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a b s t r a c t

Transmembrane proteins (TMPs) are essential for cell recognition and communication, and they serve as
important drug targets in humans. Transmembrane proteins’ 3D structures are critical for determining
their functions and drug design but are hard to determine even by experimental methods. Although some
computational methods have been developed to predict transmembrane helices (TMHs) and orientation,
there is still room for improvement. Considering that the pre-trained language model can make full use of
massive unlabeled protein sequences to obtain latent feature representation for TMPs and reduce the
dependence on evolutionary information, we proposed DeepTMpred, which used pre-trained self-
supervised language models called ESM, convolutional neural networks, attentive neural network and
conditional random fields for alpha-TMP topology prediction. Compared with the current state-of-the-
art tools on a non-redundant dataset of TMPs, DeepTMpred demonstrated superior predictive perfor-
mance in most evaluation metrics, especially at the TMH level. Furthermore, DeepTMpred could also
obtain reliable prediction results for TMPs without much evolutionary feature in a few seconds. A tutorial
on how to use DeepTMpred can be found in the colab notebook (https://colab.research.google.com/
github/ISYSLAB-HUST/DeepTMpred/blob/master/notebook/test.ipynb).
� 2022 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Biological membranes protect the vital contents of cells from
the environment. Membrane proteins are an important part of bio-
logical membranes and play a diverse and important role in many
processes such as molecule transport, immune system molecule
recognition and metabolism [1,2]. Membrane proteins are fully
embedded into the membrane lipid bilayer, and often comprise a
substantial fraction of the membrane total mass, ranging from
18% in the insulating myelin membrane of neurons to 75% in the
inner membrane of mitochondria [3]. Membrane proteins are
mainly divided into two structural classes: alpha-helical trans-
membrane proteins and beta-barrel transmembrane proteins. a-
helical transmembrane proteins make up the majority of all known
membrane proteins, which have been mostly found in the plasma
membrane of eukaryotes and the inner membranes of bacterial
cells. In humans, the importance of TMPs is reflected in the fact
that they account for more than 50% of known drug targets even
though they constitute a minority (between 20% and 30%) of all
the proteins encoded in fully-sequenced genome [4,5].

However, the structure determination of transmembrane pro-
teins by X-ray crystallography and by NMR techniques is limited
due to the difficulties in crystallizing them in an aqueous environ-
ment and by their relatively high molecular weight [6]. The known
structures of transmembrane proteins (TMPs) only comprise about
1.8% (�5800) of all structures in the Protein Data Bank [2], but
there are more than 30,000,000 unique TMP sequences in the Uni-
Ref100 (release 2020.06). Considering the importance of trans-
membrane protein structures for drug development, automatic
computational methods predicting topology of transmembrane
proteins has been paid great attention. In particular, some low-
resolution structural information about transmembrane proteins
(TMPs) can be served as the constraint information for custom
experiments [7] or modeling their 3D structures [8].

As far as we know, TopPred [9] is one of the earliest methods to
predict the topology of TMPs, which was developed based on
hydrophobicity analysis. Jones et al. [10] proposed a constrained
dynamic programming to find the optimal location and orientation
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of transmembrane helices. In the following time, computational
methods based on machine learning have been widely applied
for predicting the topology of transmembrane proteins (TMPs)
such as hidden Markov models [11–14], SVMs [15], feed-forward
neural network [16,17], random forests [18], conditional random
fields [19,20], and K-nearest neighbor [21]. Besides, the prediction
methods like TOPCONS [22,23], CCTOP [24], and CNTOP [25] inte-
grated the results of different computational methods into one
consensus prediction and quantified the reliable TMHs based on
the agreement between the different methods. Assaf et al. [26] pro-
posed a graphical algorithm, called TopGraph, which was based on
the minimum energy, the positive-inside rule and showed high
accuracy on large transporters without structural homologues.
Compared to traditional machine learning methods, computational
methods based on deep learning can have significant advantages
on complex biology problems [27,28]. Recently, some methods
based on deep learning have been developed to significantly
improve the topology prediction of transmembrane proteins such
as Membrain3.0 [29], DMCTOP [30]. Most of the above methods
used evolutionary information as the input features such as
sequence profile or multiple sequence alignments [31,32], there-
fore they do not work when there are not enough homologous
sequences.

Transfer learning aims at improving the performance of task on
target domains by transferring the knowledge contained in differ-
ent but related source domains, which can reduce the dependence
on a large number of target domain data [33]. Transferring knowl-
edge is particularly efficient when data are abundant in the source
domain but scarce in the target domain. In the natural language
processing (NLP) field, transfer learning in the form of pre-
trained language models has become ubiquitous. Pre-trained lan-
guage models mainly learn context-based word embeddings such
as Bert [34]. Since there are more than billion protein sequences
in databases, one efficient way is self-supervised language model
to learn the latent information from unlabeled sequences.
Recently, Bepler et al. [35] have reported competitive results with
the help of transfer learning on secondary structure prediction and
Rives et al. [36] trained the pre-trained language model called ESM
based on Transformer which includes more than 680 million
parameters to predict protein contact map. It is extremely enlight-
ening for us to get a better feature representation of transmem-
brane proteins with the help of transfer learning.

In this study, we proposed a transfer learning method,
DeepTMpred, using self-supervised pre-trained language models
called ESM [36], convolutional neural networks, attentive neural
network and conditional random fields for TMP topology predic-
tion. Compared with the current state-of-the-art tools on an inde-
pendent dataset, DeepTMpred can achieve superior results in most
evaluation metrics. Furthermore, with the help of pre-trained lan-
guage model, it could produce reliable topology prediction for
TMPs in a few seconds. Finally, all source code can be freely avail-
able at https://github.com/ISYSLAB-HUST/DeepTMpred.
2. Materials and methods

2.1. Dataset

2.1.1. Data collection and preprocessing
We collected alpha-TMPs with known structures annotated in

OPM(version: July 02, 2020) [37], which was an up-to-date exper-
imental TMP structure database and provided spatial arrange-
ments of membrane proteins with respect to the hydrocarbon
core of the lipid bilayer. We first collected two classes of proteins
from orientations of proteins in membranes (OPM) database such
as the alpha-helical polytopic proteins and bitopic proteins. 8684
1994
protein chains were collected in total. The protein chains were fur-
ther chosen with the following conditions: (1) the chain is consec-
utive; (2) the length of the protein chain is less than 800 residues,
and more than 20 residues; and (3) there is at least one TMH in the
chain. Redundancy of the sequences was removed at 30% identity
using CD-HIT and PSI-CD-HIT [38,39]. We chose 40 test proteins
used in Membrain 3.0 as the independent test dataset, where the
similarity between them is less than 20%, and all of them are
solved by either NMR or X-ray technique with resolution less than
4.5 Å. To guarantee a fair comparison on the independent test data-
set, the collected sequences in the OPM that are similar to the inde-
pendent test proteins at a threshold of 30% were dropped. By the
above steps, the remaining TMPs from training dataset included
582 protein chains and was randomly divided into training set
and validation set according to the ratio of 4:1. The annotation of
TMHs and the orientations was taken from the OPM database
(https://opm.phar.umich.edu/download). All training data and test
data can be freely accessed at https://github.com/ISYSLAB-HUST/
DeepTMpred. Table 1 lists a summary of the residues and TMHs
located on TM and non-TM in the training set and test set. Besides,
the training set and test set have approximately the same distribu-
tions with respect to the TMH length (Fig. S1). To explore whether
the model can distinguish between soluble proteins and TMPs, we
collected two types of soluble proteins from the TMSEG SP1441
test set, including 113 proteins with signal peptides and 173 pro-
teins without signal peptides.
2.1.2. Construction of features based on evolutionary information
Position-specific scoring matrix (PSSM) is a commonly used

protein sequence pattern representation. It contains evolutionary
information and has been widely used in previous TMH prediction
methods [15,16,40]. PSI-BLAST [41] is used to search against the
non-redundant (NR) database with an iteration number equal to
3 and e-value threshold equal to 1e-3. For a protein sequence with
length of L amino acids, the dimension of PSSM is L � 20.

Hidden Markov Model (HMM) profile is conducted by HHblits
[42] to search against the Uniclust30 database with an iteration
number equal to 3 and e-value threshold to 1e-3. The HMM profile
is a L� 30 matrix. For each residue column, it consists of 20 emis-
sion frequencies (EF), 7 transition probabilities, and 3 local diversi-
ties. PSSM and HMM profile was constructed for all training and
test proteins.
2.1.3. Label of the topology
For the TMH prediction task, (0, 1) is assigned for labeling the

residues in the sequence. ‘0’ indicates a non-transmembrane resi-
due and ‘1’ indicates a membrane residue. For the N-terminus ori-
entation prediction in the TMPs, ‘0’ denotes an inner membrane
side and ‘10 denotes an outer membrane side.
2.2. Model architecture

The model architecture shown in Fig. 1 consists of 6 parts, pre-
trained self-supervised language model, evolutionary feature pre-
processing, convolutional layer, two position-wise fully-
connected layers, Conditional Random Fields, and attentive neural
network. After the treatment of the evolutionary feature, the pre-
processed feature vectors are concatenated with the output of
the pre-trained language model. The integrated feature is fed into
a linear layer to reduce the dimensionality. Using the convolution
layer can obtain local features of the residues. In the next stage,
two position-wise fully-connected layers are used for the classifi-
cation of transmembrane protein helix. Finally, conditional random
fields are used to optimize the distribution of sequence labeling.
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Table 1
The summary of residues and TMHs located on TM and non-TM in training set and test set.

Type Training Set Test Set

TM non-TM TM non-TM

Residues 55,949 78,724 3126 3718
TMHs 2637 – 146 –

Fig. 1. The flowchart of DeepTMpred.
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2.2.1. Pre-trained self-supervised language model
The development of pre-trained language models has brought

the research in the protein representation to a new stage without
artificial labels. Representation of protein sequences can be learned
from massive unlabeled protein sequences, and downstream tasks
can be significantly improved. Using pre-trained language model
can reduce the risk of overfitting on small training data, which is
equivalent to a kind of regularization method.

Here, we adopted a transformer-based self-supervised language
model called ESM, which made full use of up to 250 million
sequences of the Uniparc database [43] and included more than
85 million parameters (12-layer transformer) [36]. Here, the ESM
model can accept a protein sequence and generate embedding
matrices with L� 780.
2.2.2. Feature fusion and convolutional neural network
All embeddings are projected into the same feature space by

using a fully connected neural layer. Given protein sequence PSSM
feature up, HMM profile feature uh, the embedding feature of the
language model ue, we can obtain new embeddings zsvia:

zs ¼ FC ðhs;up � uh � ueÞ ð1Þ

where � is the concatenation and FC represents a fully connected
neural layer (hs represents the learnable parameters) which is
applied to each position separately. As such, a nonlinear ReLU acti-
1995
vation function can be applied to the fusion embedding. Consider-
ing the strong local correlation of the topological structure of
transmembrane proteins, we use a convolutional layer based on
sparse connectivity to obtain the local vector representations of
adjacent residues.

2.2.3. Conditional random fields
Transmembrane protein topology prediction is a classical prob-

lem of sequence labeling. The aim is to determine whether the resi-
due is embedded in the biological membrane or not. The residues
are assigned by using Conditional Random Fields to strengthen
the correlation between labels. Here, the use of a CRF layer is a
helpful regularizer so that continuity of TMHs is encouraged. Con-
ditional random fields were proposed by Lafferty et al. [44] for
labeling sequence data. Given a protein sequence (length is T) of
observations X ¼ x1; x2; � � � ; xTð Þ, the most probable topology
sequence is Y ¼ y1; y2; � � � ; yTð Þ, i.e. Y� ¼ argmaxYP YjXð Þ. By the fun-
damental theorem of a random field, the joint distribution over
label sequence Y given X can be given by the following conditional
probability:

P YjXð Þ ¼ 1
Z hð Þ

YT

t¼1
exp wyt htð Þ

� �YT�1

t¼1
exp uyt ;ytþ1

� �
ð2Þ

where h ¼ h1;h2; � � � ;hTð Þ is the output of the convolutional neural
network directly below the conditional random field, Z(h) is the
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normalization constant of the distribution P YjXð Þ, wyt
htð Þ is a two

fully-connected layers model which accepts ht as input and obtains
outputs of m classes and uyt ;ytþ1

is a learnable transition matrix with
m�m parameters.

2.2.4. Orientation prediction model based on the attentive neural
network

The inside/outside orientation is only annotated at the N-
terminus orientation of proteins in membranes (OPM) database.
Therefore, this prediction is made for the entire protein, and then
the orientation of the other non-transmembrane residues is
inferred since they are supposed to switch after each TMH. Firstly,
the parameters of the fully connected neural layer of feature fusion
were fine-tuned with a small learning rate(1e-5). Since only the
inside/outside position of the N-terminal is predicted, 5 residues
before and after the TMP were chosen to classify the position
which was taken based on the performance of the validation set.
Then, an attention layer [45] with the ReLU activation function
and a fully connected layer are used to map the features to the bin-
ary classification space. For the attention layer, the orientation rep-
resentation R of the TMP is formed by a weighted sum of these
output vectors:

a ¼ softmax wTM
� �

R ¼ ReLUðMaTÞ ð3Þ

where M 2 Rdh�10 is the embeddings of 5 residues before and after

the TMP, dh is the dimension of the fusion layer, w is a trained
parameter vector andwT is a transpose. The dimension of w, a, R is

dh, 10, dh separately.
For model optimization, the label smoothing [46] method is

adopted to avoid the overfitting of the prediction model.

2.3. Evaluation criteria

To evaluate our model performance, we adopted the same eval-
uation criteria that were also applied in previous studies [29].

For TMH prediction on residues level, it should be predicted
whether each residue belongs to a membrane residue. PRE(r) is
defined as:

PRE rð Þ ¼ number of correctly predicted TMH residues
number of predicted TMH residues

ð4Þ

The recall for residues level. REC(r) is defined as:

REC rð Þ ¼ number of correctly predicted TMH residues
number of real TMH residues

ð5Þ

The F1 score for residues level. F1(r) is defined as:

F1 rð Þ ¼ 2� PRE rð Þ � REC rð Þ
PRE rð Þ þ REC rð Þ ð6Þ

The precision for TMH level. PRE(h) is defined as:

PRE hð Þ ¼ number of correctly predicted TMH segments
number of predicted TMH segments

ð7Þ

The recall for TMH level. REC(h) is defined as:

REC hð Þ ¼ number of correctly predicted TMH segments
number of real TMH segments

ð8Þ

The F1 score for TMH level. F1(h) is defined as:

F1 hð Þ ¼ 2� PRE hð Þ � REC hð Þ
PRE hð Þ þ REC hð Þ ð9Þ

Vp is the number of proteins with correctly predicted TMH,
which is defined as:
1996
Vp ¼
XN
i¼1

xi; xi ¼
1; if PRE hð Þi ¼ REC hð Þi ¼ 1
0; else

�
ð10Þ

A TMH segment is correctly predicted, if the segment satisfies
both of the following criteria: (1) the endpoints of the predicted
TMH does not deviate from those of the observed TMH by more
than 5 residues; (2) the overlapped residues between the predicted
TMH segment and the real TMH segment accounts for at least half
of the longer one.

The inside/outside orientation prediction is a binary classifica-
tion task. Thus, we adopt MCC, F1 score, and accuracy (ACC) crite-
ria to evaluate prediction performance. These criteria are defined
as:

MCC ¼ TP� TN� FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TPþ FNð Þ TNþ FPð Þ TNþ FNð Þp ð11Þ
F1 ¼ 2� TP
2� TPþ FPþ FN

ð12Þ
ACC ¼ TPþ TN
TPþ FPþ TNþ FN

ð13Þ

where TP, TN, FP, FN represent the numbers of true positives, true
negatives, false positives, and false negatives, respectively.

ACCsp is used to evaluate the accuracy of soluble protein predic-
tion, which is defined as:

ACCsp ¼ number of correctly predicted soluble proteins
number of soluble proteins

ð14Þ
3. Results

First of all, we showed how the hyperparameters of our model
are tuned specifically. To make a comprehensive evaluation of
transmembrane helix (TMHs) prediction, we compared
DeepTMpred with three representative state-of-the-art methods
including deep learning (MemBrain3.0), ensemble learning
(CCTOP, TOPCONS), machine learning (MEMSAT-SVM) and graphi-
cal algorithm based on minimum energy (TopGraph) on the inde-
pendent test data for TMH segments prediction. To demonstrate
that DeepTMpred could work well even if TMPs are lack of evolu-
tionary information, our proposed model was divided into two cat-
egories according to the input feature: (a) accepted the fusion
feature of the evolutionary information and the output feature of
ESM; (b) only accepted the output of ESM as input feature.

3.1. Hyperparameters tuning

DeepTMpred was constructed in Python 3.8 with PyTorch 1.5.0.
Considering the limitations of GPU memory, we only finetuned 12-
layer ESM with a small learning rate (1e-5). There are some hyper-
parameters needing to be optimized, including fusion embedding
dimension, convolution filter setting, the numbers of convolution
layers, and the fully connected layer dimension. All hyperparame-
ters were tuned with Neural Network Intelligence (https://github.-
com/microsoft/nni). In this work, the optimized hyperparameters
are as follows: fusion embedding dimension is 32, convolution fil-
ter is (16, 3) in which filter number is 16 and kernel size is 3, and
the dimension of two fully connected layers are 16 and 2, respec-
tively. For the inside/outside orientation prediction task, a small
learning rate(1e-4) was applied for fine-tuning at the fully con-
nected neural layer of feature fusion and the dimension of two
fully connected layers for orientation classification are 8 and 2,
respectively.

https://github.com/microsoft/nni
https://github.com/microsoft/nni
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3.2. Comparison to the state-of-the-art methods for TMH segments
prediction

To make a fair comparison with the three-representative state-
of-the-art methods, the same test data has been adopted. Table 2
shows the prediction performance of different methods based on
the 40 independent test proteins (the results of MemBrain3.0,
MEMSAT-SVM, TOPCONS, TopGraph and CCTOP are from Mem-
Brain3.00s paper). DeepTMpred-a adopted the characteristics of
evolutionary information of PSSM and HMM profile, while
DeepTMpred-b does not include evolutionary information which
is replaced by an all-zero matrix of L� 50. For DeepTMpred train-
ing, above process was equivalent that DeepTMpred-b had 50*32
less parameters than DeepTMpred-a.

From Table 2, we see that DeepTMpred-b including 12-layer
Transformer achieved the highest F1(r) score of 0.900, followed
by MemBrain3.0 (0.898), DeepTMpred-a (0.895), TOPCONS
(0.808), MEMSAT-SVM (0.804), TopGraph (0.787), and CCTOP
(0.785). CCTOP achieved the highest PRE(r) (0.931), followed by
DeepTMpred-a (0.918), but CCTOP had the lowest REC(r) (0.679).
It is interesting to be noted that all the PRE(h), REC(h) and F1(h)
scores of DeepTMpred were significantly higher than those of the
other three state-of-the-art methods. For the TMH segments pre-
diction, the values of PRE(h), REC(h) and F1(h) of DeepTMpred-a
are 0.857, 0.863 and 0.860, respectively, which are 6.1%, 5.4% and
5.7% higher than those of the MemBrain3.0 which performs the
best at the TMH level among the three comparing state-of-the-
art methods. Meanwhile, without including evolutionary informa-
tion, DeepTMpred-b achieved PRE(h) of 0.864, REC(h) of 0.870 and
F1(h) of 0.867, which are 6.9%, 6.2% and 6.5% higher than those of
the MemBrain3.0.

Among the 40 test proteins, DeepTMpred-b correctly predicts
all the TMHs for 28 proteins, i.e., 28 of 40 test proteins are assigned
with the correct TMHs, while the highest V(p) of the three compar-
ing state-of-the-art methods is 21. The second-best predictor on V
(p) is DeepTMpred-a, which correctly predicts 26 out of the 40 test
proteins. These data imply that DeepTMpred based the pre-trained
model achieves better performance than other state-of-the-art
methods.

The superior performance of DeepTMpred is mainly attributed
to the following two reasons. Firstly, transfer learning which does
not rely on large-scale training data is very suitable for TMP topol-
ogy prediction with small scale data. Secondly, CRFs used in the
last step of DeepTMpred can learn long-range correlations of TMHs
and non-TMHs, which further improves the prediction perfor-
mance of the method.
3.3. Representation of TMP residues in embedding space

DeepTMpred can be expected to capture meaningful patterns
between TMH and non-TMH. To investigate whether the
DeepTMpred model has learned to encode properties of TMH clas-
sification in its representations, we use 40 test TMPs from Mem-
brain 3.0 and project the learned embedding of the fusion layer
Table 2
Performance comparisons of DeepTMpred with the three representative state-of-the-art m

Methods PRE(r) REC(r) F1(r)

MemBrain3.0 0.892 0.904 0.898
TopGraph 0.873 0.717 0.787
TOPCONS 0.918 0.722 0.808
MEMSAT-SVM 0.926 0.710 0.804
CCTOP 0.931 0.679 0.785
DeepTMpred-a 0.874 0.918 0.895
DeepTMpred-b 0.889 0.911 0.900

1997
and convolutional layer of the DeepTMpred-b into two dimensions
by applying the t-distributed stochastic neighbor embedding (t-
SNE) algorithm. Fig. 2 demonstrates that the embedding is already
meaningful after training in the convolutional layer. Furthermore,
the clustering distribution of the embedding space of the convolu-
tional layer is denser and more separable than the fusion layer and
it shows that the convolutional layer enhances patterns in the
embedding space. Based on the results, it is clearly concluded that
the fusion layer and convolutional layer could encode and capture
the different level feature from ESM embeddings and evolution
information.
3.4. The inside/outside orientation prediction

Considering that other non-transmembrane positions can be
inferred by the N-terminus position of a TMP, we only predicted
the inside/outside orientation of the N-terminus by transfer learn-
ing. We adopt MCC, ACC, and F1 criteria to evaluate the effect of
DeepTMpred. The performance of the two modules is shown in
Table 3. From Table 3, we can see that DeepTMpred-a achieved
F1 of 0.935, ACC of 0.900, and MCC of 0.722, which were better
than those of DeepTMpred-b. The attentive neural network could
efficiently learn and choose the import feature in 5 residues before
and after the TMP. It also indicates that evolutionary information
can significantly improve the performance of the orientation task
and the latent information from ESM play a complementary role
with evolutionary information, considering that the better perfor-
mance of DeepTMpred-a than DeepTMpred-b. Regarding the pre-
diction of orientation, we also compared DeepTMpred with the
two tools (MEMSAT-SVM, TOPCONS). It can be seen from Table 3
that the scores of DeepTMpred-a and DeepTMpred-b in MCC, F1
and ACC were far higher than those of MEMSAT-SVM and TOP-
CONS. At present, our model only focuses on the orientation on
the N-terminus, and it can be extended to the prediction of re-
entrant loops in the future.
3.5. Distinguishing TMPs with soluble proteins

Although DeepTMpred was not trained on soluble proteins, it is
also important to distinguish TMPs with soluble proteins. 286 sol-
uble proteins (two groups) from the SP1441 dataset were used. We
mainly compared DeepTMpred with the other three methods
(MEMSAT-SVM, TMHMM2.0 and TOPCONS) for this task. We
adopted the same strategy as CCTOP and Phobius, that is, using Sig-
nalP software to predict the position information of signal pep-
tides, which can greatly alleviate the problem of identifying
signal peptides as TMH. In this study, SignalP 6.0 [47] was used.
The prediction results are shown in Table 4. For the group A of
113 soluble proteins with signal peptides, TOPCONS achieved the
highest ACC score of 0.929, followed by DeepTMpred (0.920),
MEMSAT-SVM (0.699), and TMHMM2.0(0.655). For the group B
of 173 soluble proteins without signal peptides, TMHMM2.0
achieved the highest ACC score of 0.977, followed by DeepTMpred
(0.971), TOPCONS (0.971), and MEMSAT-SVM (0.965). Further
ethods on the independent test set.

PRE(h) REC(h) F1(h) V(p)

0.808 0.819 0.814 21
0.504 0.464 0.483 12
0.573 0.530 0.551 12
0.591 0.547 0.568 10
0.511 0.477 0.493 10
0.857 0.863 0.860 26
0.864 0.870 0.867 28



Fig. 2. TMH properties of amino acids are represented in the output embeddings of the fusion layer(A) and convolutional layer (B), visualized here with t-SNE.

Table 3
Performance of DeepTMpred for TMP orientation prediction with MEMSAT-SVM and
TOPCONS on the independent test set.

Methods F1 ACC MCC

DeepTMpred-a 0.935 0.900 0.722
DeepTMpred-b 0.915 0.875 0.680
TOPCONS 0.717 0.625 0.204
MEMSAT-SVM 0.769 0.700 0.406

Table 4
Prediction performance of DeepTMpred and the other three methods on the SP1441
soluble protein test set (A: 113 proteins with signal peptides, B: 173 proteins without
signal peptides.).

Methods ACCsp (A) ACCsp (B)

DeepTMpred 0.920 0.971
MEMSAT-SVM 0.699 0.965
TMHMM2.0 0.655 0.977
TOPCONS 0.929 0.971
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comparison of the results showed that only DeepTMpred and TOP-
CONS could distinguish TMPs with soluble proteins well on both
the two datasets.
3.6. Analysis of time complexity

We also compared the time complexity for DeepTMpred and
the other three methods on the 40 test proteins. TMHMM2.0,
MEMSAT-SVM and TOPCONS were run as standalone package with
default parameters and the pure running time for 40 test proteins
was counted. Since the MemBrain3.0 model file cannot be run
locally in our cluster, only the time of the feature generation step
was computed. The results are shown in Table 5. MemBrain3.0
was the most time-consuming method, followed by MEMSAT-
SVM, TOPCONS, DeepTMpred, and TMHMM2.0. Among the top
three most accurate methods (DeepTMpred, MemBrain3.0 and
TOPCONS), DeepTMpred required the least amount of time and it
only took 8 s to predict the topology of 40 TMPs on the CPU device
(6 s on GPU device). CCTOP did not provide a downloadable ver-
sion, but its paper reported that a sequence took anywhere from
Table 5
The time complexity comparison between DeepTMpred and other four methods on
the 40 test proteins.

Methods Running Time (s) Database

TMHMM2.0 4 –
MEMSAT-SVM 12,557 UniRef-50
MemBrain3.0* 38,303 NR, UniClust-30
TOPCONS 869 Pfam, CDD
DeepTMpred 8/6 –

1998
a few minutes to 30 min. Overall, DeepTMpred had good perfor-
mance in terms of both accuracy and running time.
3.7. Case study

In Fig. 3, we showed an illustrative example from
bacteriorhodopsin-I (PDB id:4pxkA) which is a kind of bacteri-
orhodopsin protein acting as a proton pump and including 7 TMHs.
The prediction results of DeepTMpred-a and DeepTMpred-b were
shown in Fig. 3A and Fig. 3B, respectively. From Fig. 3, it is easy
to see that the first six TMHs of bacteriorhodopsin-I were correctly
identified by both DeepTMpred-a and DeepTMpred-b. The pre-
dicted start and stop sites of the first six TMHs were all within
the error range (<=5 residues) according to the annotation of the
OPM database (Fig. 3C). Only the termination site of the seventh
TMH predicted by DeepTMpred-a and DeepTMpred-b exceeded
the error range. The errors were 6 and 7 residues, respectively,
according to the annotation of the OPM database. While it is found
that the starting and ending sites of the seventh TMH of
bacteriorhodopsin-I are 208 and 229, respectively, based on the
PDBTM database annotation which are a little difference from
the annotation of the OPM database which are 205 and 219,
respectively. The termination site of the seventh TMH predicted
by DeepTMpred-a and DeepTMpred-b was also within the error
range (<=5 residues), if judged by the annotation of the PDBTM
database. Furthermore, the very similar performance of
DeepTMpred-a and DeepTMpred-b on the case study of
bacteriorhodopsin-I shows that DeepTMpred could also work well
without using evolutionary information.

We also compared the performance of three different tools
(MEMSAT-SVM, MemBrain and TOPCONS) with DeepTMpred in
hard-type TMH. For long-TMH prediction, 4b4aA was taken as an
example, whose third TMH was of long type (>30). As can be seen
from Table 6, both DeepTMpred, MemBrain, and MEMSAT-SVM
could predict the long-TMH, but TOPCONS failed. Both MEMSAT-
SVM and MemBrain showed a big error in the first TMH prediction,
and DeepTMpred and TOPCONS also showed an error in the fourth
TMH (more than 6 residues at the N-terminus). This example also
showed that DeepTMpred was competitive with other tools in hard
type TMH prediction.
4. Discussion and conclusion

In this work, we proposed a transfer learning method,
DeepTMpred, using pre-trained self-supervised language model
called ESM, convolutional neural networks, conditional random
field and attentive neural network for alpha-TMP topology predic-
tion. Based on the comparison results, the proposed DeepTMpred
showed superior performance in predicting the topology of TMP
compared with the state-of-the-art methods.



Fig. 3. Case study of bacteriorhodopsin-I. (A)Molecular structure of bacteriorhodopsin-I (PDB entry: 4pxk) annotated according to DeepTMpred-a prediction: TMHs in green.
(B)Molecular structure of bacteriorhodopsin-I (PDB entry: 4pxk) annotated according to DeepTMpred-b prediction: TMHs in red. (C)Comparison between the real topology
(OPM database) and prediction of DeepTMpred. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 6
Comparison between the true topology of 4b4aA (OPM database) and that predicted by DeepTMpred, MEMSAT-SVM, MemBrain, and TOPCONS.

Methods TMH-1 TMH-2 TMH-3(hard) TMH-4 TMH-5 TMH-6

OPM (11–32) (61–85) (100–130) (147–170) (187–202) (206–226)
MEMSAT-SVM (15–40) (59–87) (101–130) (150–173) (190–205) (210–225)
TOPCONS (14–34) (65–85) (103–123) (153–173) (187–207) (210–230)
MemBrain (6–45) (59–88) (100–129) (149–175) (182–202) (206–231)
DeepTMpred (11–31) (64–85) (101–130) (153–173) (188–203) (209–227)
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Protein representation is an important problem for downstream
tasks such as protein contact map prediction. Although evolution-
ary information is the most extensive method of protein represen-
tation, its disadvantages are obvious, relying too much on
homologous sequences. Most of the state-of-art machine-learning
based methods for TMP topology prediction made use of sequence
profile as the input features, but they are time-consuming find
enough homologous sequences. Further, some methods (such as
Membrain 3.0) rely on the predicted structural features and bio-
chemical properties, but these predicted features caused bias and
calculations are time-consuming (more than dozens of minutes).
DeepTMpred model which does not rely on the evolution informa-
tion showed that the topology of proteins could be predicted only
depending on the output feature of ESM within a few seconds.

Besides, after comparing DeepTMpred-a with DeepTMpred-b,
DeepTMpred-b was slightly better at the TMH level, which implied
that the combination of ESM and evolutionary information would
bring noise and ESMmodel has already includedmost evolutionary
information or adding parameters was difficult to optimize on
training data sets. Intuitively, it is difficult to optimize a complex
network (more parameters) for a small-scale data set, so this does
not mean that adding evolutionary information will not lead to
1999
improvements in other tasks. In our final model, the fine-tuning
ESM was used to replace the artificially constructed features in
terms of evaluation performance. In the proposed model, CRFs also
play an important role in TMH prediction and construct the corre-
lation of labels. For the orientation prediction task, DeepTMpred
can predict the orientation of transmembrane proteins through a
transfer model with the attentive neural network which could cap-
ture the important contribution residues.

In addition to its best performance, DeepTMpred is also recom-
mended due to its speed. The method is readily available for free:
online via colab notebook, and as a standalone package from
GitHub (https://github.com/ISYSLAB-HUST/DeepTMpred). Apart
from that, as a stand-alone software package, DeepTMpred does
not require any biological sequence database. A tutorial on how
to use DeepTMpred can be found in the colab notebook (https://co-
lab.research.google.com/github/ISYSLAB-HUST/DeepTMpred/
blob/master/notebook/test.ipynb), mainly providing three differ-
ent prediction modes (batch sequence prediction, single TMP
sequence prediction, extra-long TMP sequence prediction).

As far as we know, this is the first time that transfer learning
algorithm has been applied in the topology prediction of TMPs.
Transfer learning provides new ideas for predicting the topology

https://github.com/ISYSLAB-HUST/DeepTMpred
https://colab.research.google.com/github/ISYSLAB-HUST/DeepTMpred/blob/master/notebook/test.ipynb
https://colab.research.google.com/github/ISYSLAB-HUST/DeepTMpred/blob/master/notebook/test.ipynb
https://colab.research.google.com/github/ISYSLAB-HUST/DeepTMpred/blob/master/notebook/test.ipynb
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of transmembrane proteins lacking sufficient evolutionary infor-
mation. In the future, we intend to improve the performance of
TMPs topology prediction by developing new deep learning
methods.
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