small antral stage, and in-
creased follicle granulosa cell number in vitro (Du et al., 2018). These
studies strongly implicate granulosa cell necroptosis as an additional
regulated cell death pathway that can be utilized during follicle atresia.
However, the mechanism by which AChE-R induces necroptosis in
granulosa cells remains to be determined.

Interestingly, oxidative stress can also prime the NLR family pyrin
domain containing 3 (NLRP3) inflammasome (Bauernfeind et al., 2011;
Won et al., 2015), resulting in caspase-1 activation and pyroptosis
(Strowig et al., 2012). A recent study showed that polystyrene micro-
plastics, which are transported to the ovary and taken in by the granu-
losa cells, result in the induction of NLRP3/caspase-1 signalling and
pyroptosis activation in the ovary (Hou et al., 2021). In addition, a re-
cent study in dairy cows demonstrated that culturing granulosa cells in
the presence of non-esterified fatty acids (NEFAs) induces oxidative
stress, pyroptosis, and inflammation (Wang et al., 2020). Specifically,
NEFAs activate the toll-like receptor 4 (TLR4)/NF-jB pathway, in-
crease the production of NLRP3 and caspase-1, and trigger granulosa
cells to release inflammatory cytokines interleukin (IL)-1b and IL-6.
Importantly, these effects were reversed when the granulosa cells
were pre-treated with antioxidant N-acetylcysteine, validating the role
of oxidative stress during NEFA-induced pyroptosis. The involvement
of NEFAs in this process is particularly interesting as high levels of
NEFAs are a hallmark of various metabolic diseases, including obesity,
Type 2 diabetes, and ketosis in humans and animals (Baddela et al.,
2020). These circulating NEFAs can enter the ovary and the follicular
fluid, and negatively impact on the steroidogenic functions of granulosa
cells and oocyte quality (Yang et al., 2012; Valckx et al., 2014; Calonge
et al., 2018).

Ovarian ageing
Reproductive ageing coincides with a decline in ovarian follicle number,
leading to loss of fertility and endocrine function, and eventually meno-
pause. Notably, emerging evidence indicates that the ovary naturally
transitions to a low-level inflammatory microenvironment with advanc-
ing maternal age, termed ‘inflammageing’ (Lliberos et al., 2021;
Camaioni et al., 2022; Umehara et al., 2022). The NLRP3/apoptosis-
associated speck-like protein (ASC) inflammasome, which activates
caspase-1, appears to be central to this process, raising the possibility
that pyroptosis might contribute to age-associated follicle loss.
Although pyroptosis has not been directly studied during ovarian age-
ing, this hypothesis is supported by recent reports demonstrating that
genetic loss or pharmacological inhibition of NLRP3 or ASC reduces
caspase-1 levels in the ovary, increases oocyte number, and delays
ovarian ageing (Lliberos et al., 2020; Navarro-Pando et al., 2021).
Furthermore, the granulosa cells of women with POI exhibit elevated
NLRP3, caspase-1, and IL-1a levels (Navarro-Pando et al., 2021).
Further investigations of how pyroptosis is regulated in the ovary will
provide valuable therapeutic targets to potentially delay natural ovarian
ageing.

Some new evidence suggests that parthanatos may also contribute
to premature ovarian ageing. Cumulus granulosa cells collected from
women with diminished ovarian reserve showed increased levels of
nuclear purified PAR and AIF (Batnasan et al., 2020), suggesting a role
for PARP-dependent cell death in diminished ovarian reserve

Regulated cell death pathways in the ovary throughout life 449
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pathophysiology. Therefore, inhibition of parthanatos, amongst other
regulated cell death pathways, may prove useful for patients with di-
minished ovarian reserve.

Future directions

Distinguishing between oocyte versus
somatic cell death in ovarian follicles
Granulosa cells are specialized somatic cells in the ovary, vital for oo-
cyte survival and female fertility. When follicles are formed, oocytes
not surrounded by granulosa cells are eliminated. Impaired granulosa
cell function also dysregulates oocyte growth and causes POI, charac-
terized by early loss of fertility and hormone production (Uda et al.,
2004). Recent endeavours to derive human or mouse oocytes from
induced pluripotent stem cells rely exclusively on mouse granulosa
cells to support the germ cell-like cells (Sarma et al., 2019; Stringer
and Western, 2019). Collectively, these observations reveal that gran-
ulosa cells have unique and essential functional properties that cannot
be replaced by other somatic cell types.

In response to activation signals, primordial follicles give rise to large,
hormone-producing follicles, and mature ovulatory oocytes. The
founding population of �5–8 granulosa cells present in a primordial
follicle undergoes clonal divisions to eventually produce >2000 granu-
losa cells that support a mature oocyte (Hirshfield, 1991). After pri-
mordial follicle formation, there is no evidence of new granulosa cell
formation from other somatic cell types (Zhang et al., 2014). Thus, all
mature granulosa cells appear to be clones of primordial follicle granu-
losa cells. As oocytes cannot survive without these essential granulosa
cells, granulosa cell apoptosis invariably causes follicle atresia.
However, the possibility that primordial follicle granulosa cells are sus-
ceptible to ageing and exogenous insults has not been investigated.
Understanding the regulated cell death pathways utilized by each cell
type comprising ovarian follicles is important to better understand the
effects of maternal ageing, and to develop appropriate fertility preser-
vation strategies for female cancer patients.

Role of the ovarian environment in
regulated cell death of ovarian follicles
Studies of the ovarian environment, including the stroma and other
supporting somatic cell types, have emerged as a recent area of inter-
est (Kinnear et al., 2020). Some studies have established that fibrosis is
one early hallmark of the aging ovarian stroma (Briley et al., 2016;
Amargant et al., 2020; Umehara et al., 2022). It has thus been pro-
posed that this altered microenvironment could contribute to the age-
associated decline in oocyte number and/or quality. However, a direct
link between the ovarian stroma and regulated cell death in ovarian
follicles or other somatic cell types is lacking, and should be the focus
of further investigation.

Targeting regulated cell death pathways to
protect fertility
Inhibiting key mediators of oocyte death is a promising strategy for
protecting primordial follicles from anti-cancer treatment and age-

mediated depletion. Such strategies require characterization of the
pathways and specific mediators involved in order to identify suitable
targets. Of relevance to cancer treatment, Bax–/– mice have prolonged
fertility after chemotherapy (Kujjo et al., 2010). Similarly, irradiated
TAp63–/– (Stringer et al., 2020), Puma–/– (Kerr et al., 2012b), and
checkpoint kinase 2 (Chk2)–/– mice (Bolcun-Filas et al., 2014; Rinaldi
et al., 2017) remain fertile after treatment with radiation or chemo-
therapy, unlike their wild-type counterparts, demonstrating the poten-
tial of this strategy for fertility preservation. Translation of this
information is currently limited by the availability of effective small-
molecule inhibitors to these proteins. However, an inhibitor of CHK2
does exist, and its transient use reduced irradiation-mediated primor-
dial follicle loss in mice, leading to the generation of healthy offspring
(Rinaldi et al., 2017).

Targeting other regulated cell death pathways, independently or in
concert with apoptosis, may also provide novel fertility preservation
strategies. Indeed, investigations on the use of AChE and necroptosis
inhibitors to improve folliculogenesis (Urra et al., 2016; Du et al.,
2018), or inflammasome inhibitors to delay ovarian ageing (Navarro-
Pando et al., 2021; Umehara et al., 2022), are exciting potential ave-
nues for fertility preservation. However, more studies are needed to
understand when and how these pathways are activated in the ovary,
in order to determine the best timing and suitability of these therapies.

Conclusion
The contribution of apoptosis to the processes of follicle formation
during foetal development and around birth, as well as throughout
other life stages, is well defined. However, here, we highlight substan-
tial gaps in knowledge of the localization, activation, and contribution
of key players from other types of regulated cell death pathways in
ovarian follicles. Understanding the relative importance of all the differ-
ent regulated cell death pathways, and how they are activated in both
granulosa cells and oocytes, is vital to identify other potential thera-
peutic targets for fertility preservation strategies.
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