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Abstract: Self-oscillation capable of maintaining periodic motion upon constant stimulus has potential
applications in the fields of autonomous robotics, energy-generation devices, mechano-logistic
devices, sensors, and so on. Inspired by the active jumping of kangaroos and frogs in nature, we
proposed a self-jumping liquid crystal elastomer (LCE) balloon under steady illumination. Based on
the balloon contact model and dynamic LCE model, a nonlinear dynamic model of a self-jumping
LCE balloon under steady illumination was formulated and numerically calculated by the Runge–
Kutta method. The results indicated that there exist two typical motion regimes for LCE balloon
under steady illumination: the static regime and the self-jumping regime. The self-jumping of LCE
balloon originates from its expansion during contact with a rigid surface, and the self-jumping can be
maintained by absorbing light energy to compensate for the damping dissipation. In addition, the
critical conditions for triggering self-jumping and the effects of several key system parameters on
its frequency and amplitude were investigated in detail. The self-jumping LCE hollow balloon with
larger internal space has greater potential to carry goods or equipment, and may open a new insight
into the development of mobile robotics, soft robotics, sensors, controlled drug delivery, and other
miniature device applications.

Keywords: balloon; self-oscillation; jump; optically-responsive; liquid crystal elastomers

1. Introduction

Oscillations are ubiquitous in nature, from the cell division of organisms to the rotation
of planets around the sun, and from the alternation of day and night to the change of seasons.
Mechanical oscillations are periodic energy conversion between potential energy and kinetic
energy, and they usually rely on external alternating excitation to maintain the continuous
motion of the system with damping dissipation [1]. In contrast, self-sustained oscillation is
a phenomenon where an object sustains periodic motion upon a constant stimulus; thus,
no additional complex human controls and portable batteries are required [2–4], and its
frequency is often determined by its own characteristics [5]. In addition, self-sustained
oscillation generally has good robustness [6]. Therefore, self-oscillation is of particular
interest to scientists due to its great potential in various fields, such as soft robotics [7–9],
energy-harvesters [10,11], mechano-logistic devices [12], sensors [13], and so on.

In recent years, various self-oscillating systems based on diverse stimuli-responsive
materials are reported, such as hydrogels [14,15], dielectric elastomers [16], ionic gels [17],
liquid crystal elastomers (LCEs) [7,18–21], and thermally responsive polymer materials [22],
etc. Furthermore, a variety of self-sustained motion modes have been constructed, such
as bending [23–26], buckling [27–30], torsion [31,32], stretching and shrinking [33,34],
rolling [35,36], swimming [9], swinging [37,38], vibration [39–41], jumping [42–44], rota-
tion [45], eversion or inversion [46,47], and even synchronized motion of several coupled
self-oscillators [48]. These self-sustained motions often originate from nonlinear feedback
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mechanisms including self-shadowing [3,27,28], coupling of liquid volatilization and mem-
brane deformation [49], coupling mechanism among air expansion and liquid column
movement [50], and coupling of plate buckling and chemical reaction [18].

Among the different stimuli, light is the most favorable stimulus, which has the unique
advantages of sustainability, precise controllability, and contactless driving [51,52]. As an
important optically responsive material, the liquid crystal elastomer is synthesized by a
composition of rodlike mesogenic monomers and backbones or side chains of flexible cross-
linked polymers, and it combines rubber elasticity with liquid crystalline anisotropy to
produce exceptional physical and optical properties [53–58]. When stimulated by external
fields, such as light, heat, electricity, and magnetism, liquid crystal monomer molecules
can change their configurations due to its rotation or phase transition, which induces
macroscopic deformation [59]. Among various and effective stimuli in the LCE systems,
light stimulus is more convenient to induce self-feedback to achieve self-sustained oscilla-
tion [43]. Recently, light-fueled self-oscillation based on LCE has attracted the attention of
many scientists, and a large number of light-fueled self-oscillating systems based on LCE
have been developed [30,43,44,59,60].

Although some self-oscillating systems based on LCE materials have been constructed,
there is still a need to develop more modes of self-oscillating systems. The broader the
range of available oscillation modes, the more versatile the autonomous devices one can
potentially construct. As a common movement mode, jumping has remarkable perfor-
mances, including ultrafast obstacle crossing, sudden energy release, and adaptability
to complex terrain [61–64], and it can be a new way to produce reliable self-sustained
oscillation [42–44]. Inspired by the active jumping of kangaroos and frogs in nature, in
this paper, we proposed a self-sustained jumping LCE balloon under steady illumination,
and investigated its dynamical behaviors of self-jumping. Different from a solid ball [44],
the hollow LCE balloon with larger internal space has greater potential to carry goods
or equipment. We expect that this study can provide new insights into understanding of
self-oscillation phenomenon and promote the development of mobile robotics, soft robotics,
sensors, controlled drug delivery, and other miniature device applications.

This paper is organized as follows. In Section 2, based on balloon contact model
and dynamic LCE model, a nonlinear dynamic model of a self-jumping LCE balloon
under steady illumination is formulated. In Section 3, the dynamic jumping of an LCE
balloon under steady illumination is numerically calculated by the Runge–Kutta method.
Two motion regimes of the LCE balloon under steady illumination are studied, and the
mechanism of self-jumping is revealed in detail. In Section 4, the trigger conditions for
self-jumping and the effects of various system parameters on frequency and amplitude are
investigated. Finally, the paper concludes with a short summary in Section 5.

2. Model and Formulation

In this section, a theoretical model is formulated for a self-jumping LCE balloon based
on the balloon contact model and dynamic LCE model, including the dynamic of the jump-
ing balloon, evolution of the number fraction in the LCE balloon, nondimensionalization of
the system parameters, and the solution method of the differential governing equations
with variable coefficients.

2.1. Dynamic of the Spherical LCE Balloon

Figure 1 sketches an optically responsive LCE balloon with radius r0 and membrane
thickness h0 in a stress-free state, which is capable of self-sustained jumping under steady
illumination. The coordinate axis y along the vertical direction is introduced to describe
the center position of the LCE balloon, and the origin O is fixed at the bottom of the rigid
surface. The azobenzene liquid crystal molecules in the membrane of the inflated LCE
balloon are parallel to its tangent plane. When the LCE balloon is in the illumination zone,
the azobenzene liquid crystal molecules transform from the straight trans state to bent
cis state, and thus the membrane shrinks in plane and expands in the thickness direction.
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We assume that the LCE material is incompressible and the volume of LCE membrane
Vm = 4πr2

0h0 is constant. Inflated by the gas of amount of substance ng, the radius of LCE
balloon is enlarged to r′ at the equilibrium state, which is set as the initial state as shown
in Figure 1c. In this state, the inflated LCE balloon is initially released at the position y0
in the illumination zone, and the LCE balloon drops from illumination zone (y(t) > H) to
dark zone (y(t) < H), as shown in Figure 1a. In the illumination zone, the radius r(t) of
LCE balloon decreases and its membrane thickness h(t) increases due to the light-driven
contraction of LCE membrane. In the dark zone, its radius r(t) increases and thickness h(t)
decreases with time due to the deformation recovery of the LCE membrane. Considering
that the thickness is much smaller than the radius, we can calculate the membrane thickness
as h(t) = Vm

4πr2 due to the incompressibility of the LCE material.

Figure 1. (a) Schematics of a self-jumping spherical LCE balloon under steady illumination. The
radius r(t) of the LCE balloon varies with time because of the light-driven contraction of the LCE
membrane. (b) Reference state of the LCE balloon in the stress-free state. (c) Initial state of the LCE
balloon inflated by gas. (d) The LCE balloon contacting rigid surface in dark zone is subjected to
gravity mg, damping forces Fd, and contact force FC. (e) Volume element. The LCE balloon can
self-jump under steady illumination due to the expansion during contact with the rigid surface in the
dark zone.

During movement, the LCE balloon is subjected to gravity mg and damping forces Fd,
which is assumed to be proportional to its velocity for simplicity. When contacting the rigid
surface in the dark zone, the LCE balloon is also subjected to contact force FC, as shown in
Figure 1d. Therefore, the corresponding nonlinear dynamic governing equation of the LCE
balloon can be given as follows

−mg + FC − β
.
y = m

..
y (1)

where g is gravitational acceleration, β is the damping coefficient, m is the mass of the LCE
balloon, and

.
y and

..
y are its velocity and acceleration, respectively.

When the deformable and elastomeric balloon hits the flat and rigid surface, the
balloon is pushed with a contact force FC from rigid surface [65], as shown in Figure 1d.
Considering the elasticity of membrane and compression of internal ideal gas, and omitting
the adhesion energy between the balloon and rigid surface, the contact force FC can be
expressed by the balloon contact model as [65]

FC = 0 for y(t) > r(t), (2)
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FC =
3Vg(pin − pam)

(
r2 − y2)

2[2r3 + r(r2 − y2)(1− 8λ)]
for y(t) ≤ r(t), (3)

where E and υ are the Young’s modulus and Poisson’s ratio, respectively, λ = 3rpin
16(2Eeffh+3rpin)

is a constant for the given balloon (at a given temperature and pressure), pam is the ambient
pressure, and pin is the internal pressure.

In Equation (3), the internal pressure pin is generally related to the radius r(t) of the
balloon. For simplicity, the gas inside the balloon is assumed to be ideal gas with equation
of state

pinVg = ngRT, (4)

where Vg = 4
3πr(t)3 is the instantaneous gas volume, R is the ideal gas constant, and T is

the thermodynamic temperature of the ideal gas.
To determine the radius of the balloon, we neglect the effect of gravity and damping

force on the deformation of the balloon; a spherical shell volume element with edge length
ds of the LCE balloon is shown in Figure 1e. The equilibrium equation of the volume
element in the normal direction is given as follows

4σhds·1
2

ds
r

+ pam(ds)2 − pin(ds)2 = 0, (5)

where 4σhds· 12
ds
r is the normal component of the tensile force on the LCE balloon. The

principal stress σ can be derived by σ = Eeffε, where Eeff =
1

1−υ E is the effective elastic

modulus of the equiaxial stress state, and ε = r−r0(1+εL)
r0(1+εL)

is the effective elastic strain
induced by light-driven contraction εL of the LCE membrane. Combined with Equation (4),
Equation (5) can be rewritten as

3ngRT
4πr3 −

Eeff[r− r0(1 + εL)]

r0(1 + εL)

2Vm

4πr3 − pam = 0. (6)

Equation (6) determines the radius r(t) of the balloon for a given light-driven contrac-
tion εL(t) of the LCE membrane.

2.2. Dynamic LCE Model

This section mainly describes the dynamic model of light-driven contraction εL(t) of
the LCE balloon. We assume that the light-driven contraction strain εL(t) is homogeneous
in the thin LCE membrane of the balloon. For simplicity, the light-driven contraction εL(t)
is assumed to be proportional to the cis-isomers number fraction φ(t) of the LCE material,
i.e.,

εL(t) = −C0φ(t), (7)

where C0 is the contraction coefficient. In the following, we further provide the evolution
law of the cis-isomers number fraction in Equation (7).

The study by Yu et al. [66] found that the trans-to-cis isomerization of LCE could be
induced by UV or laser with wavelength less than 400 nm. The number fraction φ(t) of
the cis-isomer depends on the thermal excitation from trans to cis, the thermally driven
relaxation from cis to trans, and the light driven relaxation from trans to cis. The number
fraction φ(t) is governed by [53]

∂φ

∂t
= η0 I0(1− φ)− τ−1

0 φ, (8)

where τ0 is the thermal relaxation time from cis to trans, I0 is the light intensity, and η0 is the
light absorption constant. The number fraction φ(t) can be obtained by solving Equation
(8) as

φ(t) =
η0T0 I0

η0T0 I0 + 1
+

(
φ0 −

η0T0 I0

η0T0 I0 + 1

)
exp

[
−(η0T0 I0 + 1)

t
τ0

]
, (9)
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where φ0 is the number fraction of cis-isomers at the initial moment under illumination.
In this paper, the LCE balloon switches between the illumination zone and the dark

zone. For Case I that the LCE balloon is in the illumination zone with initial φ0 = 0,
Equation (9) can be reduced to

φ(t) =
η0T0 I0

η0T0 I0 + 1

{
1− exp

[
−(η0T0 I0 + 1)

t1

τ0

]}
. (10)

For Case II that the LCE balloon is in the illumination zone switched from the dark
zone with transient φ0 = φdark, Equation (9) can be reduced to

φ(t) =
η0T0 I0

η0T0 I0 + 1
+

(
φdark −

η0T0 I0

η0T0 I0 + 1

)
exp

[
−(η0T0 I0 + 1)

t2

τ0

]
. (11)

For Case III that the LCE balloon is in the dark zone (I0 = 0) switched from the
illumination zone with transient φ0 = φillum, Equation (9) can be reduced to

φ(t) = φillum exp
(
− t3

τ0

)
, (12)

where t1, t2, and t3 are the durations of current process, respectively. φdark and φillum are
the number fractions of cis-isomers at the moment of switching from the dark zone into the
illumination zone, and from the illumination zone into the dark zone, respectively.

2.3. Solution Method

To conveniently investigate the dynamic jumping of LCE balloon, the dimension-
less quantities are introduced as follows: I0 = η0 I0τ0, t = t/τ0, y = y/r0, r = r/r0,
H = H/r0, pam = 2πpamτ2

0 r0/m, ng = 3ngRTτ2
0 /2mr2

0, E = EeffVmτ2
0 /mr2

0, β = βτ0/m,
g = gτ2

0 /r0, and FC = FCτ2
0 /mr0. The governing Equations (1) to (3) can be rewritten in

the dimensionless forms as
− g + FC − β

.
y =

..
y, (13)

FC = 0 for y
(
t
)
> r
(
t
)
, (14)

FC =

(
ng − pamr3)(r2 − y2)

2r3 + r
(
r2 − y2)(1− 8λ)

for y
(
t
)
≤ r
(
t
)
, (15)

where the constant λ can be rewritten as λ =
3ng

16(E+3ng)
. The larger the value of ng or the

smaller the value of pam, the greater the contact force FC is, that is the easier the bounce is.
Meanwhile, Equation (6) can also be rewritten as

r3 +
E

pam(1 + εL)
r−

E + ng

pam
= 0. (16)

The discriminant of Equation (16) can be expressed as ∆ = −
(
4p3 + 27q2), with

p = E
pam(1+εL)

and q = − E+ng
pam

. Since ∆ < 0, Equation (16) has only one real root, that is

r =
3

√
− q

2
+

√
q2

4
+

p3

27
−

3

√
q
2
+

√
q2

4
+

p3

27
. (17)

From Equations (7) and (10)–(12), the light-driven contraction can be rewritten as
follows, for Case I,

εL
(
t
)
= − C0 I0

I0 + 1

{
1− exp

[
−
(

I0 + 1
)
t1
]}

, (18)
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for Case II,

εL
(
t
)
= − C0 I0

I0 + 1
−
(

εdark −
C0 I0

I0 + 1

)
exp

[
−
(

I0 + 1
)
t2
]
, (19)

and for Case III,
εL
(
t
)
= −εillum exp

(
−t3

)
, (20)

where εdark and εillum are the light-driven contractions at the moment of switching from
the dark zone into the illumination zone, and from the illumination zone into the dark
zone, respectively. Since t1, t2, and t3 are the durations of current process, light-driven
contraction εL is process-related and time-dependent.

The initial conditions of the balloon can be given as

y = y0 and
.
y =

.
y0 at t = 0. (21)

Given the dimensionless parameters I0, C0, H, β, E, ng, pam, g, y0, and
.
y0, the solution

of Equations (13)–(15) and (17)–(20)can be obtained numerically by programming in soft-
ware Matlab based on the Runge–Kutta method. In the calculation, for the previous position
yi−1 and light-driven contraction εL(i−1), we can sequentially calculate the corresponding
radius ri−1 from Equation (17) and contact force FC(i−1) from Equation (14) or (15). We can
further calculate the current position yi from Equation (13) and the current light-driven
contraction εLi from Equations (18)–(20). Note that the LCE balloon is in the illumination
zone while yi > H, and in the dark zone while yi < H. Next, based on this light-driven con-
traction εLi, we can further calculate the current radius ri from Equation (17), and current
contact force FCi from Equation (14) or (15) again. Then the current yi+1 and εL(i+1) can be
sequentially calculated from Equations (13) and (18)–(20) again. By iteration calculation, we
can obtain the time histories of light-driven contraction and position for the LCE balloon.

3. Two Motion Regimes and Mechanism of the Self-Jumping

Based on the above governing equations, we numerically investigate the dynamics of
the jumping balloon under steady illumination. We first present two typical motion regimes:
the static regime and the self-jumping regime. Then, the corresponding mechanism of
self-jumping is elucidated.

3.1. Two Motion Regimes

To investigate the self-jumping of LCE balloon, we first need to determine the typical
values of dimensionless parameters in the model. From available experiments [37,67,68],
the material properties and geometric parameters are listed in Table 1. The corresponding
dimensionless parameters are also listed in Table 2. In the following, these values of
parameters are used to study the self-jumping of LCE balloon under steady illumination.

From Equations (13)–(15) and (17)–(20), the time histories and phase trajectories of
light-powered jumping of the LCE balloon can be obtained. In the computation, we set
C0 = 0.3, H = 4, β = 0.01, E = 500, ng = 200, pam = 0.5, g = 1, y0 = 30, and

.
y0 = 0. The

numerical calculation shows that there exist two motion regimes of LCE balloon: the static
regime and the self-jumping regime, as shown in Figure 2. For I0 = 0, the balloon with
initial height first dropped because of gravity, and then hit and bounced from the rigid
surface. Afterwards, the maximum height of the balloon gradually decreased due to air
damping, and the balloon finally rested at the static equilibrium position, which is named
as the static regime, as shown in Figure 2a,b. For I0 = 2, the maximum height of the balloon
first decreased and then remained constant to a certain value as shown in Figure 2c,d. This
result means that the balloon under steady illumination can jump continuously and finally
develops into self-sustained jumping, which is named as the self-jumping regime. This is
because that energy input transforming from light compensates the damping dissipation so
as to maintain the self-jumping. In Section 3.2, the mechanism of self-jumping is explored
in detail.
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Table 1. Material properties and geometric parameters.

Parameter Definition Value Units

C0 Contraction coefficient 0.2~0.5 /

τ0 trans-to-cis thermal relaxation time 1~100 ms

I0 Light intensity 0~1000 kW/m2

η0 Light-absorption constant 0.0003 m2/(s·W)

r0 Reference radius of LCE balloon 0~5 mm

Vm Volume of the LCE balloon 0~2 mm3

m Mass of LCE balloon 0~2 mg

E Elastic modulus of LCE balloon 1~10 MPa

ng Amount of substance of the gas 0~10−7 mol

R Ideal gas constant 8.314 J/(mol·K)

pam Ambient pressure 0~0.1 MPa

β Damping coefficient 0~0.001 kg/s

g Gravitational acceleration 10 m/s2

Table 2. Dimensionless parameters.

Parameter I0 H0 ng pam β E g

Value 0~102 0~20 0~104 0~107 0~50 102~107 10−2~102

Figure 2. Time histories and phase trajectories for two motion regimes of the LCE balloon. (a,b) The
static regime with I0 = 0; (c,d) the self-jumping regime with I0 = 2. The other parameters are
C0 = 0.3, H = 4, β = 0.01, E = 500, ng = 200, pam = 0.5, g = 1, y0 = 30, and

.
y0 = 0. For the LCE

balloon under steady illumination, there exist two typical motion regimes: the static regime and the
self-jumping regime.

3.2. Mechanisms of the Self-Jumping

To investigate the mechanism of self-jumping of LCE balloon, Figure 3 shows several
key physical quantities of LCE balloon under steady illumination for the typical case in
Figure 2c,d. Figure 3a shows the time history of light-driven contraction εL of LCE balloon,
presenting the characteristics of periodic changes over time. Figure 3b plots its dependence
of light-driven contraction εL on position y in one cycle of self-sustained jumping. The
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yellow shadow area in Figure 3 represents that the LCE balloon is in the illumination
zone, and the curve A→B→C corresponds to the jumping process of the balloon in the
illumination zone. When the LCE balloon jumps into the illumination zone, the light-
driven contraction εL gradually increases with time and tends to a limit value, as the
curve A→B→C shown in Figure 3b. When the LCE balloon drops down into the dark
zone, the light-driven contraction εL undergoes a gradual decrease with time, as the curve
C→D→A shown in Figure 3b. Therefore, the dependence of the light-driven contraction εL
on position y forms a cycle along the path of A→B→C→D→A.

Similarly, Figure 3c plots the dependence of radius r on position y in one cycle of
self-jumping. The radius r decreases in the illumination zone, while it increases in the
dark zone. The dependence curve of radius r on position y forms a closed loop, as shown
in Figure 3d. Further, Figure 3d plots the dependence of contact force FC on position y
during the contact of the LCE balloon with rigid surface. The contact force FC of the balloon
first increases and then decreases during the contact. Due to the expansion of the balloon
during the contact in dark zone as shown in Figure 4, the dependence of contact force FC on
position y presents a closed clockwise curve in one cycle. The red shadow area in Figure 3d
denotes the positive net work done by contact force FC, which compensates for the energy
dissipation of damping; thus, the LCE balloon may continue jumping periodically under
steady illumination.

Figure 3. Mechanism of the self-jumping LCE balloon, for I0 = 2, C0 = 0.3, H = 4, β = 0.01, E = 500,
ng = 200, pam = 0.5, g = 1, y0 = 30, and

.
y0 = 0. (a) The time history of light-driven contraction

of the LCE balloon. (b) The dependence of light-driven contraction on the position of the balloon
in one cycle of self-jumping. (c) The dependence of radius on the position of the balloon in one
cycle of self-jumping. (d) The dependence of contact force on position. The dependence of both
light-driven contraction and radius on position forms a cycle along the path of A→B→C→D→A.
The area enclosed by the loop in Figure 3d represents the net work done by contact force, which
compensates the damping dissipation and maintains the self-jumping.
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Figure 4. The process of the self-jumping LCE balloon in one cycle. The LCE balloon contracts in the
illumination zone, while it expands in the dark zone. Due to the expansion of the balloon during
the contact between the LCE balloon with rigid surface, the contact force does positive net work to
maintain the self-jumping.

4. Influence of System Parameters on the Self-Jumping

In this section, we investigate the trigger conditions for the self-jumping of LCE
balloon, and the effects of various system parameters on frequency and amplitude. In this
study, f denotes the dimensionless frequency, and A denotes the dimensionless amplitude
which is the maximum value of position y.

4.1. Effect of Initial Position

Figure 5 shows the effect of initial position y0 on the self-jumping of the LCE balloon.
In the calculation, we set C0 = 0.3, I0 = 2, H = 4, β = 0.01, g = 1, ng = 200, pam = 0.5,

E = 500, and
.
y0 = 0. Figure 5a plots the limit circles of the self-jumping balloon for different

initial positions, in which there exists a critical position y0 about 4 for the phase transition
between the static regime and the self-jumping regime. When the initial position is below
the critical position, there is not enough energy input to compensate for the damping
dissipation of the system, and thus the balloon develops into a static regime. For y0 = 5,
y0 = 6, and y0 = 7, the self-jumping can be triggered and the limit circles are the same,
as shown in Figure 5a. Figure 5b plots the frequency and amplitude of self-jumping as a
function of the initial position y0, respectively. It can be easily observed that y0 does not
change the amplitude and frequency of self-jumping. Considering that the parameter y0

can be transformed into the corresponding value
.
y0 through the energy transformation

between gravitational potential energy and kinetic energy, it can be concluded that the
initial conditions always have no effect on the amplitude and frequency of self-jumping,
which is a general characteristic of self-oscillation [2].

Figure 5. The effect of initial position on the self-jumping for C0 = 0.3, I0 = 2, H = 4, β = 0.01, g = 1,
ng = 200, pam = 0.5, E = 500, and

.
y0 = 0. (a) Limit cycles. (b) Frequency and amplitude. There

exists a critical y0 to trigger the self-jumping, and y0 does not affect the amplitude and frequency of
self-jumping.
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4.2. Effect of Light Intensity

Figure 6 describes the effect of light intensity I0 on the self-jumping of LCE balloon.
In the calculation, we set C0 = 0.3, H = 4, β = 0.01, g = 1, ng = 200, pam = 0.5, E = 500,

y0 = 30, and
.
y0 = 0. Figure 6a plots the limit circles of the self-jumping balloon for different

light intensities, in which there exists a critical light intensity about 0.4 for triggering
self-jumping. When the light intensity is less than the critical value, the energy input
transforming from light cannot compensate for the damping dissipation, and the LCE
balloon finally rests at the static equilibrium position. For I0 = 1, I0 = 3, and I0 = 3, the
self-jumping is triggered and their limit circles are shown in Figure 6a. Figure 6b shows the
effect of light intensity I0 on the frequency and amplitude of self-jumping. It can be seen
that with the increase of I0, the frequency of self-jumping decreases while the amplitude
increases. The exact reason for this is that the mechanical energy converted from light
energy increases as I0 increases, and it takes a longer time for the balloon to jump to a
higher position and drop down from this position.

Figure 6. The effect of light intensity on the self-jumping, for C0 = 0.3, H = 4, β = 0.01, g = 1,
ng = 0.4, pam = 0.001, E = 500, y0 = 30, and

.
y0 = 0. (a) Limit cycles. (b) Frequency and amplitude.

With the increase of I0, the frequency of self-jumping decreases, while the amplitude increases.

4.3. Effect of Contraction Coefficient

Figure 7 shows the effect of contraction coefficient C0 on the self-jumping of the LCE
balloon. In the calculation, we set I0 = 2, H = 4, β = 0.01, g = 1, ng = 200, pam = 0.5,

E = 500, y0 = 30, and
.
y0 = 0. The critical contraction coefficient to trigger self-jumping is

about 0.12. When the contraction coefficient is less than the critical value, the energy input
from illumination is lower than the energy dissipation by damping, and the LCE balloon
may stay at the static equilibrium position. For C0 = 0.2, C0 = 0.3, and C0 = 0.4, the
self-jumping is triggered and their limit circles are plotted in Figure 7a. Figure 7b shows the
effect of contraction coefficient C0 on the frequency and amplitude of self-jumping. With
the increase of C0, the frequency of self-jumping decreases while the amplitude increases.
This result implies that increasing the energy input from light energy can increase both the
jumping height and jumping time.

Figure 7. The effect of contraction coefficient on the self-jumping, for I0 = 2, H = 4, β = 0.01, g = 1,
ng = 0.4, pam = 0.001, E = 500, y0 = 30, and

.
y0 = 0. (a) Limit cycles. (b) Frequency and amplitude.

With the increase of C0, the frequency of self-jumping decreases while the amplitude increases.
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4.4. Effect of Dark Zone

Figure 8 shows the effect of dark zone H on the self-jumping of the LCE balloon. In
the calculation, we set I0 = 2, C0 = 0.3, β = 0.01, g = 1, ng = 200, pam = 0.5, E = 500,

y0 = 30, and
.
y0 = 0. The critical dark zone for triggering self-jumping is about 6.1. For

large H, the LCE balloon eventually rests at the static equilibrium position. This is because
that its light-driven contraction is almost fully recovered before impacting the rigid surface
in the dark zone, and the energy dissipation by damping cannot be compensated by the
positive net work of the contact force. For H = 3, H = 4, and H = 5, the self-jumping can
be triggered and their limit circles are plotted in Figure 8a. Figure 8b shows the effect of the
dark zone H on the frequency and amplitude of self-jumping. With the increase of H, the
frequency of self-jumping increases while the amplitude decreases. This result is because
less energy is input into the system during the contact process for larger H, the jumping
amplitude of the balloon is smaller, and the corresponding frequency becomes larger.

Figure 8. The effect of the dark zone on the self-jumping for I0 = 2, C0 = 0.3, β = 0.01, g = 1,
ng = 200, pam = 0.5, E = 500, y0 = 30, and

.
y0 = 0. (a) Limit cycles. (b) Frequency and amplitude.

With the increase of H, the frequency of self-jumping increases while the amplitude decreases.

4.5. Effect of Damping Coefficient

Figure 9 represents the effect of damping coefficient β on the self-jumping for I0 = 2,
C0 = 0.3, H = 4, g = 1, ng = 200, pam = 0.5, E = 500, y0 = 30, and

.
y0 = 0. Figure 9a

plots the limit cycles for different damping coefficients. Results indicated that there exists
a critical β to trigger the self-jumping, which was numerically determined to be about
0.022. This is because that the energy input to the system cannot compensate the damping
dissipation for β ≥ 0.022. For β = 0.005, β = 0.01, and β = 0.015, the self-jumping can be
triggered and their limit circles are plotted in Figure 9a. The dependences of amplitude and
frequency on damping coefficient are also shown in Figure 9b. As the damping coefficient
increases, the frequency increases while the amplitude decreases. These results can also be
explained by the energy competition between light energy input and damping dissipation.
The larger the damping coefficient is, the more the energy dissipation generates, and thus
the smaller the amplitude becomes.

Figure 9. The effect of damping coefficient on the self-jumping for I0 = 2, C0 = 0.3, H = 4, g = 1,
ng = 200, pam = 0.5, E = 500, y0 = 30, and

.
y0 = 0. (a) Limit cycles. (b) Frequency and amplitude.

As the damping coefficient increases, the frequency increases while the amplitude decreases.
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4.6. Effect of Gravitational Acceleration

Figure 10 reveals the effect of gravitational acceleration on the self-jumping for I0 = 2,
C0 = 0.3, H = 4, β = 0.01, ng = 200, pam = 0.5, E = 500, y0 = 30, and

.
y0 = 0.

Figure 10a plots the limit cycles of self-jumping of the LCE balloon for g = 0.5, g = 1.0
and g = 1.5. Careful calculation shows that for 0.2 < g < 3.5, the LCE balloon is in a self-
jumping regime. The result can also be understood by the energy compensation between
energy input and damping dissipation. For small g, i.e., the light-driven contraction and
deformation recovery are too fast, the LCE balloon rapidly recovers before contacting with
the rigid surface, and does not expand during the contact. For large g, i.e., the light driven
contraction and deformation recovery are too slow, the LCE balloon barely expands during
the contact with rigid surface. Therefore, the net work done by contact force is too small,
and the energy input is unable to compensate for the energy dissipated by damping to
maintain the self-jumping. Figure 10b shows the frequency and amplitude of self-jumping
of the LCE balloon for 0.2 < g < 3.5, respectively. It can be observed that with the increase
of g, the frequency increased monotonically, while the amplitude first increased and then
decreased.

Figure 10. The effect of gravitational acceleration on the self-jumping for I0 = 2, C0 = 0.3, H = 4,
β = 0.01, ng = 200, pam = 0.5, E = 500, y0 = 30, and

.
y0 = 0. (a) Limit cycles. (b) Frequency and

amplitude. With the increase of g, the frequency increases monotonically, while the amplitude first
increases and then decreases.

4.7. Effect of Amount of Substance

Figure 11 shows the effect of amount of substance ng on the self-jumping for I0 = 2,
C0 = 0.3, H = 4, β = 0.01, g = 1, pam = 0.5, E = 500, y0 = 30, and

.
y0 = 0. Figure 11a

shows the limit cycles for different amounts of substance. There exists a critical ng for the
transition between static regime and self-jumping regime, which was numerically calculated
to be about 55. For small ng, the contact force is also small as shown in Equation (15),
and the net work done by the contact force is incapable of compensating for the damping
dissipation to maintain the self-jumping. Figure 11b describes the dependences of frequency
and amplitude on ng for the self-jumping. It is clearly seen that with the increase of ng, the
frequency of self-jumping presented a downward trend, while the amplitude presented an
upward trend.
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Figure 11. The effect of amount of substance on the self-jumping for I0 = 2, C0 = 0.3, H = 4, β = 0.01,
g = 1, pam = 0.5, E = 500, y0 = 30, and

.
y0 = 0. (a) Limit cycles. (b) Frequency and amplitude. With

the increase of ng, the frequency of the self-jumping presents a downward trend, while the amplitude
presents an upward trend.

4.8. Effect of Ambient Pressure

Figure 12 presents the effect of ambient pressure pam on the self-jumping for I0 = 2,
C0 = 0.3, H = 4, β = 0.01, g = 1, ng = 200, E = 500, y0 = 30, and

.
y0 = 0. From the limit

cycles plotted in Figure 12a, there exists a critical pam for the trigger of self-jumping, which
was numerically calculated to be about 39. This result means that the LCE balloon keeps in
a static regime for pam ≥ 39, and a self-jumping regime for pam < 39. For large ambient
pressure pam, the net work done by contact force cannot compensate for the damping
dissipation to maintain the self-jumping. This can be explained from Equation (15) that
reducing ambient pressure has a similar effect to increasing the amount of substance ng.
Figure 12b plots the frequency and amplitude of the self-jumping as a function of the
ambient pressure pam, respectively. It can be easily observed that with the increasing pam,
the frequency of self-jumping increased while the amplitude decreased.

Figure 12. The effect of ambient pressure on the self-jumping, for I0 = 2, C0 = 0.3, H = 4, β = 0.01,
g = 1, ng = 200, E = 500, y0 = 30, and

.
y0 = 0. (a) Limit cycles. (b) Frequency and amplitude. As

pam increases, the frequency of self-jumping increases while the amplitude decreases.

4.9. Effect of Equivalent Elastic Modulus

Figure 13 shows the effect of equivalent modulus E on the self-jumping for I0 = 2,
C0 = 0.3, H = 4, β = 0.01, g = 1, ng = 200, pam = 0.5, y0 = 30, and

.
y0 = 0. Figure 13a

shows the limit cycles of self-jumping for different E. The critical E for triggering the
self-jumping regime was numerically calculated to be about 23. For small E, i.e., the LCE
balloon is very soft, both its contact force and net work done by the contact force are
small during the contact; thus, the energy input is unable to compensate for the damping
dissipation to maintain self-jumping. Figure 13b describes the dependences of frequency
and amplitude on E for the self-jumping. It is obvious that with the increase of E, the
frequency of self-jumping first decreased and then increased, while the amplitude first
increased and then decreased. This can be understood from the competition between the
effects of E on radius increment and contact force during the contact. With the increase
of E, both the radius decrement in illumination zone and radius increment in dark zone
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decreased, while the contact force increased. Therefore, the net work done by the contact
force during contact in one cycle first increases and then decreases.

Figure 13. The effect of equivalent modulus on the self-jumping, for I0 = 2, C0 = 0.3, H = 4, β = 0.01,
g = 1, ng = 200, pam = 0.5, y0 = 30, and

.
y0 = 0. (a) Limit cycles. (b) Frequency and amplitude.

With the increase of E, the frequency of self-jumping first decreases and then increases, while the
amplitude first increases and then decreases.

5. Conclusions

Self-oscillation systems can maintain periodic motion upon constant stimulus, and
have potential applications in the fields of autonomous robotics, energy-generation devices,
sensors, mechano-logistic devices, and so on. Inspired by the active jumping of kangaroos
and frogs in nature, we propose a self-jumping LCE balloon under steady illumination.
Based on the balloon contact model and dynamic LCE model, a nonlinear dynamic model
of self-jumping LCE balloon under steady illumination was formulated and numerically
calculated by the Runge–Kutta method. The results indicated that there exist two typical
motion regimes for the LCE balloon under steady illumination: the static regime and
the self-jumping regime. Due to the expansion of the LCE balloon during the contact
with a rigid surface in the dark zone, the positive net work can be done by the contact
force in one cycle, and it can compensate for the damping dissipation to maintain self-
jumping. The self-jumping of balloon can be triggered by controlling several key system
parameters, including the light intensity, contraction coefficient, dark zone, amount of
substance, equivalent elastic modulus, damping coefficient, and so on. In addition, the
frequency and amplitude of self-jumping can also be controlled by these parameters. The
self-jumping LCE hollow balloon with larger internal space has greater potential to carry
goods or equipment, and may open a new insight into the development of mobile robotics,
soft robotics, sensors, controlled drug delivery, and other miniature device applications.
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56. Domenici, V.; Milavec, J.; Zupančič, B.; Bubnov, A.; Hamplová, V.; Zalar, B. Brief overview on 2H NMR studies of polysiloxane-
based side-chain nematic elastomers. Magn. Reson. Chem. 2014, 52, 649–655. [CrossRef]
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