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Abstract
The field of sequencing is a topic of significant interest since its emergence and has become increasingly important over time. 
Impressive achievements have been obtained in this field, especially in relations to DNA and RNA sequencing. Since the 
first achievements by Sanger and colleagues in the 1950s, many sequencing techniques have been developed, while others 
have disappeared. DNA sequencing has undergone three generations of major evolution. Each generation has its own speci-
fications that are mentioned briefly. Among these generations, nanopore sequencing has its own exciting characteristics that 
have been given more attention here. Among pioneer technologies being used by the third-generation techniques, nanopores, 
either biological or solid-state, have been experimentally or theoretically extensively studied. All sequencing technologies 
have their own advantages and disadvantages, so nanopores are not free from this general rule. It is also generally pointed out 
what research has been done to overcome the obstacles. In this review, biological and solid-state nanopores are elaborated 
on, and applications of them are also discussed briefly.
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Introduction

DNA sequencing is significant in many fields such as foren-
sic sciences, biology, genetics, molecular biology, archeol-
ogy, and the likes. Nucleic acids are essential for continuing 
life since they constitute the genetic information of living 
matters. As the matter of fact, the ability to sequence the 
human genome has drastically outpaced our ability to inter-
pret genetic variations. It has gained superabundant attention 
as the arrangement of nucleic acids in polynucleotide chains 
encompasses the information for the patrimonial and bio-
chemical traits of living species. Since the discovery of the 
3D structure of DNA by Watson and Crick in 1953 (Watson 
and Crick 1953; Zallen 2003), sequencing technology has 
experienced three generations of evolution which will be 
discussed in this review.

Nucleic acids sequencing is categorized into three gen-
erations (Fig. 1). During the first generation, short DNA 
shreds were sequenced. In the second generation, increasing 

throughput was achieved, alongside decreasing turnaround 
time and costs. Hence, at the end of the second generation, 
whole genome and transcriptome sequencing became more 
convenient. The third generation continues to surpass tech-
nological boundaries with capabilities in sequencing single 
molecules without prior amplification that was previously 
inconceivable. The second and the third generation are often 
referred to as “next-generation sequencing” (NGS).

The growth of commercial sequencing platforms and 
optimization of experimental protocols have led to a huge 
growth in applications of DNA sequencing. There is special 
emphasis on integrating sequencing-related technologies 
like genomics, transcriptomics, proteomics, epigenomics, 
and metabolomics (Graw et al. 2021; Khella et al. 2021; Li 
et al. 2020; Reiter et al. 2021). The combination of these 
technologies with morphological and physiological tech-
niques makes a general approach to unraveling biological 
systems possible (Philpott et al. 2020; Zhu et al. 2020).

First generation

The first protein sequence, of insulin, was determined in the 
early 1950s by Fred Sanger who devoted his scientific life to 
the determination of primary sequence (Heather and Chain 
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2016). During the first generation, efforts were focused on 
sequencing pure RNA species such as tRNA. At that time, 
researchers had borrowed the sequencing techniques from 
analytical chemistry that were just capable of measuring 
nucleotide composition, but not the order (Holley et al. 
1961). In 1965, Robert Holley and colleagues invented a 
new method with ribonuclease treatment to generate RNA 
fragments and produced the first full nucleic acid sequence 
(Holley et al. 1965). The first sequencing procedure of ala-
nine tRNA needed 3 years and five people working with 1 g 
of pure material detached from 140 g of yeast to specify 76 
nucleotides (Holley et al. 1965). Molecular cloning proto-
cols were so time-consuming that it had taken several years 
and was eventually replaced by in vitro amplification which 
was more efficiently, taking months instead of years (Lario 
et al. 1997). At the same time, Fred Sanger and colleagues 
fostered a method based on radiolabeled partial digestion of 
DNA fragments (Adams et al. 1969). This method labeled 
DNA strands with radioactive nucleotides to deduce its 
sequence (Padmanabhan et al. 1974; Wu 1970). However, 
this method again limited sequencing to tiny strands of 
DNA. Besides the challenges mentioned above, a remarkable 
methodological evolution of analytical chemistry and frac-
tionation procedures was adapted to nucleic acid sequencing.

First-generation platforms include processes such as 
Maxam-Gilbert (chemical degradation) and Sanger (dide-
oxy terminator). As noted, they were capable of sequencing 
short slices of DNA. At the time of their development, first-
generation techniques were monumental allowing research-
ers to begin to sequence DNA. More modern utilization of 
fluorescent labels in place of radioactive labels led to opti-
mization of the currently recognized Sanger’s method (Lario 
et al. 1997).

The emergence of 2D fabrication methodology, which 
comprises electrophoresis and chromatography, had a sig-
nificant influence on sequencing. This method provided 
researchers with significantly higher resolving power, orig-
inally employed by Coulson and Sanger in the “plus and 

minus” protocol which used Escherichia coli DNA poly-
merase I and DNA polymerase from bacteriophage T4 with 
different limiting nucleoside triphosphates. The products 
generated by polymerases were resolved by ionophoresis 
on acrylamide gels (França et al. 2002). Maxam and Gilbert 
also used it in their chemical cleavage technique (Maxam 
and Gilbert 1977; Sanger and Coulson 1975). The first DNA 
genome was sequenced with the aid of the plus and minus 
technique by Sanger and colleagues (Sanger et al. 1977). In 
contrast, the Maxam and Gilbert technique was quite differ-
ent, and this method was widely adapted and could be con-
sidered the true arrival of “first-generation” DNA sequenc-
ing. The chief advantages of the Maxam-Gilbert technique 
compared with Sanger’s method are as follows: (1) sequenc-
ing could be done from the original DNA fragment, instead 
of from enzymic copies, (2) no PCR (polymerase chain reac-
tion) is required, and (3) this method is less susceptible to 
mistakes with regard to sequencing of secondary structures 
or enzymic mistakes (França et al. 2002).

Sanger sequencing has provided the foundation for the 
growth of automatic DNA sequencing machines (Kambara 
et al. 1988; Luckey et al. 1990). These DNA sequencing 
machines were capable of reading no more than thousands 
of bases. Finally, newer sequencers like ABI PRISM that 
was outsourced from Leroy Hood research and manufactured 
by Applied Biosystems (Smith et al. 1986) were capable of 
simultaneously sequencing hundreds of samples (Ansorge 
2009). This latter technology was employed in the now infa-
mous Human Genome Project (HGP).

A glance on second generation

While efforts were being made to develop large-scale 
sequencing, the next generation of DNA sequencers was 
gradually coming to the scene. A new technique appeared 
which was strikingly different from existing methods 
since it did not identify nucleotides with the aid of radio-
labeling or fluorescently labeled deoxyribonucleotides 

Fig. 1  A glance at DNA 
sequencing generations and 
some features of each genera-
tion
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(dNTPs). The new method consisted of a two-enzyme 
process in which adenosine triphosphate (ATP) sulfury-
lase was used to convert pyrophosphate into ATP which 
is then used as the substrate for luciferase, thus producing 
light proportional to the amount of pyrophosphate (Nyrén 
and Lundin 1985). Notwithstanding the distinctions, both 
Sanger’s method and this new technique (Pyrosequenc-
ing) are known as “sequence-by-synthesis” (SBS) tech-
niques, whereas the application of DNA polymerase to 
crop the apparent output was still required. This break-
through of the second-generation sequencing technology 
allowed genome sequencing at an affordable time-cost 
scale. Second-generation sequencers overcame first-gen-
eration sequencing limitations with the aid of the follow-
ing approaches, including (1) emulsion polymerase chain 
reaction (PCR), (2) reversible terminator, (3) sequencing 
by oligonucleotide ligation and detection, and the likes 
(Dorado et al. 2021). In spite of being revolutionary with 
respect to the first generation, limitations remained such as 
the requirement to amplify DNA which would intrinsically 
introduce errors to the read sequence (Ozsolak et al. 2009).

The disadvantage of the improved Sanger sequencing 
equipment was the cost and time consumption, and the 
Human Genome Project is a prime example, costing 3 bil-
lion dollars and 13 years (Lander et al. 2001). In contrast, 
the latter technique possessed some specifications that 
were considered beneficial; natural nucleotides (instead of 
greatly modified dNTPs) could be observable in real time 
(Ronaghi et al. 1996). The major drawback of this method 
was that the noise in the signal-to-noise ratio yielded a 
non-linear readout above four or five similar nucleotides 
(Ronaghi 1998). Pyrosequencing was then licensed to 
454 Life Sciences which developed into the first chief 
“next-generation sequencing” (NGS) technology. These 
sequencing devices boosted the read output by orders of 
magnitude and allowed researchers to sequence a single 
human’s genome thoroughly in 2 months at approximately 
one-hundredth of the cost of traditional capillary electro-
phoresis methods (Wheeler et al. 2008). The tremendous 
shift in sequencing appreciably enhanced the quantity of 
DNA which could be sequenced in a single run. In a typi-
cal run, over 25 million bases could be sequenced (Mar-
gulies et al. 2005).

In principle the concepts behind Sanger vs. NGS are 
similar where DNA polymerase adds fluorescent nucleo-
tides one by one onto a growing DNA template strand. 
Each incorporated nucleotide is identified by its fluorescent 
tag. The critical difference between Sanger sequencing and 
NGS is sequencing volume. While the Sanger method only 
sequences a single DNA fragment at a time, NGS is mas-
sively parallel, sequencing millions of fragments simultane-
ously per run. This high-throughput process translates into 
sequencing hundreds to thousands of genes at one time. NGS 

also offers greater discovery power to detect novel or rare 
variants with deep sequencing.

After the success of NGS, some parallel sequencing 
techniques emerged. Among them, the Solexa method is 
the most recognized and is described in detail in the follow-
ing references (Bentley et al. 2008; Fedurco et al. 2006). 
Throughout this second generation, technologies and tech-
niques improved substantially, now capable of reading 
greater length, achieving more accuracy and even faster 
reads.

DNA sequencing abilities from 2004 until 2010 redupli-
cated every 5 months which was much faster than the pace of 
computing revolution growth embodied by Moore’s law that 
doubles every 2 years (Stein 2010). From 2007 until 2012, 
the overall expense of DNA sequencing per base plunged by 
four orders of magnitude (Wetterstrand 2017). Besides, some 
companies have appeared or disappeared which had their 
own influence. Some were capable of producing machines 
with faster read lengths, while the others produced machines 
with more accuracy or cheaper sequencing per base (Glenn 
2011).

Third generation

Although there is no distinct boundary between various 
DNA sequencing generations, especially the margin between 
the second and third generations (Pareek et al. 2011), real-
time sequencing, single-molecule sequencing (SMS), and 
uninvolved split from prior technologies could be consid-
ered as the prominent specifications of the third generation. 
The key feature of the third-generation technologies stems 
from the fact that it can accurately sequence long strands of 
nucleic acid without an intermediary and without previous 
retro transcription or amplification (Ozsolak et al. 2009). 
Several platforms recently became commercially avail-
able such as Helicos Bio Sensing, Pacific Biosciences, BGI 
Group Complete Genomics, and Oxford Nanopore Technol-
ogy. Each platform has its own advantages and disadvan-
tages (Blom 2021; Broseus et al. 2020), Thus, a multifold 
compound of them may be required for a deep analysis of 
gene phraseology (Ilgisonis et al. 2021). In addition, compu-
tational models like machine learning have been exerted to 
these analyses (Bobrovskikh et al. 2021; Liu et al. 2021). For 
example, Pacific Biosciences is capable of long reads in the 
order of 20 kb and is capable of retaining 300 kb (Hestand 
and Ameur 2019); nanopore sequencing is capable of read-
ing 30 kb, extending to 2.3 Mb (Amarasinghe et al. 2020). 
To reach the full potential of the third generation, some 
disadvantages such as the demand for higher nucleic acid 
concentrations, in some platforms, should be addressed to 
remove the need for amplification (Amarasinghe et al. 2020; 
Bleidorn 2016; Feng et al. 2021; Jain et al. 2018; Wang 
et al. 2020). In 2015, the single-molecule real-time (SMRT) 
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sequencing platform was perchance the mostly utilized tech-
nology of third generation (Van Dijk et al. 2014).

Nanopore sequencing might be the most favorable plat-
form for the development of third-generation DNA sequenc-
ing. It is a branch of the immense field of using nanopores 
for the identification of biological and chemical molecules 
(Haque et al. 2013). As a matter of fact, the potential of 
nanopores for sequencing was established much earlier than 
the emergence of the second generation but was not well 
recognized in mainstream science until recently. Researchers 
showed that single-stranded DNA (ssDNA) or RNA could 
be steered across a lipid bilayer throughout α-hemolysin 
ion grooves by crossing channel barricades and temporarily 
blocking the flow of ion current (blockade current) commen-
surate to the protraction of the nucleic acid (Kasianowicz 
et al. 1996). The possibility of utilizing solid-state nanopores 
was more recently mentioned in the literature as a means to 
sequence double-stranded DNA (Dekker 2010). In the sec-
tion below, the review will describe solid-state nanopores 
and their application in DNA sequencing.

The amalgamation of gene engineering and computer 
aided technology may form the foundations of the fourth 
generation of sequencing platforms. For example, Oxford 
Nanopore Technology (ONT) developed the nanopore 
technology to sequence distorted bases resulting from DNA 
passing through the nanopore (Mikheyev and Tin 2014). 
Nanopores and sequencing through them will be addressed 
later. A comparison between some features of different gen-
eration platforms is shown in Table 1.

Importance of sequencing generated data

A tremendous amount of data generated and collected, 
mostly during the second and the third generations of 
sequencing, requires new software and hardware to analyze. 
Thus, to address the big data generated, many fields such 
as mathematics, statistics, and bioinformatics are involved. 
Artificial intelligence, machine learning, and similar fields 
have been developed (Chachar et al. 2021; Jovčevska 2020). 
The importance of nucleic acid data is listed as several 
examples below: sequencing of nucleic acid technologies is 
the vaccine design to treat COVID-19 disease (Wang et al. 
2021); the Human Genome Project (HGP) paved the way 
for whole-genome sequencing (Wang et al. 2021); nucleic 
acids could be utilized as well to put in store any sort of data 
in a dense and efficacious manner that could be recovered 
and decoded by sequencing (Wang et al. 2021); functional 
genomics used in diverse arenas such as medicine and agron-
omy; and could be inspection of disease resistance or abiotic 
and biotic stresses in animals and plants with impressive 
consequences in health programs (Jha et al. 2021). This is so 
vital in disease diagnostics and clinical treatments (Caspar 
et al. 2021).

In the last 2 decades, the quantity of total drug-resistant 
bacteria that are resistant to all familiar antibiotics, princi-
pally because of the misapply of antibiotics, have increased 
(Gaultney et al. 2020). This calls attention to the requirement 
of new abatement and action toward the set of tactics for 
pathogenic bacteria, discovering surrogates to antibiotics. 
The recently developed sequencing technologies are brought 
into play to attain this objective (Allue Guardia et al. 2021). 
In this schema, extremely conserved DNA methyl-trans-
ferases (MTases) are possible objectives to action infections 
for epigenetic inhibitors (Oliveira and Fang 2021). A simple 
comparison between various platforms, belonging to differ-
ent generations, is provided in Table 2.

Nanopore sequencing

Nanopore sequencing is a new age of sequencing, rapidly 
grown to meet the gap in advancements to sustain the flair 
for larger read length, faster sequencing, and lower costs. In 
some published texts, nanopore sequencing is considered 
fourth generation of DNA sequencing technology (Lin et al. 
2021). Nanopore technology is an encouraging platform that 
utilizes highly sensitive single-molecule detectors for DNA 
or RNA (Garalde et al. 2018; Kasianowicz et al. 1996). In 
addition, nanopore sensors are easily miniaturized and inte-
grated into portable “lab-on-a-chip” devices (Roman et al. 
2017). Despite the benefits of nanopore sequencing, com-
plicated sample preparation and data processing algorithms 
remain challenges that need to be overcome (Bayley 2015; 
Kasianowicz et al. 1996; Deamer et al. 2016).

A nanopore is a perforation of nanometer size that can 
be constructed either by proteins or by artificial molecules. 
All nanopore types are utilized to sequence biological and 
chemical molecules at the nanoscale (Deamer and Branton 
2002). Nanopore sequencing offers inexpensive and fast 
DNA sequencing without using labels (Rhee and Burns 
2006). Some types of nanopores and its materials are shown 
in Fig. 2.

Biological nanopores

Biological nanopores are also called transmembrane pro-
tein channels (Zeng et al. 2021). Biological nanopores are 
artificial or natural protein molecules produced by genetic 
engineering (Mohammad et al. 2012). Biological nanopores 
are generated by specified bacteria such as α-hemolysin pore 
protein (Bayley and Cremer 2001), MspA is from Mycobac-
terium smegmatis porin A (Zeng et al. 2021) (Derrington 
et al. 2010), and bacteriophage Phi-29 motor (Phi 29) is 
from Bacillus subtilis (Manrao et al. 2012). So α-hemolysin, 
MspA porin, and Phi 29 connector are some proteins that 
constitute pores. These biological nanopores are commonly 
utilized for smart drug delivery (Martinac et  al. 2017; 

102 Biophysical Reviews (2022) 14:99–110



1 3

Ta
bl

e 
1 

 A
 c

om
pa

ris
on

 b
et

w
ee

n 
so

m
e 

fe
at

ur
es

 o
f d

iff
er

en
t g

en
er

at
io

ns
 p

la
tfo

rm
s (

So
lie

ri 
et

 a
l. 

20
13

)

Pl
at

fo
rm

C
he

m
ist

ry
PC

R
 a

m
pl

ifi
ca

tio
n

St
ar

tin
g 

D
N

A
Re

ad
 le

ng
th

Re
ad

s/
ru

n
TH

/ru
n

Ru
n 

tim
e

D
is

ad
va

nt
ag

es
A

pp
lic

at
io

ns

Sa
ng

er
 se

qu
en

ci
ng

A
sy

nc
hr

on
ou

s w
ith

 
ba

se
-s

pe
ci

fic
 te

rm
in

a-
to

r

St
an

da
rd

 P
C

R
0.

5–
1 

m
g

70
0

Fe
w

 1
00

0 
bp

1 
M

b
2 

h
PC

R
 b

ia
se

s;
 lo

w
 d

eg
re

e 
of

 p
ar

al
le

lis
m

; h
ig

h 
co

st 
of

 se
qu

en
ci

ng

G
en

e/
ge

no
m

e 
se

qu
en

ci
ng

Ro
ch

e 
45

4
Se

qu
en

ci
ng

-b
y 

sy
nt

he
si

s 
(p

yr
os

eq
ue

nc
in

g)
Em

PC
R

1 
μg

 fo
r s

ho
tg

un
 li

br
ar

y 
an

d 
5 

μg
 fo

r p
ai

r-e
nd

>
 4

00
10

00
,0

00
0.

4–
0.

6G
b

7–
10

 h
PC

R
 b

ia
se

s;
 a

sy
n-

ch
ro

no
us

 sy
nt

he
si

s;
 

ho
m

op
ol

ym
er

 ru
n;

 
ba

se
 in

se
rti

on
 a

nd
 

de
le

tio
n 

er
ro

rs
; 

Em
PC

R
 is

 c
um

be
r-

so
m

e 
an

d 
te

ch
ni

ca
lly

 
ch

al
le

ng
in

g

D
e 

no
vo

 g
en

om
e 

se
qu

en
ci

ng
, R

N
A

-s
eq

, 
re

se
qu

en
ci

ng
/ta

rg
et

ed
 

re
-s

eq
ue

nc
in

g

Ill
um

in
a

Po
ly

m
er

as
e-

ba
se

d 
se

qu
en

ci
ng

-b
y 

sy
n-

th
es

is

B
rid

ge
 a

m
pl

ifi
ca

tio
n

<
1 

μg
 fo

r s
in

gl
e 

or
 

pa
ir-

en
d

75
/2

 ×
 10

0a
40

,0
00

,0
00

3–
6/

20
0

3–
4 

da
ys

PC
R

 b
ia

se
s;

 lo
w

 m
ul

ti-
pl

ex
in

g 
ca

pa
bi

lit
y 

of
 

sa
m

pl
es

D
e 

no
vo

 g
en

om
e 

se
qu

en
ci

ng
, R

N
A

-s
eq

, 
re

se
qu

en
ci

ng
/ t

ar
ge

te
d 

re
-s

eq
ue

nc
in

g,
 m

et
ag

en
-

om
ic

s, 
C

hI
P

SO
Li

D
Li

ga
tio

n-
ba

se
d 

se
qu

en
c-

in
g

Em
PC

R
<

2 
μg

 fo
r s

ho
tg

un
 

lib
ra

ry
 a

nd
 5

–2
0 

μg
 

fo
r p

ai
r-e

nd

35
–4

0
85

,0
00

,0
00

10
–2

0G
b

7 
da

ys
Em

PC
R

 is
 c

um
be

rs
om

e 
an

d 
te

ch
ni

ca
lly

 c
ha

l-
le

ng
in

g 
PC

R
 b

ia
se

s;
 

lo
ng

 ru
n 

tim
e

Tr
an

sc
rip

t c
ou

nt
in

g,
 

m
ut

at
io

n 
de

te
ct

io
n,

 
C

hI
P,

 R
N

A
-s

eq
, e

tc
.

H
el

iS
co

pe
Po

ly
m

er
as

e 
(a

sy
nc

hr
o-

no
us

 e
xt

en
si

on
SM

; n
o 

PC
R

<
2 

μg
, s

in
gl

e 
en

d 
on

ly
25

–5
0

10
00

,0
00

,0
00

28
G

b
8 

da
ys

A
sy

nc
hr

on
ou

s s
yn

th
e-

si
s;

 h
om

op
ol

ym
er

 ru
n;

 
hi

gh
 in

str
um

en
t c

os
t; 

sh
or

t r
ea

d 
le

ng
th

s;
 

hi
gh

 e
rr

or
 ra

te
s 

co
m

pa
re

d 
w

ith
 o

th
er

 
re

ve
rs

ib
le

 te
rm

in
at

or
 

ch
em

ist
rie

s

Re
se

qu
en

ci
ng

, t
ra

ns
cr

ip
t 

co
un

tin
g,

 C
hI

P,
 R

N
A

-
se

q

Po
lo

na
to

r
Sy

nc
hr

on
ou

s c
on

tro
lle

d 
sy

nt
he

si
s

Em
 P

C
R

__
26

16
0,

00
0,

00
0

4.
5G

b
4 

da
ys

Lo
w

 re
ad

 le
ng

th
; 

em
PC

R
 is

 c
um

be
r-

so
m

e 
an

d 
te

ch
ni

ca
lly

 
ch

al
le

ng
in

g

B
ac

te
ria

l g
en

om
e,

 
re

se
qu

en
ci

ng
, S

N
Ps

 
an

d 
str

uc
tu

ra
l v

ar
ia

nt
s 

de
te

ct
io

n
Pa

cB
io

Ph
os

ph
ol

in
ke

d 
flu

or
es

-
ce

nt
 n

uc
le

ot
id

es
SM

RT
∼

1.
5 

μg
 (i

de
al

ly
 2

–3
 μ

g)
10

00
–1

20
0

10
0,

00
0,

00
0

10
0G

b/
H

r
8 

h
H

ig
h 

in
str

um
en

t c
os

t; 
lo

w
 n

um
be

r o
f 

se
qu

en
ce

 re
ad

 p
er

 ru
n;

 
hi

gh
es

t e
rr

or
 ra

te
s 

co
m

pa
re

d 
w

ith
 o

th
er

 
N

G
S 

ch
em

ist
rie

s

D
e 

no
vo

 g
en

om
e 

se
qu

en
ci

ng
, R

N
A

-
se

q,
 re

se
qu

en
ci

ng
/

ta
rg

et
ed

 re
-s

eq
ue

nc
in

g,
 

m
et

ag
en

om
ic

s, 
SN

Ps
 

an
d 

str
uc

tu
ra

l v
ar

ia
nt

s 
de

te
ct

io
n

C
M

O
S 

no
n-

op
tic

al
 

se
qu

en
ci

ng
Te

m
pl

at
e-

di
re

ct
ed

 D
N

A
 

po
ly

m
er

as
e 

sy
nt

he
si

s
__

b
__

__
__

__
__

__
D

e 
no

vo
 g

en
om

e 
se

qu
en

c-
in

g

103Biophysical Reviews (2022) 14:99–110



1 3

Martinac et al. 2020), disease diagnosis (Brown et al. 2021), 
protein sequencing (Hu et al. 2021), and gene sequencing 
(Quick et al. 2016). In laboratories, nanopores are inserted 
into a lipid bilayer film allowing manipulations and measure-
ments to be undertaken (Briggs et al. 2018). Albeit there are 
abundant molecular channels, such as receptors and ligand-
gated channels, that could be employed in sensing applica-
tions, but the main attention is paid to well-controlled pores 
that could be utilized as a single sensing element (Shen et al. 
2020). Among these aforementioned ones, α-hemolysin is 
the first to be commonly used (Song et al. 1996).

Biological applications have inspired researchers to use 
technologies requiring synthetic and biological nanopores to 
detect gene sequences. These technologies have been exten-
sively used in DNA sequencing (Heng et al. 2004; Manrao 
et al. 2012; Venkatesan and Bashir 2011; Wanunu 2012; 
Woodside et al. 2006) and even in RNA and protein sequenc-
ing as well (Depledge et al. 2019; Smith et al. 2019; Sone-
son et al. 2019; Xie et al. 1991). Besides, such technologies 
could be hired to determine the sequence of nucleic acids 
(Kono and Arakawa 2019; Lockhart and Winzeler 2000; 
Soneson et al. 2019; Xie et al. 1991).

Solid‑state nanopores

Solid-state nanopores are principally produced in a thin film 
of materials such as graphene (single atom thickness sheet 
of carbon), silicon nitride (SiN), phosphorene, Al2O3 (Ven-
katesan et al. 2009) and HfO2 (Larkin et al. 2013). SiN, gra-
phene, and phosphorene nanopores show superiorities over 
biological competitors like chemical and thermal stabilities, 
although this stability depends on the formation of the pore. 
There exist numerous techniques for producing solid-state 
nanopores such as “deploying and sculpting with ion beam” 
and “fabrication by electron beam” (Briggs et al. 2018). 
These pores can also be constructed using procedures such 
as electrochemical reactions, controlled breakdown, laser 
etching, and laser-assisted controlled breakdown (Feng et al. 
2015b). However, the controlled chemical rectification of 
these nanopores is accessible though challenging (Brilmayer 
et al. 2020; Yusko et al. 2011). There are less restrictions 
with solid-state nanopores in contrast with biological ones; 
for example, solid-state nanopores can operate over wider 
temperature and voltage ranges. Besides, solid-state nano-
pores are more compatible and even more stable to solvent 
conditions, and they can be adjusted in diameter with sub-
nanometer accuracy (Yuan et al. 2020). Si3N4 and SiO2 

Table 2  A comparison between 
different platforms from 
different generations (Lin et al. 
2021)

Reading length (kb) Estimated cost per 
Gb (US $)

Throughput per flow 
cell (Gb)

Read 
accuracy 
(%)

Sanger(1st) <1 kb 13,000 / >99.9
Illumina(2nd) 0.075–0.15 50–63 16–30 >99.9
PacBio(3rd) 10–20 43–86 15–30 >99
ONT 10–60 21–42 50–100 87–98

Fig. 2  Graphical representation of biological and 2D solid-state nanopores
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nanopores are among the most broadly employed nanopores, 
and their manufacturing is in accord with the complemen-
tary metal oxide semiconductor industrial integrated circuit 
processes. Ion etching in free-standing Si3N4 and SiO2 films 
using argon is the method by which these nanopores are 
produced (Tang et al. 2016).

Graphene holds unique chemical properties because of 
being electrically conductive and even much stronger than steel 
(Thompson and Milos 2011). Albeit graphene with its univalent 
layer character provides the optimal thickness (0.34 nm) for sin-
gle-base resolution (Novoselov et al. 2016), MoS2 is the most 
frequently used two-dimensional (2D) material investigated for 
sequencing applications, because of the simple fabrication of 
MoS2 devices (Butler et al. 2013; Graf et al. 2019b; Tsutsui 
et al. 2011). It should be noted that the structure of single-layer 
plates and pores are not static, rather they are affected and dis-
torted by electrostatic and hydrodynamic forces (Hernández-
Ainsa et al. 2014; Plesa et al. 2014), even though it is recently 
shown that graphene nanopore is not a suitable candidate for 
sequencing DNA using ionic current. Since graphene and DNA 
nucleotides have strong hydrophobic interactions, DNA may 
stick to graphene which severely impacts translocation speed 
(Schneider et al. 2013). The major drawback of using graphene 
is its hydrophobic nature. Another point is the orientational 
fluctuations of nucleobases during DNA translocation through a 
graphene nanopore. From sequencing point of view, MoS2 can 
perform better than graphene. For example, signal to noise ratio 
and non-stickiness of DNA to MoS2 surface make it suitable 
(Graf et al. 2019a) (Henry et al. 2021). Instead, phosphorene 
nanopore and silicene (graphene like two-dimensional silicon) 
nanopore seem much more suitable (Henry et al. 2021). One of 
the main problems in detecting bases through solid-state nano-
pores is the fact that they have a low spatial resolution since 
dozens of bases can pass through them at any given moment 
(Yanagi et al. 2015).

In general, the thickness of a 2D single-layer material 
is approximately 3.0–11.0 Angstroms that is analogous to 
the gap between two successive nucleotides of an ssDNA 
which is almost 3.5–5.2 Angstroms (Liu et al. 2014).

As a theoretical example for nanopores’ applications, 
specifically graphene, an ssDNA is pulled through a nano-
pore whose diameter is comparable to single DNA bases. 
With the aid of molecular dynamics (MD) simulation, 
various parameters like pulling force or orientation of 
bases relative to the graphene plane or its normal axis are 
tracked during translocation of ssDNA can be resolved. 
In an unpublished work by the authors, the phosphorene 
atom of the DNA backbone is pulled through nanopore 
with constant velocity, and in addition to pulling force and 
base orientation, Vander Waals and electrostatic energies 
and forces are also tracked to see whether or not these 
parameters can yield an illustrious distinction between 
DNA bases (Fig. 3).

In addition, hexagonal boron nitride (hBN) is less hydro-
phobic than graphene. The thickness of hBN is comparable 
to the spacing between nucleotides (0.32–0.52 nm) in single-
stranded DNA (ssDNA) (Zhao et al. 2014). It also shows 
other advantages over graphene in terms of its insulating 
property in high ionic strength solution and fewer defects 
made during the manufacturing process(Liu et al. 2013).

Several theoretical and experimental studies have proven 
MoS2 capabilities as a mono layer material in the form of 
the nanopore or nanoribbon (Feng et al. 2015a; Graf et al. 
2019a; Liu et al. 2014). Moreover, graphene (Traversi et al. 
2013), WS2 (Danda et al. 2017), and BN (Liu et al. 2013) 
have been demonstrated to detect DNA translocation. Up to 
now, none of solid-state nanopores have shown single-base 
resolution. Therefore, it is so crucial to proceed with stud-
ies to identify new materials, and two such prime candidate 
materials are phosphorene and silicene as mentioned earlier 
(Jose and Datta 2014; Zereshki et al. 2018). Both materials 
have properties that are ideal for base identification (Chen 
et al. 2017). Moreover, the biocompatibility and hydrophi-
licity of phosphorene makes it appropriate for biosensing 
applications (Cortés-Arriagada 2018; Kumawat et al. 2018).

DNA translocates through solid-state nanopores very 
fast, up to 0.01–1 μs per base (Heerema et al. 2018). As 
a matter of choice, the DNA translocation velocity should 
be 1–100 base per microseconds in a nanopore to provide 
an acceptable signal from each nucleotide (Akahori et al. 
2017). Thus, it is so essential to slow down DNA during 
translocation. Different methods have been examined to 
control translocation speed such temperature (Wanunu et al. 
2008), electrolyte viscosity (Feng et al. 2015a), driving volt-
age (Liang et al. 2013), and ion concentration (Luan and 
Aksimentiev 2010). Alternative methods like two nanopores 
system (Langecker et al. 2011), optical tweezers (Keyser 
et al. 2006), optical trapping of a single DNA (Kim and Lee 
2014), and magnetic tweezers (Peng and Ling 2009) have 

Fig. 3  A schematic of SMD force vs. time curve (sample output 
of MD simulation) which is studied to investigate the distinction 
between bases

105Biophysical Reviews (2022) 14:99–110



1 3

been used. A schematic of various nanopore sequencing 
approaches is depicted in Fig. 4.

Conclusion

The first-generation methods, though revolutionary, suffered 
from disadvantages like being costly or being capable to 
sequence only small strands. The second-generation tech-
niques presented modifications to genome sequencing at a 
reasonable time-cost scale and enhancing throughput while 
still required DNA amplification which would have made 
errors. The third generation could go several steps forward 
and attained the traits like direct sequencing, longer base 
reads, real-time sequencing, and single-molecule nature. One 
should be so optimistic to the future of the DNA sequencing 
grounded on new technologies, but there are still obstacles 
that should be overcome by researchers. What seems more 
progressive is quantum simulations that are more confiden-
tial but more cumbersome since they require much more 
computational costs.
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