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Abstract

Dengue is a vector-borne viral disease of humans that endemically circulates in many

tropical and subtropical regions worldwide. Infection with dengue can result in a range of

disease outcomes. A considerable amount of research has sought to improve our under-

standing of this variation in disease outcomes and to identify predictors of severe disease.

Contributing to this research, patterns of viral load in dengue infected patients have been

quantified, with analyses indicating that peak viral load levels, rates of viral load decline,

and time to peak viremia are useful predictors of severe disease. Here, we take a comple-

mentary approach to understanding patterns of clinical manifestation and inter-individual

variation in viral load dynamics. Specifically, we statistically fit mathematical within-host

models of dengue to individual-level viral load data to test virological and immunological

hypotheses explaining inter-individual variation in dengue viral load. We choose between

alternative models using model selection criteria to determine which hypotheses are best

supported by the data. We first show that the cellular immune response plays an important

role in regulating viral load in secondary dengue infections. We then provide statistical

support for the process of antibody-dependent enhancement (but not original antigenic

sin) in the development of severe disease in secondary dengue infections. Finally, we

show statistical support for serotype-specific differences in viral infectivity rates, with

infectivity rates of dengue serotypes 2 and 3 exceeding those of serotype 1. These results

contribute to our understanding of dengue viral load patterns and their relationship to the

development of severe dengue disease. They further have implications for understanding

how dengue transmissibility may depend on the immune status of infected individuals and

the identity of the infecting serotype.

Author Summary

Dengue is an important vector-borne disease that infects four-hundred million individuals
annually. Infection results in a wide range of clinical symptoms. Thoughmany risk factors
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of dengue are known, the mechanisms explaining why an individual will suffer severe
symptoms are poorly understood. Clinical studies have shown characteristics of viral load
kinetics of dengue-infected individuals may be indicators of disease severity. However,
viral load measurements vary considerably by individual. Here we use statistical methods
to empirically test hypotheses that may explain variation in dengue viral load patterns by
clinical manifestation and by serotype.We show that there is statistical support for anti-
bodies being responsible for higher disease severity during secondary dengue infections
and for high viral infectivity rates of dengue serotypes 2 and 3 relative to dengue 1. These
results further understanding of the relationship between viral load patterns and severe
dengue disease and have important implications for dengue transmissibility.

Introduction

Dengue is an important arthropod-borne virus whose incidence and spatial extent have
increased dramatically in recent years [1]. The virus comprises 4 serotypes (DENV-1-4), each
of which is further structured into clades of genetically similar viruses called genotypes [2].
Infection by any one of the four serotypes can result in a range of severity from asymptomatic
infection to symptomatic dengue fever (DF) to potentially fatal dengue hemorrhagic fever
(DHF). Current understanding of why some dengue-infected individuals develop severe dis-
ease while others do not manifest the infection clinically is still limited. This is due to the com-
plex relationship between the dengue virus and the immune response [3, 4], the presence of
antigenic cross-reactivity between serotypes [3, 5], phenotypic variation between dengue geno-
types [6, 7], and the lack of a suitable animal model [8, 9].
Despite limitations in our current understanding of dengue pathogenesis, key risk factors

for the development of severe dengue disease have been identified in longitudinal epidemiolog-
ical studies [10–13]. These studies have shown that the most important risk factor for severe
diseasemanifestation is a secondary heterologous dengue infection [10]. Clinical and experi-
mental studies have indicated that increased disease severity during secondary infectionmay
be explained by poorly-neutralizing antibody responses and suboptimal cross-reactive T-cell
responses against the infecting serotype [3, 14–16].
Longitudinal epidemiological studies have further indicated that the identity of the infecting

serotype can impact the risk of developing severe dengue disease. For example, a study in Nica-
ragua indicated that primary DENV-1 infections were associated with more severe clinical
manifestations than primary DENV-2 infections [17]. A study in Thailand showed that
DENV-2 was associated with more severe disease than DENV-1, after controlling for exposure
history [11]. In this same study, secondaryDENV-2 and DENV-3 infections were also twice as
likely to result in DHF than secondaryDENV-4 infections [11].
There is further evidence indicating that dengue genotypes can differ in virulence [18]. The

Asian genotype of DENV-2 appears to cause severe diseasemore frequently than the American
genotype of DENV-2 [19]. Very little is currently known, however, about why certain dengue
serotypes and genotypesmay be associated with increased disease severity. The most well-stud-
ied mechanism invoked to explain observeddifferences in virulence involves differences in
viral replication rates between dengue viruses [10]. In vitro studies have shown that the Asian I
genotype of DENV-2 appears to have a higher replication rate than the American genotype of
this serotype [20]. Other studies have shown that dengue serotypes can differ in their ability to
subvert type I interferon signaling [21] and in patterns of CD8+ T cell immunodominance
[22], both of which may impact patterns of clinical manifestation.
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To better understand the mechanisms underlying these important risk factors for the devel-
opment of severe disease, viral load patterns of dengue-infectedpatients have become increas-
ingly characterized.High viral loads are generally associated with severe dengue disease [23–
25], and have been suggested to be necessary for the development of plasma leakage, a hallmark
of DHF [15, 25]. Yet the relationship between high viral load and increased disease severity
becomes inherently more complex when further stratified by clinical manifestation (DF or
DHF) and by serotype [23]. In Vietnam, for example, where DENV-1 incidence is typically
high relative to other serotypes, DENV-1-infected individuals generally appear to have higher
viral loads than DENV-2-infected individuals, but DENV-2 infections are typically associated
with higher disease severity [23, 26]. Apart from viral load levels, the rate of viral clearance and
the time to peak viremia have been used as predictors for the development of severe dengue
disease [23, 25–27].
Here, our aim is to improve our understanding of the within-host mechanisms leading to

observedvariation in viral load dynamics across dengue-infectedpatients. Insight into these
mechanisms can shed light on why certain viral load features may be useful for predicting den-
gue disease outcome and on the mechanistic basis behind identified risk factors. Our approach
is statistical in nature: we fit mechanistic within-host denguemodels to viral load measure-
ments from infected patients and use a Bayesian approach to choose between the models to
identify significant drivers of viral load variation between patients. Bayesian methods have
become an increasingly popular approach for parameter inference [28], in part because they
allow for incorporation of prior information of parameters and for a straightforward analysis
of correlation structure between parameters.
Bayesian inference via Markov chain Monte Carlo (MCMC) has been used for inference of

within-host HIVmodels [29, 30], as well as, more recently, denguemodels [31, 32]. In [31],
parameters of a simple dengue within-host model were fit to viral load measurements from
exclusively DENV-1 infected patients of the same clinical cohort we study. The authors consid-
ered model variants in which some parameters differed by individual while others differed only
by group (defined by immune status and clinical manifestation). They found that individual
variation in intrinsic incubation period and immune response parameters were needed to
account for observed inter-individual variation in DENV-1 virus dynamics [31]. They further
found that the parameters controlling viral infectivity and viral clearance were higher in sec-
ondary infections than in primary dengue infections [31]. In an extension of this model fit
to both DENV-1 and DENV-2 viral load data along with antibodymeasurements [32], the
authors showed that antibodies are important in controlling viral replication by two possible
mechanisms: (1) antibody killing of infected cells via antibody dependent cell-mediated cyto-
toxicity (ADCC) or (2) antibody neutralization and clearance of virus. As in [31], some param-
eters were fit individually while others were allowed to vary by serotype.
To complement this work, we here consider the viral load dynamics across dengue serotypes

DENV-1, DENV-2, and DENV-3, while still taking into account that variation in viral load
might arise from differences in the immune status, clinical manifestation, and/or infecting
serotype of patients. Specifically, we consider models of increasing complexity that reflect
hypotheses that have been put forward in the dengue literature. We first consider a model in
which all observed individual viral load measurements follow the same within-host dynamics.
We build on this model by allowing within-host dynamics of secondaryheterologous infections
to differ from those of primary infections in their ability to rapidly invoke a cellular immune
response. Following these models, we consider processes that have been invoked to explain dif-
ferences in clinical manifestation outcomes: original antigenic sin (OAS) of T-cells and anti-
body dependent enhancement (ADE). Finally, we consider models that capture serotype-
specific differences in viral infectivity rate, the strength of the elicited innate immune response,
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and the strength of the elicited T-cell response. Comparison of model fits using both the Bayes-
ian Information Criterion (BIC) and the Deviance Information Criterion (DIC) first indicate
that variation in viral load is in part explained by individual immune status (primary or sec-
ondary infection), with ADE contributing to whether a patient develops DHF in a secondary
dengue infection. Variation in viral load is further explained by the identity of the infecting
serotype, with the best supported hypothesis having serotypes differ in viral infectivity rate.
Specifically, our analysis shows that viral infectivity rates of DENV-2 and DENV-3 are signifi-
cantly higher than those of DENV-1. In the Discussion, we consider the implications of these
results for understanding patterns of dengue disease severity and transmissibility.

Methods

Data

We statistically analyze individual-level dengue viral load data from a clinical trial of the antivi-
ral drug chloroquine. This trial enrolled adult dengue patients at the Hospital for Tropical Dis-
eases in Ho Chi Minh City, Vietnam [23, 33]. Previous analyses of the viral load data indicate
that chloroquine had no measurable effect on viral load dynamics [33]. (A reanalysis of the
effect of chloroquine on viral load dynamics in the context of the models fit here confirms this
conclusion. We provide more details on this in the Results section.)We therefore do not make
a distinction between chloroquine-treated patients and control patients. Viremia of 239 den-
gue-infectedpatients was measured in the blood twice a day following hospitalization, which
was within 72 hours of reported symptom onset. Virus was quantified by RT-PCR and the
assay used had a limit of detection of either 1,500 copies/ml or 15,000 copies/ml [31]. Time was
measured in days since the onset of symptoms. In addition to viremia measurements, the data-
set included each patient’s infecting serotype, immune status (primary infection or secondary
infection), and clinical manifestation (DF or DHF). Patients were infectedwith either DENV-1
(N = 142), DENV-2 (N = 51), DENV-3 (N = 39), or DENV-4 (N = 7). 30 of the patients were
experiencing a primary infection; the remaining 209 patients were experiencing a secondary
infection.Overall, 170 patients presented with DF; the remaining 69 presented with DHF.
Due to the low numbers of primary infectionDHF patients (N = 4) and of DENV-4-infected
patients, we excluded these individuals from our analyses. Fig 1 shows the raw viral load data
from the remaining 228 patients, stratified by infecting dengue serotype (DENV-1, DENV-2,
or DENV-3) and by immune status and clinical manifestation (primary infectionDF, second-
ary infectionDF, or secondary infectionDHF).

Within-host dynamics

We consider dengue within-host dynamics to be governed by the following set of equations:

dX=dt ¼ � bXV

dY=dt ¼ bXV � aNY � dTYT

dV=dt ¼ oY � kV

dN=dt ¼ qY � dNN

dT=dt ¼ qTYT � dTT

ð1Þ

where X is the number of uninfected cells, Y is the number of infected cells,V is the concentra-
tion of free virus,N is the number of natural killer (NK) cells, and T is the number of T-cells.
Free virus infects target cells at rate β, NK cells clear infected cells at rate α, T-cells clear
infected cells at rate δT, infected cells produce free virus at rate ω, free virus is cleared at rate κ,
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infected cells stimulate the production of NK cells at rate q, NK cells decay at rate dN, the inter-
action of T-cells and infected cells stimulate the production of T-cells at rate qT, and T-cells
decay at rate dT. These equations are based on a previously published within-host mathemati-
cal model for dengue that is capable of reproducing characteristic features of both primary and
secondary dengue infections [34].
In both primary and secondary infections, the innate immune response (represented by NK

cells) plays a pivotal role in regulating viral dynamics. This assumption is based on empirical
studies that have shown support for the innate immune response (over the adaptive immune
response) in clearing primary dengue infections [35, 36]. The innate immune response has fur-
ther been shown to remain important for regulating viral dynamics in secondary infections
[35]. In secondary infections, we assume that T-cells can contribute to the clearance of dengue-
infected cells, based on a study that showed that T-cells were required for protection against
heterotypic dengue infection in a mouse model [37]. In primary infections, we assume (based
on [36, 38]) that T-cells contribute negligibly to viral load dynamics. We implement this
assumption by setting the initial number of T-cells (T0) to zero in primary infectionmodel fits.
Note that eq (1) do not model antibody dynamics explicitly. However, the magnitude of the

Fig 1. Viral load data. For all subplots, x-axes show time in days since the onset of symptoms and y-axes show viral load in log10 copies/

ml. Dotted lines show limits of detection for the assays used. Rows correspond to serotypes: (a-c) DENV-1; (d-f) DENV-2; (g-i) DENV-3.

Columns correspond to immune status and clinical manifestation: (a, d, g): primary infection dengue fever; (b, e, h): secondary infection

dengue fever; (c, f, i): secondary infection dengue hemorrhagic fever. The number of patients (N) for whom viral load data are available is

provided in each subplot.

doi:10.1371/journal.pcbi.1005194.g001
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viral infectivity rate β can implicitly incorporate the role of antibodies in enhancing viral infec-
tivity in certain subjects. Eq (1) differ from the within-host dengue equations used in [31, 32],
in which the authors assume clearance of infected cells or clearance of free virus by an adaptive
immune response in both primary and secondary infections.
Eq (1) contain a total of 5 initial conditions (X0, Y0, V0, N0, and T0) and 9 model parameters

(β, α, δT, ω, κ, q, dN, qT, and dT) (Table 1). We first perform an identifiability analysis on eq (1),
similar to the approach used by Clapham and colleagues [31], to determine which of these
initial conditions and parameters could in principle be independently estimated. Substituting
V0 = βV,N0 = αN and T0 = δT T into eq (1) yields:

dX=dt ¼ � XV 0

dY=dt ¼ XV 0 � N 0Y � T 0Y

dV 0=dt ¼ boY � kV 0

dN 0=dt ¼ qaY � dNN 0

dT 0=dt ¼ qTYT0 � dTT 0

These equations show that parameters q and α and parameters β and ω cannot be indepen-
dently estimated. Due to a lack of knowledge of the value of either q and α, we assigned α an
arbitrary value of 10−3 per day for all analyses. We further assign ω a value of 104 copies/cell/
day based on a virological study (Table 1).
We assign values to initial conditions and parameters that have been independently derived

in the literature. Trivially, we set the initial number of infected target cells (Y0) and NK cells
(N0) both to 0. Following [31], we set the initial number of uninfected target cells (X0) to 107

cells/ml (Table 1). This value is reasonable, given the range of healthy monocyte densities in
plasma of adults [35, 39]. We further set death rates of NK and T-cells (dN and dT, respectively)
based on literature estimates (Table 1).
The identifiability analysis further shows that without T-cell data we cannot estimate T0 and

δT independently. We therefore first set T0 to a value of 105 cells/mL, a reasonable value based
on immunological studies (Table 1) and attempted to fit δT. However, due to lack of T-cell data
and early viral load data, the parameter δT became practically unidentifiable (see Results sec-
tion below), covarying almost perfectly with the parameter qT. We thus set δT to 10−6 per day
such that T-cell counts would reach maximum values on the order of 106 cells/ml, consistent
with values from studies examining T-cell dynamics in dengue infections [40, 41].
The only initial condition we therefore fit in our statistical analysis of the viral load data was

the initial amount of free virusV0, which we estimate on the log-transformed scale. The param-
eters in eq 1 we fit were β, κ, q, and qT.
Because the viral load data were reported as a function of time since the onset of symptoms

and eq (1) describewithin-host dengue dynamics from the start of infection, it was necessary
to further estimate the incubation period (IP), defined as the time between viral inoculation
and the onset of symptoms. Since IP correlates strongly with the initial amount of free virus
(V0), we do not attempt to estimate IP. Instead, we rely on results from a study that used Bayes-
ian time-to-eventmodels to estimate IP durations using observations from 35 empirical den-
gue studies [42]. This study estimated an IP of 5.9 days for dengue, with 95% of the estimates
lying between 3 and 10 days. Examination of the viral load data shown in Fig 1 suggests that
much of the inter-individual variability of the data may be explained by individual differences
in IP. We therefore include a random effect on the IP to account for this variability. To incor-
porate this random effect, we assume that individual incubation periods are log-normally
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distributed based on the results in [42]. We set the mean value of the log-normal distribution
to log(IPg) where IPg is 5.9 days [42] and estimate the standard deviation of the incubation
period, σI.

Bayesian implementation

To fit eq (1) to the viral load data shown in Fig 1, we assume log10 viremia measurements have
normally-distributedmeasurement errors.
Given an incubation period IPj for individual j, the likelihoodof the model parameters γ

given this individual’s viral load data Dj is given by:

LjðgjDjÞ ¼
Yn

k¼1

�ðDjðtkÞjMðg; tk þ IPjÞ; s�Þ1DjðtkÞ
>LODþ

FðLODjMðg; tk þ IPjÞ; s�Þ1DjðtkÞ
�LOD

ð2Þ

The likelihood is evaluated over the number of viral load data points n of individual j. A
given viral load data point k is provided at time tk, measured in days since the onset of symp-
toms. Dj(tk) is thus the viremia measurement from individual j at tk days since the onset of
symptoms. To account for the incubation period, the model-predicted viremia measurements
M are measured at times tk + IPj. Both Dj andM viremia levels are on the log10 scale. ϕ is the
Gaussian probability density function (pdf),where the parameter quantifying the standard
deviation of the measurement error is σ�, which, as in [31, 32], we set to 1. We use the Gaussian
pdf to calculate the probability of observingDj(tk) only if the data point Dj(tk) lies above the
limit of detection (LOD).F is the Gaussian cumulative distribution function (cdf).We use the
Gaussian cdf to calculate the probability of observing a data point Dj(tk) at or below the LOD.
Rather than sample the IPjs individually, we integrate them out numerically, assuming the
probability density of IPj is given by logNðlogðIPgÞ; s

2
I Þ. The overall log-likelihood is then the

Table 1. Initial conditions and model parameters.

Parameter Units Estimated or assigned Value if set Reference

X0 cells ml−1 assigned 107 [35, 39]

Y0 cells ml−1 assigned 0

V0 copies ml−1 estimated on the log10 scale

N0 cells ml−1 assigned 0

T0 cells ml−1 assigned 105 [40]

β (copy ml−1)−1 day−1 estimated

κ day−1 estimated

q day−1 estimated

ω copies cell−1 day−1 assigned 104 [43] (scales with β)

α day−1 assigned 10−3 arbitrary (scales with q)

dN day−1 assigned 0.07 [44, 45]

δT day−1 assigned 10−6 [40, 41] (fix T-cell magnitude)

qT (cells ml−1)−1 day−1 estimated

dT day−1 assigned 0.1 [46]

IPg days assigned 5.9 [42]

σI log days estimated

Note: All model results are insensitive to changes in values of assigned parameters X0, T0, ω, dN and dT (see S4–S8 Tables).

doi:10.1371/journal.pcbi.1005194.t001
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sum of log-likelihoodsover all individuals for whom we have viral load data. The full log-likeli-
hood expression is provided in the S1 Text.
We use the Metropolis-Hastings algorithm for MCMC parameter estimation with a multi-

variate normal proposal distribution truncated to the positive quadrant as the model parame-
ters shown in Table 1 are restricted to be positive. Because values of V0 are close to 0 but
cannot be 0, instead of estimatingV0 directly we estimate log10(V0). We use uniform improper
priors for all estimated parameters.
The MCMC algorithm was run for a total of 300,000 iterations, with a burn-in of 150,000

iterations. Each model we considered was run for 4 different sets of initial conditions of all
parameters estimated.We assessedmodel convergence by calculating the Rubin-Gelman con-
vergence diagnostic for each model and ensuring that R̂ < 1:1 for each parameter [47], as well
as assessing posterior trace plots for convergence by eye. For all models, we found R̂ to be< 1.1
for all parameters. To incorporate parameter correlations, after 30,000 iterations, we began
adapting the covariance of the proposal to the model posterior. At 150,000 iterations, we fixed
the covariance matrix.
In some of the figures shown in the Results section, we plot estimates of individual incuba-

tion periods. Since for each individual j we marginalize over the individual incubation periods
during the process of parameter estimation (see above and the full likelihood expression pro-
vided in the supplemental material), our plotting of individual incubation periods is simply to
show the most likely incubation periods for individuals of a certain group relative to individu-
als of other groups. Draws from the joint posterior are obtained by sampling from the condi-
tional distributions of the incubation periods given sampled parameters γ, proportional to
p(IPj|logN(log(IPg), σI))Lj(γ|Dj).

Models considered

We estimate parameters of eq (1) for models of varying complexity that reflect hypotheses that
have been put forward by virological and immunological studies of dengue infection.Our goal
in fitting these various models is to determine which hypotheses best explain variation in viral
load patterns observed in dengue infected patients. Table 2 summarizes the set of models we
consider.
The first model we fit (model 0) is the most basic denguemodel: it assumes that viral load

dynamics are regulated by the innate immune response, and that the adaptive immune
response plays a negligible role in regulating viral dynamics in both primary and secondary
dengue infections (T0 = 0, qT is not estimated). It further assumes that viral load dynamics do

Table 2. Models considered. Column k lists the number of free parameters. Global parameters are shared across all individuals, regardless of clinical mani-

festation or infecting serotype. Also shown are the median log-likelihood values, BIC and DIC values for all models considered.

Model k Global parameters Clinical-manifestation-specific parameters Serotype-specific parameters Log-likelihood BIC DIC

0 5 V0, β, κ, q, σI – – -2411 4857 4828

1 6 V0, β, κ, q, qT, σI – – -2346 4733 4698

OAS1 7 V0, β, κ, q, qT, σI δT – -2347 4741 4700

OAS2 8 V0, β, κ, q, σI δT, qT – -2346 4746 4699

ADE 7 V0, κ, q, qT, σI β – -2346 4740 4699

SSβ 8 V0, κ, q, qT, σI – β -2332 4720 4673

SSq 8 V0, β, κ, qT, σI – q -2345 4745 4699

SSqT 8 V0, β, κ, q, σI – qT -2337 4728 4681

SSbADE
11 V0, κ, q, qT, σI β β -2334 4744 4679

doi:10.1371/journal.pcbi.1005194.t002
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not differ by the infecting serotype or by diseasemanifestation (DF/DHF). For this model we
fit four parameters (β, κ, q, σI) and one initial conditionV0.
The secondmodel we fit (model 1) assumes that T-cells are important in clearing infected cells

during secondary infections, but not in primary infections.We implement this model by fitting
the primary infectiondata to eq (1) under the assumption that T0 = 0, and by fitting the secondary
infection data to eq (1) under the assumption that T0 = 105 cells/ml. Under this model, we assume
that all other parameters and initial conditions listed in Table 1 are the same across infection
types. For this model we therefore fit five parameters (β, κ, q, qT, σI) and one initial conditionV0.

Models considering differences in clinicalmanifestation. The next models we consider
aim to address whether there are differences in viral load dynamics between individuals pre-
senting with different clinical manifestations (DF vs DHF), and, if so, the mechanism(s)
responsible for these differences.We first consider models that incorporate the process of origi-
nal antigenic sin of T-cells (model OAS1 and model OAS2). OAS proposes that fast-acting
memory T-cell populations cause a strong pro-inflammatory response during secondary heter-
ologous dengue infections. Yet, because these populations have low avidity to the infecting
(secondary) virus, the protective effects of the T-cells in lysing infected cells are suboptimal
[48]. In support of OAS, a study of T-cell responses in Thai children showed that the majority
of dengue virus-specificT-cells had low affinity to the infecting serotype [16].
We formulate two variants of the OAS model. First, we consider a model (OAS1) in which

we allow the rate of T-cell lysis of infected cells (δT) to vary by clinical manifestation (DF or
DHF) during a secondary infection, with the expectation that δT would be lower in DHF-mani-
festing individuals relative to DF-manifesting individuals. Second, we consider a model (OAS2)
in which in addition to the T-cell lysis rate δT, the T-cell activation rate qT also varies by clinical
manifestation. For model OAS2 we expect qT will be higher in DHF-manifesting individuals
relative to DF-manifesting individuals. Note that in model 1 we fixed the value of δT at 10−6 per
day. In fitting both theOAS1 model and theOAS2 model, we therefore chose to fix dTDHF

at this
value and estimated dTDF

. For modelOAS2 we parameterize qTDHF ¼ qTDF þ DqT
and estimate

qTDF and DqT
, whereDqT

may be positive or negative.
We next consider a model that incorporates the process of antibody dependent enhance-

ment (model ADE). ADE proposes that antibodies produced in a primary infection cannot
completely neutralize virus present in a secondary heterologous infection.However, the result-
ing partially neutralized immune complexes can enter Fc-γ-bearing target cells, resulting in
increased viral infectivity [4, 10]. Studies have shown that human dengue antibodies can
enhance viral replication in vitro [14, 49] and in vivo [50]. The ADE model therefore hypothe-
sizes that the viral infectivity rate β is higher in DHF-manifesting individuals relative to DF-
manifesting individuals. The model is mathematically formulated by allowing β to vary by clin-
ical manifestation (DF/DHF) during a secondary infection.We assume the same β value for
primary DF and secondaryDF individuals.We parameterize β values for secondaryDHF cases
by letting βDHF = βDF + Δβ, and estimating Δβ and βDF, where Δβmay be positive or negative.

Models considering differences between dengue serotypes. We also consider models
that aim to address whether there are differences in viral load dynamics between individuals as
a function of their infecting serotypes, and, if so, the mechanism(s) responsible for these differ-
ences. These models do not include variation in any parameter by clinical manifestation. Our
first serotype-specificmodel is motivated by DENV-2 infections, which often, though not
always [51], result in more severe disease than other serotypes [10]. In vitro studies have shown
that the DENV-2 genotypes that cause more severe disease have higher replication rates than
those that cause milder disease [18]. We therefore first explore serotype-specificdifferences in
the viral replication rate by allowing the viral infectivity rate β to differ by serotype (model
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SSβ). Due to problems of identifiability discussed above, we do not consider a model that varies
the viral replication rate (ω).
Our second serotype-specificmodel is motivated by a recent in vitro study showing that

dengue serotypes can differ in their ability to block type I interferon signaling [21]. Specifically,
Medina and coauthors found that DENV-3 showed the lowest level of inhibiting interferon sig-
naling, followed by DENV-1, and DENV-2. To test this hypothesis, we fit a model that allows
the rate at which the innate immune response is elicited (q) to vary by serotype (model SSq).
Our third and final serotype-specificmodel is motivated by multiple in vivo and in vitro

studies that suggest that there may be intrinsic differences in the reactivity of CD8+ T-cell
responses to infecting serotypes [22, 52, 53]. In order to investigate differences in the effector
functions of T-cells by infecting serotype, we fit a model (model SSqT ) that allows for serotype-
specific differences in the rate at which T-cell responses are elicited (qT).
As for the clinical manifestation models, we reparameterize serotype-specificparameters for

DENV-2 and DENV-3 using DENV-1’s parameter value as a reference point. For example, for
model SSβ, we let b2 ¼ Db2

þ b1 and b3 ¼ Db3
þ b1, and we estimate β1, Db2

and Db3
.

Model considering differences by clinicalmanifestation and between dengue sero-
types. Finally, we consider a model in which parameters vary both by clinical manifestation
and between dengue serotypes (model SSbADE

). We allow β to vary by serotype and additionally
allow β to vary by clinical manifestation, fitting a total of 11 parameters, where 6 of these
parameters are viral infectivity parameters.
As for the serotype-specificmodels, we reparameterize serotype-specificparameters for

DENV-2 and DENV-3 using DENV-1’s parameter value as a reference point. For secondary
infectionDHF, we reparameterize each serotype by an additional DHF parameter. For exam-
ple, we let b2;DF ¼ Db2

þ b1 and b2;DHF ¼ b2;DF þ Db2 ;DHF
and we estimate β1, Db2

and Db2 ;DHF
.

Model selection

We select betweenmodels of increasing complexity by using two criteria for model selection: the
Bayesian Information Criterion (BIC) [54] and the Deviance Information Criterion (DIC) [55].
BIC is a function of the highest posterior log-likelihoodand explicitly penalizesmore complex
models with higher number of parameters more strongly than other model selection criteria,
such as the Akaike Information Criterion (AIC) [54]. It is calculated as: BIC = −2ln(L) + kln(n),
where ln(L) is the highest log-likelihoodof the model samples, k is the number of freemodel
parameters to be estimated, and n is the total number of viral loadmeasurements (n = 2415 data
points). A difference in BIC between twomodels of 2–6 is considered positive, 6–10 strong and
> 10 very strong support in favor of the model with lower BIC [54]. DIC is a model criterion typ-
ically used for Bayesian hierarchical models and is frequently used for model selection in MCMC
analysis. ThoughDIC does not penalize complex models with more parameters explicitly, it is
considered a Bayesian analogue of AIC [55]. DIC is defined as the difference between the poste-
rior mean of the deviance and the deviance of the posteriormean of the parameters. Mathemati-
cally this is describedas:DðyÞ ¼ � 2lnðLðyÞÞ þ 2lnðLðyÞÞ, where bar denotes expectationwith
respect to the posterior. In more complex models the deviance of the posteriormeans of the
parameters is expected to be higher. A difference in DIC of 1–2 values is considered positive,
whereas a difference> 3 is considered strong support for the model with lower DIC [55].

Results

To first determine whether the viral load data provide statistical support for the role of T-cells
in clearing infected target cells in secondary dengue infections, we compare the results of fitting
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models 0 and 1 to the data (Table 2). The median log-likelihood for model 1 is significantly
higher than that of model 0, indicating that the inclusion of T-cell dynamics in secondary
infections significantly improves model fit. The BIC and DIC values of these models indicate
that model 1 is preferred over model 0, despite its higher level of model complexity. Traces of
model 1’s MCMC runs with different initial conditions are shown in S1 Fig, visually indicating
convergence. The correlation structure of model 1 marginal posteriors are shown in S2 Fig.
Median likelihood estimates and 95% posterior credible intervals for model 1 are given in
Table 3. S3 Fig shows that model 1 results are insensitive to chosen values of δT, the rate of T-
cell lysis, with qT estimates compensating for changes in δT (see also S1 Text). For model 1,
we further re-evaluated whether chloroquine treatment had a measurable effect on viral load
dynamics, with results indicating that it did not (S1 Text, S1 Table, S4 Fig). For sake of com-
pleteness, parameter values for model 0 are provided in S2 Table.
Fig 2 shows the fit of model 1 to the viral load data, along with forward simulations of the

model. Fig 2a and 2b show the fits to all individuals experiencing primary and secondary infec-
tions, respectively, where viral load trajectories have been shifted in time according to sampled
individual incubation periods. These figures show that much of the variation in viral load
dynamics apparent in Fig 1 can be accounted for by inter-individual variation in IP. Fig 2c and
2d show distributions of sampled incubation periods for individuals experiencing primary and
secondary dengue infections, respectively. Intriguingly, primary infection incubation periods
appear to generally be longer than secondary infection incubation periods. Fig 2e and 2f show
forward simulations of model 1, including measurement noise. These simulations indicate that
model-predicted viral load dynamics can quantitatively reproduce the degree of inter-individ-
ual variation present in observedviral load dynamics shown in Fig 2a and 2b.
Fig 3 shows forward simulations of model 1’s dynamics in the absence of observation noise,

with 95% posterior credible intervals. The secondary infectionmodel simulations show a
steeper viral decline compared to primary infection simulations (Fig 3b) due to the activation
of T-cells, consistent with empirical observations [24, 25]. Although some viral kinetic studies
have shown that secondary infections have higher viral peaks than primary infections [23–25,
56], simulations of model 1 do not reproduce this finding (Fig 3b). This may be because viral
peaks were present in under 30% of individuals. Our model simulations further indicate that
we expect NK-cell absolute counts to be lower in secondary infection relative to primary infec-
tions (Fig 3c), consistent with findings in [35].

Models considering differences in clinical manifestation

To determine if original antigenic sin of T-cells can account for differences in viral dynamics
between secondaryDF and DHF patients, we fit modelsOAS1 and OAS2 (described above),
with our expectation being that dTDF

> dTDHF
for both models and qTDHF > qTDF for modelOAS2.

Fig 4a shows the density estimates for dTDF
, relative to the assigned value of 10−6 per day for

dTDHF
for modelsOAS1 and OAS2. For both models, dTDF

estimates do not appreciably differ

Table 3. Parameter estimates for model 1 and model SSβ. Median marginal posterior parameter estimates are reported, with 95% posterior credible inter-

vals for each parameter in parentheses.

Model log10 V0 (cells/ml) β×10−10 ((copy/ml)−1 d−1) κ (d−1) q×10−4 (d−1) qT×10−6 (d−1) σI (log days)

1 -3.2 (-4.8, -1.8) 4.6(4.8, 5.3) 5.2 (5.0, 5.9) 6.5(5.5, 8.0) 1(0.9, 1.2) 0.2 (0.18, 0.22)

SSβ -3.4 (-5.0, -2.0) β1: 4.5 (3.9, 5.1)

β2: 5.1 (4.4, 6.0)

β3: 5.1 (4.4, 6.0)

5.2 (4.8, 5.8) 6.6 (5.6, 7.9) 1 (9.1, 1.2) 0.19 (0.17, 0.21)

doi:10.1371/journal.pcbi.1005194.t003
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from the value assigned to dT;DHF
. For modelOAS1, the median log-likelihood is not higher than

that of model 1, despite an additional free parameter (Table 2). The BIC and DIC values for
modelOAS1 are higher than that of model 1, indicating that model 1 is statistically preferred
over modelOAS1 (Table 2). For modelOAS2, Fig 4b shows the density estimates for qTDF and
qTDHF . Though qTDHF > qTDF as expected, the median posterior log-likelihoodof modelOAS2 is
the same value as that of model 1, despite two additional free parameters (Table 2). Further-
more, the BIC and DIC values for modelOAS2 are higher than that of model 1, indicating that

Fig 2. Fits of model 1 to viral load data and forward simulations of model 1. (a) Simulation of model 1

(green) using median log-likelihood estimates, plotted alongside viral load measurements from all individuals

experiencing a primary infection. (b) Simulation of model 1 (purple) using median log-likelihood estimates,

plotted alongside viral load measurements from all individuals experiencing a secondary infection. In (a) and

(b), viremia measurements are shifted in time based on sampled estimates of individual IP values as

described in Methods. Dotted lines indicate the limits of detection. (c) Histogram showing sampled incubation

period estimates for individuals experiencing a primary infection. (d) Histogram showing sampled incubation

period estimates for individuals experiencing a secondary infection, stratified by clinical manifestation (DF or

DHF). (e) 10 forward simulations of model 1 in the presence of observation noise for individuals experiencing

a primary infection. (f) 10 forward simulations of model 1 in the presence of observation noise for individuals

experiencing a secondary infection.

doi:10.1371/journal.pcbi.1005194.g002
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model 1 is statistically preferred over modelOAS2 (Table 2). For sake of completeness, S2
Table shows parameter estimates for modelsOAS1 and OAS2.
To determine if antibody-dependent enhancement (ADE) can account for differences in

viral dynamics between individuals that differ in clinical manifestation, we fit model ADE
(described above), with the expectation that the viral infectivity rate in DHF-manifesting indi-
viduals would exceed the viral infectivity rate in DF-manifesting individuals: bSIDHF

> bDF . Fig
4c shows the density estimates for parameters bSIDHF

and βDF. While bSIDHF
estimates do appear

to be higher than βDF estimates, the difference is small. As a result, the median log-likelihoodof
model ADE does not differ from that of model 1 (Table 2). Due to the higher number of free
parameters in model ADE, this model therefore results in a higher BIC and DIC than model 1,

Fig 3. Forward simulations of model 1. (a) Dynamics of uninfected target cells X. (b) Dynamics of free virus

V. (c) Dynamics of NK cells N. (d) Dynamics of T-cells T in secondary infections. In (a)-(d), black solid and

dashed lines show simulations of primary and secondary infections, respectively using median likelihood

parameter estimates. Green and purple shaded regions show 95% posterior credible intervals of primary and

secondary infections, respectively. Dark green regions show overlap in credible interval regions. Credible

intervals were constructed from 100 simulations of model 1, where parameters were sampled from the

posterior for each simulation. Subplot (d) shows only secondary infection dynamics as T-cells are not modeled

in primary infection dynamics.

doi:10.1371/journal.pcbi.1005194.g003
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such that model 1 is statistically preferred over model ADE. Again, for sake of completeness,
S2 Table shows parameter estimates for modelADE.
One reason why we might find only slight differences in viral infectivity rates between

DHF-manifesting and DF-manifesting individuals is becausemost of the viral load data shown
in Fig 1 do not include the viral peak. In the absence of viral peaks, the model cannot disentan-
gle higher viral infectivity rates β from lower incubation periods IP for DHF compared to DF
patients. To see if we could disentangle differences in β from differences in IP, we fit model 1
and model ADE to the subset of the viral load data in which viral peaks were present (N = 65

Fig 4. Parameter estimates from the clinical manifestation models. (a) Density estimates of T-cell clearance rate dTDF
for models OAS1 (solid green) and OAS2 (dashed green), alongside the assigned value of dTDHF (purple line). (b) Density

estimates of T-cell activation rates qTDF and qTDHF for model OAS2. (c) Density estimates of viral infectivity rates βDF and

bSIDHF for model ADE. (d) Density estimates of βDF and bSIDHF when the ADE model is fitted to the subset of the data for

individuals with a detected viral peak. The median parameter estimate and 95% posterior credible interval (in parentheses)

of the difference of the parameter estimates shown in (a-d) are: (a) model OAS1: dTDF � dTDHF 1.1 × 10−7(3.8 × 10−9, 6.5 ×
10−7). model OAS2: dTDF � dTDHF : 2.1 × 10−7(7.2 × 10−9, 1.1 × 10−6). (b) qTDHF � qTDF : 1.4 × 10−7(2.8 × 10−8, 3.1 × 10−7). (c)

β2o, DHF − βDF: 1.4 × 10−11(9.9 × 10−13, 3.8 × 10−11). (d) β2o, DHF − βDF: 5.2 × 10−11(1.7 × 10−11, 1.0 × 10−10).

doi:10.1371/journal.pcbi.1005194.g004
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individuals). Instead of fitting log(V0) and setting IPg to 5.9 days, we fit IPg and set log(V0) =
−3.2 log copies/ml, the median posterior value of log(V0) for model 1 (Table 3). We adopted
this approach because we expect that in these subjects the mean IP value of individuals is lower
than in the full dataset. We incorporated a lognormal prior on IPg such that IPg * logN(log
(5.9), 0.15), to ensure that the mean IPg value is between the expected 3–10 days [42]. Table 4
shows that the median posterior log-likelihood for model ADE in this case is higher than that
of model 1, and that the BIC and DIC of model ADE are significantly lower than that of model
1. This indicates that model ADE is preferred over model 1 when only viral load data contain-
ing viral peaks is considered. Parameter values for model 1 and model ADE fits to this subset
of the data are provided in S3 Table.
Fig 4d shows density estimates for model ADE’s bSIDHF

and βDF on this subset of the data.
Estimates for bSIDHF

exceed those of βDF, as expected under ADE. S5 Fig shows simulations of
model ADE fit to this data subset. Viral loads peak earlier in DHF relative to DF patients (S5b
Fig), and immune cells are activated earlier in DHF relative to DF patients (S5c and S5d Fig),
consistent with the findings in [35].

Models considering differences between dengue serotypes

To determinewhether difference between serotypesmay explain some of the observedvariation
in viral load dynamics seen in Fig 1, we next fit the three serotype-specificmodels described
above to the viral load data. We first consider model SSβ, which allows viral infectivity rates to
differ by serotype. Since DENV-2 is thought to have a high replication rate [18], and DENV-2
often causes more severe disease than DENV-1 and DENV-3 [10], we hypothesize that β2> (β1,
β3). Fig 5a shows the serotype-specificdensity estimates of β for this model. These density esti-
mates indicate that (β2, β3)> β1, partially consistent with our hypothesis. Our finding that the
replication rate of DENV-3 is as high as DENV-2’s may be accounted for by a study finding that
some DENV-3 clades cause high incidence of severe dengue disease [57].
To address whether there is support for serotypes differing in their ability to block inter-

feron signaling, we fit model SSq to the viral load data. Based on [21], we expect the strength of
the innate immune response q to vary by serotype, with q3> q1> q2. Fig 5b shows the sero-
type-specificdensity estimates of q for this model. The results of this model are contrary to
expectation,with q3 estimates significantly lower than the estimates for q1 or q2.
Finally, to address whether there is support for serotypes differing in their elicitation of the

T-cell immune response, we fit model SSqT to the viral load data. We specifically hypothesize
that T-cell response is higher for secondaryDENV-2 and DENV-3 infections than secondary
DENV-1 infections ðqT2; qT3Þ > qT1. This hypothesis is based on work by Bashyam and coau-
thors [58] that found that secondaryDENV-2 and DENV-3 infections were associated with
higher magnitudes of CD8+ T-cell secreted cytokines than were secondaryDENV-1 and

Table 4. Models fit to subset of the data containing viral peaks (N = 65 individuals, n = 747 viral load data points). The parameters estimated, the

median log-likelihood values, BIC and DIC values for each model are given.

Model k Global parameters CM-specific parameters Serotype-specific parameters Log-likelihood BIC DIC

1 6 β, κ, q, qT, IPg, σI – – -863 1760 1730

ADE 7 κ, q, qT, IPg, σI β – -859 1756 1724

SSβ 8 κ, q, qT, IPg, σI – β -853 1749 1711

SSqT 8 β, κ, q, IPg, σI – qT -857 1757 1718

SSbADE
11 κ, q, IPg, qT, σI β β -852 1766 1713

doi:10.1371/journal.pcbi.1005194.t004
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DENV-4 infections. This suggests that the T- cell response may be higher for secondary
DENV-2 and DENV-3 infections than in secondaryDENV-1 and DENV-4 infections. Fig 5c
shows serotype-specificdensity estimates of qT for this model. The model fits are consistent
with our hypothesis that qT2 and qT3 values exceed the value of qT1.
Table 2 shows the median log-likelihoodand the BIC and DIC values for each of these three

models. All three models have higher log-likelihoods than model 1. Based on BIC and DIC, the
viral load data best support the model in which serotypes differ in their viral infectivity rates
(model SSβ), followed by model SSqT . Only these two models are preferred over model 1.

Fig 5. Parameter estimates from the serotype-specific models. (a) Density estimates for serotype-specific viral

infectivity rates β for model SSβ. (b) Density estimates for serotype-specific innate immune response activation rates for

model SSq. (c) Density estimates for serotype-specific T-cell activation rates qT for model SSqT . (d) Density estimates for

serotype-specific viral infectivity rates β for model SSβ that was fitted to only the subset of the viral load data with

individuals with a detected viral peak. The median parameter estimate and 95% posterior credible interval (in parentheses)

of the difference of the parameter estimates shown in (a-d) relative to DENV-1 are: (a) β2 − β1: 6.6 × 10−11(3.6 × 10−11,

1.1 × 10−10), β3 − β1: 6.4 × 10−11(3.1 × 10−11, 1.1 × 10−10). (b) q2 − q1: 5.2 × 10−5(−1.5 × 10−4, 4.1 × 10−4), q3 − q1:

−1.3 × 10−4(−3.1 × 10−4, 8.0 × 10−5). (c) qT2
� qT1

: 6.1 × 10−7(1.3 × 10−7, 2.2 × 10−6), qT3
� qT1

: 9.3 × 10−7(3.0 × 10−7,

2.3 × 10−6). (d) β2 − β1: 9.1 × 10−11(4.8 × 10−11, 1.5 × 10−10), β3 − β1: 7.5 × 10−11(1.8 × 10−11, 1.6 × 10−10).

doi:10.1371/journal.pcbi.1005194.g005
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Despite these two models’ similarity in likelihood values, the models differ dramatically in
their T-cell dynamics (S6 Fig). As expected, T-cell dynamics are similar across serotypes for
model SSβ. In contrast, the magnitude of the T-cell response for DENV-2 and DENV-3 is
much higher than for DENV-1 under the SSqT model.
Because we did not see peak viral load in many individuals, it was difficult to distinguish

betweenmodel SSβ and model SSqT , since both models result in serotype-specific differences in
viral clearance. To attempt to statistically distinguish between these two models, we again fit
models to the subset of the data that contained viral peaks. Table 4 shows the medium log-like-
lihood, BIC and DIC values for both models. These results show that model SSβ fits the data
significantly better than model SSqT based on both BIC and DIC. Serotype-specificdensity esti-
mates for β, when fit to this subset of data, are shown in Fig 5d. Of note, the estimated IP values
under model SSβ do not appear to differ by serotype (results not shown), regardless of whether
the model is fit to the entire viral load dataset or only the data containing viral peaks. That
incubation periods do not differ by serotype is consistent with findings from [42].
Fig 6a–6f show simulations of model SSβ (fit to the entire viral load dataset) alongside viral

load data from all individuals experiencing a DENV-1, DENV-2 or DENV-3 infection, strati-
fied by primary infection (Fig 6a–6c) and secondary infection (Fig 6d–6f). The higher viral
infectivity rates in DENV-2 and DENV-3 infections relative to DENV-1 infections result in
shorter times to peak viremia and higher viral clearance rates. Parameter values for model SSβ,
when fit to the entire viral load dataset, are given in Table 3. Parameter values for model SSq
and model SSqT fits to the full dataset are provided in S2 Table. Parameter values for model SSβ
and model SSqT fits to this subset of the data are provided in S3 Table.

Models considering differences by clinical manifestation and between

dengue serotypes

In our dataset 76% of DENV-1 individuals and 74% of DENV-3 individuals had DF, whereas
only 47% of DENV-2 individuals had DF. To ensure that our serotype-specific results were not
capturing differences in clinical manifestation, rather than serotype-specificdifferences, we fit
a model (SSbADE

) in which viral infectivity rates were allowed to vary by clinical manifestation
and by serotype.We considered this parameter because the ADE model was the best clinical
manifestation model to fit the data and model SSβ was the best serotype-specificmodel to fit
the data.
We expected that, for a given serotype, individuals with DHF would have a higher viral infec-

tivity rate than those with DF, such that: β1,DHF> β1,DF, β2,DHF> β2,DF and β3,DHF> β3,DF. We
also expected, as described above, that individuals with DENV-2 would have the highest viral
infectivity rates. Therefore, we would expect that: β2,DHF> β1,DHF, β3,DHF and β2,DF> β1,DF,
β3,DF. S7a Fig shows the density estimates of β by clinical manifestation and by serotype. The
results are similar to those of the SSβmodel, with density estimates of β2, β3> β1 for both DF
and DHF viral infectivity rate estimates. Interestingly, there is very little difference in DF and
DHF estimates within a given serotype (S7a Fig). Based on BIC and DIC, there is no statistical
support to favor this more complex model over model SSβ (Table 2).
Our previous analysis showed that it is difficult to disentangle a short incubation period

from a high viral infectivity rate in the full dataset. Therefore, we fit model SSbADE
to the subset

of the data in which viral peaks were detected. β density estimates are shown in S7b Fig. Based
on BIC and DIC, this more complicated model is not preferred over model SSβ (Table 4). Of
note, though not statistically significant, density estimates for model SSbADE

(S7b Fig) show that
the difference betweenDHF and DF β estimates for DENV-2 and DENV-3 are larger than that
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of DENV-1, providing some evidence for how differences in viral infectivity rates by clinical
manifestation vary by serotype.

Discussion

By fitting within-host denguemodels to viral load data, we have shown these data can be used
to discriminate between hypothesized within-host processes leading to differences in clinical
manifestation and between dengue serotypes.
Our results first indicate that much of the inter-individual variability in dengue viral load

dynamics can be explained by differences in the length of individuals’ incubation periods (IP).
This IP variation may arise because of individual differences in viral inoculum sizes, or because
of individual differences in the reporting of symptoms. It may also arise because of variation in
viral infectivity rates. Indeed, our results indicate that secondaryDHF patients generally have
shorter IPs than do primary and secondaryDF patients (Fig 2), consistent with the hypothesis
that antibody-dependent enhancement drives disease severity. In contrast, our results, do not
support the hypothesis that original antigenic sin of T-cells was a driver of severe disease. Our

Fig 6. Fits of model SSβ to viral load data. (a-f) Model simulations alongside viral load measurements from all individuals

experiencing a DENV-1 (a,d), DENV-2 (b,e), or DENV-3 (c,f) infection. Primary infection simulations and data are shown in (a-c).

Secondary infection simulations and data are shown in (d-f). Gray lines show primary infection data (a-c) and secondary infection

data (d-f). Green and purple shaded regions show 95% posterior credible intervals of primary and secondary infections,

respectively. Credible intervals were constructed from 100 simulations of model SSβ, where parameters are sampled from the

posterior for each simulation. Black lines show simulations using median likelihood parameters estimates. In all subplots, dotted

horizontal lines show limits of detection. As in Fig 2a and 2b, viremia measurements are shifted in time based on sampled estimates

of individual IP values.

doi:10.1371/journal.pcbi.1005194.g006
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findings are consistent with recent work indicating that T-cells may have net protective rather
than pathologic effects in secondary infections [37, 59].
In previous work by Clapham and coauthors [31], a different dengue within-host model

was fit to the DENV-1 viral load data analyzed here. The authors also found differences in the
viral infectivity rate β by clinical manifestation (primary infectionDF, secondary infectionDF
and secondary infectionDHF), with β2o, DHF> β2o, DF> β1o, DF, providing evidence for ADE. In
their most recent work in which they fit more complicated models to DENV-1 and DENV-2
viral load and antibody data, they found that the model that best fit the data was one in which
they assumed antibodies directly neutralize free virus, as opposed to a model in which antibod-
ies indirectly kill infected cells via ADCC.However, they found that the estimated infected cell
lifespan of this model was low, suggesting that another viral clearance mechanism, such as T-
cells, as we found here, may also be needed to clear the infection.
As in [31], we made use of traditional dengue disease classifications, namely that of DF and

DHF/DSS, when fitting our clinical manifestation models to viral load data. DHF/DSS can also
be further subclassified into four grades of severity, where grades III and IV correspond to DSS
[60]. We expect that if patients manifesting DHF in our dataset were categorized into grades,
DHF grade III and IV would have higher viral infectivity rates than DHF grades I and II. This
hypothesis would be consistent with a study which showed that maximum viral titer correlated
with DHF grade [24], as has been shown in viral kinetic studies where infection is stratified by
DF and DHF [23, 25]. The 2009 reclassification of dengue disease into the broader categories
of dengue without warning signs, dengue with warning signs and severe dengue can result in
more infections classified as severe than the older classifications, and can obstruct serotype-
specific associations with specific diseasemanifestations [60]. For example, in a meta-study of
544 DENV-1-4 infected patients from Nicaragua, with the old classification (DF/DHF/DSS),
DENV-2 was significantly associated with DHF/DSS. However, DENV-2 was not significantly
associated with severe disease with the new classification [60]. Therefore, our clinical manifes-
tation and serotype-specific results would need to be reevaluated in the context of these broader
DENV categories.
In fitting our serotype-specificmodels to the viral load data, we showed that DENV-1, -2,

and -3 differ from one another in their viral infectivity rates β, with DENV-2 and DENV-3 hav-
ing higher viral infectivity rates than DENV-1. This finding stands in contrast to Clapham and
coauthors’ work, which did not find differences in DENV-1 and DENV-2 parameter values
that contribute to viral clearance, [32], though these differencesmay be incorporated via inter-
individual variation in other parameters. Our own findings are consistent with the hypothesis
that serotypes that cause more severe diseasemay have higher replication rates [18]. Studies
have indicated that viral replication rates can vary by dengue genotype, with different geno-
types of the same serotype having different replication rates [20, 43]. Unfortunately, the viral
load data we have analyzed do not have genotype-level resolution, although during the time
period of the clinical trial (2007–2008), DENV-1 genotype I and the Asian-American DENV-2
genotype were dominating [61]. We do not have information about the DENV-3 genotype cir-
culating during this time.
Our serotype-specific findings are consistent with a recent meta-analysis of dengue virus

kinetics in non-human primates [62]. This meta-analysis found that the time to detectable
viremia for DENV-1 was longer than for DENV-2 and DENV-3, indicating that DENV-1
is likely to have a lower replication rate than either DENV-2 or DENV-3. This finding is
also consistent with our results that show DENV-2 and DENV-3 viral load dynamics peak
before the onset of symptoms, whereas DENV-1 viral load dynamics peak after the onset
of symptoms. These findings provide an explanation for why DENV-1 viral load appears to
be high relative to DENV-2 and DENV-3 viral load, despite DENV-1 infections typically
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resulting in less severe disease [23]. Further, they highlight that measuring viral load magni-
tude for DENV-2 and DENV-3 infections after the onset of symptoms may not be a good
predictor of disease risk because viral clearance has already begun whenmeasurements are
typically taken.
Our results are further relevant to understanding serotype-specific differences in popula-

tion-level transmissibility. For many infectious diseases, viral load levels are thought to affect
transmission potential [63]. This is also the case for dengue: the probability of transmitting
dengue to Aedes Aegypti has been shown to increase with viral load of the infected individual
[64]. This suggests that further characterization of serotype-specificdifferences in viral load
dynamics can improve our understanding of dengue virus transmission at the population
level.
Our ability to distinguish betweenmodels was in part limited by the absence of viral load

data early in infection. For example, though shorter time to viral peak and high viremia magni-
tude is consistently associated with more severe dengue disease [23–25, 56], our models were
unable to reproduce these trends because we do not have enough individual viral load data that
contained viral peaks. Fitting model ADE to only the viral peak data showed that with data on
early infection dynamics we could ultimately discriminate between differences in viral replica-
tion rates between individuals differing in clinical manifestation. This model was able to repro-
duce the earlier time to peak seen during DHF infections relative to DF infections. These
results highlight the importance of collecting data before the onset of symptoms in order to
detect viral peaks. Additionally, our results highlight that models that result in similar viral
dynamics can display very different immune cell dynamics (S6 Fig). Kinetic immune cell data,
along with viral load data taken before the onset of symptoms, will be very useful in future
work that aims to discriminate between denguemodels.
Dengue human infectionmodel experiments currently underway [65] will become an

important resource for understanding early viral load and immune cell dynamics. There are
currently DENV-2 and DENV-3 viruses that already meet dengue fever criteria for these exper-
iments, and models of all four serotypes are being developed [65]. Though these models have
been developed to evaluate vaccine efficacy, infecting naive individuals with these strains and
obtaining many viral and immune measurements during the infectionwill be very useful in
deciphering within-host processes leading to severe disease.
A final shortcoming of the viral load data we analyzed is that we do not know the primary

infecting serotype for individuals experiencing a secondary heterologous infection. Because
order of infection is known to be an important risk factor for severe disease [10], knowledge of
the primary infection serotype in further analyses would allow us to disentangle how the pri-
mary infection shapes the viral kinetics of secondary heterologous infection. Longitudinal den-
gue studies in which one dengue serotype typically predominates, such as the Pediatric Dengue
Cohort Study in Nicaragua [66], are thus invaluable for ultimately understanding the role that
order of infection plays in shaping viral dynamics.
Despite limitations inherent in the data, our analyses indicate that inter-individual variation

in dengue viral load patterns can shed light on which within-host processes are important in
regulating viral dynamics. Collectionof individual dengue viral load data at fine temporal reso-
lution, spanning the entire infection duration, will be important for further understanding the
relationships between dengue viral load, disease severity, and dengue transmissibility.

Supporting Information

S1 Text. Full likelihoodexpression and supplemental details on model 1 results.
(PDF)
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S1 Fig. Traces of model 1. Each color shows a different MCMC run. Every 1000 iterations are
shown.
(TIFF)

S2 Fig. Correlation structure of model 1. Each subplot shows correlations between two
parameter estimates of model 1. Samples are shown for every 100 iterations after burn-in
(150,000 iterations).
(TIFF)

S3 Fig. Viral load and T-cell dynamics under different assigned δT values. (a) Simulated
viral load dynamics under different assigned values of δT. Dotted lines show limits of detec-
tion of the assays used. (b) Simulated T-cell dynamics under different assigned values of δT.
In (a) and (b), simulations shown use parameter estimates of β, κ, q, qT, and V0 that yielded
the median posterior. Parameter values used are as follows: δT = 10−5: β = 6.6 × 10−10,
κ = 4.9, q = 5.9 × 10−4, qT = 5.9 × 10−7, log(V0) = −6.1. δT = 10−6: β = 4.6 × 10−10, κ = 4.8,
q = 6.6 × 10−4, qT = 1 × 10−6, log(V0) = −3.3. δT = 10−7: β = 4.1 × 10−10, κ = 5.1, q = 6.1 × 10−4,
qT = 1.3 × 10−6, log(V0) = −2.2. δT = 10−8: β = 3.9 × 10−10, κ = 5.3, q = 8.2 × 10−4, qT =
2.1 × 10−6, log(V0) = −1.9.
(TIFF)

S4 Fig. Simulations of model 1 fit to individualswho receivedplacebo or chloroquine.
Black solid lines and dashed lines show simulations of model 1 for placebo and chloroquine-
treated groups, respectively, using median likelihood estimates. Red and yellow shaded regions
show 95% posterior credible intervals for placebo and chloroquine-treated groups, respectively
(orange regions show overlap of credible regions). Credible intervals were constructed from
100 simulations of each model, where parameters are sampled from the posterior for each sim-
ulation. (a) Dynamics of free virusV during primary infections. (b) Dynamics of free virusV
during secondary infections.
(TIFF)

S5 Fig. Simulations of model ADE fit to viral peak data, using draws from the posterior dis-
tribution. Black solid, short-dashed lines and long-dashed lines show simulations of primary
DF, secondaryDF and secondaryDHF infections, respectively, using median likelihood esti-
mates. Green, orange, and blue shaded regions show 95% posterior credible intervals of pri-
mary DF, secondaryDF and secondaryDHF infections, respectively. Credible intervals were
constructed from 100 simulations of model ADE, where parameters are sampled from the pos-
terior for each simulation. (a) Dynamics of uninfected target cells X. (b) Dynamics of free virus
V. (c) Dynamics of NK cellsN. (d) Dynamics of T-cells T in secondary infections.
(TIFF)

S6 Fig. Simulations of model SSβ and modelSSqT ’s T-cell dynamics by serotype. (a-c)
Model SSβ. (d-f)Model SSqT . (a,d) DENV-1 (b,e) DENV-2 (c,f)DENV-3. (a-f)Black solid
lines show simulations of secondary infections using median likelihood estimates. Shaded
regions show 95% posterior credible intervals of secondary infections by serotype. Credible
intervals were constructed from 100 simulations of each model, where parameters are sampled
from the posterior for each simulation.
(TIFF)

S7 Fig. Parameter estimates from themodels in which β varies by clinicalmanifestation
and by serotype. (a) Density estimates for clinical manifestation-specific and serotype-specific
viral infectivity rates β for modelSSbADE

fit to full dataset. (b) Density estimates for clinical
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manifestation-specific and serotype-specific viral infectivity rates β for modelSSbADE
fit to peak

viral load data subset. (a-b). Solid lines show DF estimates and dotted lines show DHF esti-
mates. DENV-1 estimates are shown in light blue, DENV-2 estimates are shown in dark blue
and DENV-3 estimates are shown in green. The median parameter estimate and 95% posterior
credible interval (in parentheses) of the difference of β1, β2 and β3 estimates by clinical manifes-
tation for each model are: (a) b1DHF

� b1DF
: 6.8 × 10−12 (4.5 × 10−13, 2.7 × 10−11). b2DHF

� b2DF
:

2.0 × 10−11 (4.2 × 10−12, 5.6 × 10−11). b3DHF
� b3DF

: 2.6 × 10−11(5.3 × 10−12, 8.0 × 10−11). (b)
b1DHF

� b1DF
: 2.9 × 10−11 (3.2 × 10−12, 7.4 × 10−11). b2DHF

� b2DF
: 8.5 × 10−11 (2.5 × 10−11,

2.0 × 10−10). b3DHF
� b3DF

: 7.8 × 10−11 (2.0 × 10−11, 2.2 × 10−10).
(TIFF)

S1 Table. Parameter estimates for model 1 fit to individualswho receivedplacebo or chlo-
roquine.Median marginal posterior parameter estimates are reported, with 95% posterior
credible intervals for each parameter in parentheses. Units are the same as in Table 1 in the
main text.
(PDF)

S2 Table. Parameter estimates for models fit to full dataset.Median marginal posterior
parameter estimates are reported, with 95% posterior credible intervals for each parameter in
parentheses. Units are the same as in Table 1 in the main text.
(PDF)

S3 Table. Parameter estimates for models fit to subset of data with detected viral peaks.
Median marginal posterior parameter estimates are reported, with 95% posterior credible
intervals for each parameter in parentheses. Units are the same as in Table 4 in the main text.
V0 = 10−3.2 copies/cell.
(PDF)

S4 Table. Model comparisonswhenX0 is varied 1/2 and 2 times its set point estimate used
in Table 1 in the main text.Median log-likelihoodvalues, BIC and DIC values for all models
considered are reported.
(PDF)

S5 Table. Model comparisonswhen T0 is varied 1/2 and 2 times its set point estimate used
in Table 1 in the main text.Median log-likelihoodvalues, BIC and DIC values for all models
considered are reported.
(PDF)

S6 Table. Model comparisonswhenω is varied 1/2 and 2 times its set point estimate used
in Table 1 in the main text.Median log-likelihoodvalues, BIC and DIC values for all models
considered are reported.
(PDF)

S7 Table. Model comparisonswhen 1/d is varied 1/2 and 2 times its set point estimate used
in Table 1 in the main text.Median log-likelihoodvalues, BIC and DIC values for all models
considered are reported.
(PDF)

S8 Table. Model comparisonswhen 1/dT is varied 1/2 and 2 times its set point estimate
used in Table 1 in themain text.Median log-likelihoodvalues, BIC and DIC values for all
models considered are reported.
(PDF)
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